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New solar energy‑storage resource 
of plasmon‑activated water 
solution with higher chemical 
potential
Chih‑Ping Yang1,3, Shih‑Hao Yu1,3, Fu‑Der Mai1, Tai‑Chih Kuo1* & Yu‑Chuan Liu1,2*

Nowadays, solar energy is the most environmentally friendly energy source to drive many chemical 
reactions and physical processes. However, the corresponding fabrication procedures for obtaining 
excellent energy‑storage devices are relatively complicated and expensive. In this work, we report 
an innovative strategy on plasmon‑activated water (PAW) serving as energy‑storage medium from 
solar energy. The lifetime of the created energetic PAW solution from hot electron transfer (HET) on 
Au nanoparticles (AuNPs) illuminated with sunshine can last for 2 days, making the energy‑storage 
system is practically available. Encouragingly, the energy‑conversion efficiency from the solar energy 
in the PAW solution is ca. 6.7%. Compared to conventional deionized (DI) water solution, the prepared 
metastable PAW solution exhibited distinctly higher chemical potential at room temperature. It 
demonstrates abilities in faster evaporation and enhancing chemical reactions, including hydrogen 
evolution reaction (HER) and oxygen evolution reaction (OER). Our proposed strategy on the simple 
and cheap energy‑storage system based on prepared PAW utilizing solar energy is the first time shown 
in the literature.

Liquid water is the most abundant liquid on the earth and is recognized as the most environmentally friendly 
solvent in chemical reactions. Water’s unique chemical and physical properties come from its flexible dynamic 
network of hydrogen bonds (HBs), in which HBs are broken and formed at equilibrium on a picosecond time 
 scale1,2. Because investigating water’s local structure is still  challenging3,4, well-known water properties are mainly 
based on free bulk water in spite of the original tetrahedral HB network being destroyed when water is confined 
in a nanosized environment or localized at  interfaces5,6. These heterogeneous interactions result in corresponding 
changes in water’s HB-dependent  properties7,8. In fact, water deviated from the tetrahedral symmetry structure 
of bulk water would create disordered defect structure. As a result, it can reduce the size of water clusters. Com-
pared to bulk bound water clusters, disordered water clusters with weak HBs have more free water molecules 
which can interact with other species to enhance the activity. As reported by Velasco-Velez et al.9, analysis of an 
ab initio molecular dynamic (AIMD) simulation revealed that ~ 50% of interfacial water molecules lie flat on 
a gold (Au) surface with broken HBs, and this population of broken HB molecules is substantially higher than 
the 22% found in bulk water.

On the other hand, due to increasing shortages of available energy in the world, the harvesting of solar 
energy has drawn enthusiastic interest due to it being a more environmentally friendly energy conversion pro-
cess. For practical use, solar energy can be converted to heat, electricity, and energy-rich chemicals (solar fuel). 
Conversion to electricity and fuel is the most interesting and valuable because these forms of energy are more 
convenient to  use10–13. Correspondingly, energy-storage materials with enhanced energy-storage densities com-
prising highly stable devices are rapidly being developed. However, fabrication procedures for obtaining excel-
lent energy-storage devices are relatively complicated. As shown in the literature, stable polymer phase-change 
materials embedded with  Fe3O4-functionalized graphene nano-sheets were prepared serving as sunlight- and 
magnetic-driven energy conversion and storage nano-composites14. Also, to enable the synergistic coupling of 
electrochemical storage and light harvesting in a single electrode bias-free and solar-driven pseudocapacitors 
utilizing nanorod arrays of ZnO@NiO were  proposed15.

OPEN

1Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical 
University, No. 250, Wuxing St., Taipei 11031, Taiwan. 2Cell Physiology and Molecular Image Research Center, Wan 
Fang Hospital, Taipei Medical University, Taipei, Taiwan. 3These authors contributed equally: Chih-Ping Yang and 
Shih-Hao Yu. *email: tckuo@tmu.edu.tw; liuyc@tmu.edu.tw

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-77815-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20868  | https://doi.org/10.1038/s41598-020-77815-3

www.nature.com/scientificreports/

Because Au nanoparticles (NPs) possess well-defined localized surface plasmon resonance (LSPR) bands in 
the ultraviolet and near-infrared regions, they are commonly utilized in fields of surface-enhanced Raman scat-
tering (SERS)16, photothermal ablation of  tumors17, and photochemical catalytic  reactions18. Jia et al.19 reported 
the preparation of Au/CeO2 microsphere photocatalysts through an aerosol spray and a study of their photocata-
lytic activities toward the aerobic oxidation of 1-phenylethanol under visible light based on hot electron transfer 
(HET). Meanwhile, Yoo et al.20 showed that electromagnetized AuNPs in the presence of specific electromagnetic 
field (EMF) conditions facilitate the efficient direct lineage reprogramming to induce dopamine neurons in vitro 
and in vivo. However, these chemical and biochemical reactions of AuNP-based efficient energy transfer occur 
transiently. The unutilized energy at the moment from excited or electromagnetized AuNPs cannot be preserved, 
meaning that the produced energies are wasted. Water’s property and activity is critically dependent on the 
strength of hydrogen bonds (HBs) between water molecules. Innovative plasmon-activated water (PAW) was 
created utilizing HET on AuNPs with resonant illumination, as reported  previously21. The created PAW with 
reduced HBs owns many distinct properties compared to bulk water. For examples, a smaller specific heat and a 
longer spin–lattice relaxation time. Recently, efficient and inexpensive catalysts are most developed for enhanc-
ing the efficiency on oxygen and hydrogen production. However, it is promising of an alternative approach to 
effective clean energy-relative reactions that employ PAW solutions, which are created from natural solar energy, 
with water molecules themselves possessing reduced HBs. The lifetime of HET is on the order of picoseconds, 
making the corresponding utilization limited and inconvenient. In this work, we suppose that the relatively large 
energetic barrier of HBs of bulk water could be overcome by utilizing solar-illuminated AuNPs to facilitate the 
dissociation of  H2O. Also, we demonstrate that the PAW solution with a higher chemical potential preserved from 
solar energy can serve as a new energy-storage resource to enhance chemical reactions and physical processes.

Results and discussion
Distinct properties of prepared PAW. From the viewpoint of thermodynamics, liquid water should be 
an excellent energy sink in utilizing solar energy, because its temperature is slowly raised when it is illuminated 
by sunshine and correspondingly being slowly decreased as it is cooled. However, most of the energy converted 
from solar energy is heat, and the dynamic equilibrium of HBs is on the level of picoseconds in water, making 
liquid water unavailable as an energy-storage resource when it is easily cooled to room temperature. On the 
other hand, HET can promote many chemical reactions, including the dissociation of  hydrogen22 and activation 
of  oxygen23. Interestingly, the dynamic processes of continuous and spontaneous forming, breaking, and rear-
ranging of HBs occur at the picosecond scale, which is accordant with the lifetime of hot  electrons24. Therefore, 
hot electrons may seize the moment to rapidly occupy breaking HBs and prevent them from reforming. This 
potential inspired us to utilize HET at excited AuNPs to create a metastable energetic PAW solution with intrin-
sically reduced HBs, which can serve as a new alternative energy-storage resource with a higher chemical poten-
tial from solar energy. Our previous  study21 reported that PAW can be created utilizing HET on AuNPs with 
resonant illumination of green LEDs. In this work, natural sunshine with full wavelengths, including plasmon 
resonance wavelength for the same AuNPs, is utilized to produce the similar HET on AuNPs and the subsequent 
PAW. Figure 1a shows the reaction glass cells for creating the PAW solutions (0.1 M KCl) exposed to sunlight. 
The light red color of the AuNP-coated ceramic rods (originally white color) was observed. This color is the char-
acteristic one of AuNPs with photocatalytic activity, which is similar with our previous report (AuNP-coated 
ceramic particles), showing the creation of  PAW21. As shown in the  literature25,26, cations and anions impact the 
electronic structure of liquid water, resulting in distortions of the geometrical arrangements of water molecules. 
Therefore, two kinds of PAW solutions were prepared to examine the influence of electrolytes on HBs of the pro-
duced PAW solutions under solar irradiation in the presence of AuNPs. The first was a PAW solution in situ, in 
which KCl electrolytes were added to DI water before solar irradiation. The second was a PAW solution ex situ, in 
which KCl electrolytes were added to DI water after solar irradiation. Water’s HBs are responsible for its funda-
mental abilities. Thus, this effect on the corresponding evaporation rate was first examined in ambient laboratory 
air. The left part of Fig. 1b demonstrates evaporation rates of different as-prepared aqueous solutions containing 
0.1 M KCl. Based on the colligative properties of ionic solutions, the vapor pressure of ionic solutions should be 
lower than that of a pure solvent. Thus, all experiments were performed on a platform of an orbital shaker for 
30 min to accelerate the evaporation process. The measured evaporated masses in 30 min were 12.73 ± 0.25 (12.5, 
13.0 and 12.7), 14.03 ± 1.01 (15.2, 13.5 and 13.4), and 13.77 ± 1.27 (15.2, 11.4 and 14.7) mg based on three rep-
licated experiments (the following average data were also obtained using three replicated experimental results) 
for the DI water solution, PAW solutions in situ and ex situ, respectively. Magnitudes of the evaporation rates of 
the PAW solutions in situ and ex situ were respectively higher by ca. 10.2% and 8.2%, compared to that of the DI 
water solution. The unique property of the high boiling point of water is ascribed to its strong HBs; thus, these 
increased evaporation rates observed in PAW solution systems with weak HBs are interesting. Moreover, the 
measured evaporation mass in 30 min was 12.97 ± 0.76 (13.5, 13.3 and 12.1) mg for the blank solution, which was 
obtained using similar experimental conditions (in the absence of AuNPs) as used to prepare the PAW solution 
in situ. This magnitude of the evaporation rate was slightly higher, by ca. 1.9%, compared to that of the DI water 
solution, indicating that HET for weakening the HBs of water only occurred in the presence of AuNPs under 
solar irradiation. Moreover, for sunshine-irradiated experiments performed in open bottles, magnitudes of the 
evaporation rates of the PAW solutions in situ were higher by ca. 17.5%, 15.3% and 9.8% in the first, second and 
third hours, respectively, compared to those of the blank solutions, as shown in Fig. S1. These results confirm 
that the phenomena are photochemical processes. As shown in the literature, the potential of water is propor-
tional to the natural logarithm of its vapor pressure according to the following  equation27:

(1)µ = µo + RT ln(f/fo)
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where μ and μ0 (J  mol−1) are defined as the potentials (i.e., thermodynamic activities or energies) at different 
vapor pressures of f and  f0, respectively; R is the gas constant (8.314 J mol−1 K−1); and T is the temperature in K. 
Compared to the DI water solution, the higher evaporation rate of the PAW solution means that the PAW solution 
possesses a higher vapor pressure than that of the DI water solution at room temperature. This suggests that the 
metastable PAW solution possesses higher activity similar to those of energy-rich chemicals with reduced HBs 
due to HET, which is in accordance with the increased activity observed for confined  water28. The right part of 
Fig. 1b demonstrates corresponding evaporation rates of different aqueous solutions containing 0.1 M KCl for 
2 days after their preparation. In aging, the sealed glass sample bottles were placed in a dark atmosphere and 
in ambient laboratory air. The measured evaporation masses at 30 min were 11.07 ± 0.12 (11.2, 11.0 and 11.0), 
12.27 ± 0.74 (11.7, 12.0 and 13.1), 11.63 ± 1.72 (10.9, 10.4 and 13.6), and 10.90 ± 0.87 (11.3, 9.9 and 11.5) mg for 
the DI water solution, the in situ and ex situ PAW solutions, and the blank solution, respectively. The magnitudes 
of the evaporation rates of the energetic PAW solutions in situ and ex situ were still higher by ca. 10.8% and 5.1%, 
respectively, compared to that of the DI water solution after aging for 2 days. Similarly, the evaporation rate of 
the blank solution was close to that of the DI water solution. Conversion of the solar energy stored in the PAW 
solution means that is can be utilized for a couple of days after its creation; thus, it can possibly serve as a new 
energy-storage resource. Of course, the activity of the created PAW will decay with time.

The effects of adding electrolytes to the water on the corresponding properties of the prepared PAW solu-
tions are another interesting finding. The increased evaporation rates compared to the DI water solution were 
more significant for the PAW solution in situ as observed in both fresh and aged samples. These phenomena 
were independent of the heat of the solution because using KCl with a positive heat of solution (17 kJ mol−1) 
and using LiCl with a negative heat of solution (− 38 kJ mol−1) both demonstrated consistent results of higher 
evaporation rates in PAW solutions compared to them in DI water solutions, as shown in our previous  study29. 
For the PAW solution ex situ, the reduced evaporation rate, compared to the PAW solution in situ, can be ascribed 
to the decreased vapor pressure due to the well-known colligative properties of ionic solutions, when KCl was 
added to the PAW. Some of the conserved energy from solar irradiation is utilized as the heat of solution for the 
dissolution of KCl in PAW. This release of chemical energy was accompanied with the formation of HBs in water 
molecules. Therefore, a new metastable PAW solution ex situ was formed with lower energy and stronger HBs 
compared to the PAW solution in situ. For the PAW solution in situ, the energy lost in dissolving KCl in DI water 
can easily be supplemented from HET under solar irradiation for 3 h. Therefore, the PAW solution in situ is in 
a metastable state with a higher energy compared to the PAW solution ex situ. Pure PAW without electrolytes 
is in the same metastable state as the PAW solution ex situ under the same solar irradiation. The corresponding 

Figure 1.  Reaction glass cell for creating plasmon-activated water (PAW) solutions under solar irradiation 
and corresponding evaporation rates of PAW-based solutions (0.1 M KCl) after exposure to sunlight for 3 h. 
Deionized (DI) water-based solutions (0.1 M KCl) are demonstrated for reference. (a) Gold nanoparticle 
(AuNP)-coated ceramic rods in glass sample vials with 0.1 M KCl-containing DI water solutions under solar 
irradiation: 1, AuNP-coated ceramic rods; 2, 0.1 M KCl-containing DI water; 3, sunshine. (b) Evaporation 
rates in 30 min of the as-prepared and aged (2 days) PAW-based, DI water-based, and blank experiment-based 
solutions (0.1 M KCl); the blank solution was obtained by using experimental conditions similar to those 
for preparing the PAW solution in situ but using blank ceramic rods with no AuNP coating. (c) Schematic 
descriptions of the energy-progress of the process curve of PAW solutions in energy transfer for the dissolution 
and evaporation processes.
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energy-progress process of the PAW solutions is illustrated in Fig. 1c. Throughout this work, unless stated oth-
erwise, aqueous solutions were prepared with 0.1 M KCl.

Moreover, similar photochemical experiments, as the one shown in Fig. 1a, were performed to demonstrate 
the phenomenon of HET based on electrolyte-free water. The measured zeta potentials of PAW were − 29.6 ± 0.56 
and − 26.9 ± 0.73 mV, respectively, 0 and 2 days after its creation; these values are close to electronically neutral 
DI water (− 1.63 ± 0.41 and − 1.58 ± 0.29 mV, respectively, 0 and 2 days after its preparation). Meanwhile, com-
pared to DI water, the intensities of hydroxyl free radicals measured by electron spin resonance  spectroscopy21 
decreased by 45 ± 3.9% and 29 ± 3.3%, respectively, for as-prepared and 2-day-aged PAW.

Calculating evaporation rates also disclosed a difference in HBs of the water solutions, which indicated 
different heat capacities. As expected, temperatures of both 0.1 M KCl-containing solutions increased with 
the heating time (Fig. 2a). At temperatures of > 90 °C, the lines became flattened because the water was nearly 
boiling. The boiling point was 97.4 ± 0.2 °C for the DI water solution; while they were respectively reduced to 
96.6 ± 0.1 and 96.4 ± 0.2 °C for the PAW solutions in situ and ex situ. Similarly, the boiling point of the blank 
solution (97.8 °C) was close to that of the DI water solution. It is recognized that HBs serve as a storehouse of 
energy. Instead of directly raising the temperature of the solution, part of heat is utilized for breaking HBs of 
water molecules. Due to fewer HBs remain at higher temperatures, thus, the heat capacity would decrease as the 
temperature increasing. In contrast, it would increase with rising temperatures. This phenomenon suggests that 
the added heat was utilized for breaking HBs of water molecules also for raising the temperature. Particularly, 
maintaining the degree of freedom between water molecules to prevent them from re-bonding. As a result that 
the PAW solutions can own intrinsically reduced HBs and could further prevent the re-bonding of HBs between 
water molecules. Therefore, it reduces the energy gap as the temperature rising. The specific heats of the PAW 
solutions in situ and ex situ were between 25 and 40 °C, which respectively demonstrate reduced values of 0.832 
and 0.889 compared to the heat capacity of the DI water solution which was set to 1 (calculated from Fig. 2b). 
Because all of the experiments, using the same mass of water, were performed on the same heater with a constant 
heating rate the specific heats were inversely proportional to the slopes of lines, as shown in Fig. 2b. Compared 
to a general difference in specific heats of < 1% for DI water at low and high  temperatures30, the 17% difference 
was indeed significant. This magnitude of the specific heat was slightly reduced by ca. 3.7% for the blank solu-
tion, compared to that of the DI water solution. These results are in agreement with the correlation of the water 
cluster size and heat capacity, in which the heat capacity of  (H2O)21 is smaller than that of  (H2O)50 at 27 °C31. 
After aging for 2 days, the specific heats of the PAW solutions in situ and ex situ were between 25 and 40 °C, 
which respectively demonstrated reduced values of 0.909 and 0.929 compared to the heat capacity of the DI 
water solution which was set to 1 (calculated from Fig. 2c). The magnitudes of the specific heats of the energetic 
PAW solutions in situ and ex situ were still reduced by ca. 9.1% and 7.1%, respectively, compared to that in the 
DI water solution after aging for 2 days.

The evidence for weak HBs within pure PAW was discussed with deconvoluted Raman spectra in O–H 
stretching vibrations in our previous  report23. These O–H stretching vibrations in Raman spectra are also sensi-
tive to solutes in the water. Thus, the evidence for reduced HBs in PAW solutions was examined by diffusion 
averages of the nuclear magnetic resonance (NMR) relaxation time (T1) in this work (Fig. 3). The strength of 
HB interactions among water molecules affected the spin–lattice relaxation time, T1, which represents the time 
required for the longitudinal component of magnetization to recover its equilibrium value after application of 
a perturbing pulse sequence. Under magnetic field fluctuations for as-prepared solutions, T1 values of the PAW 
solutions in situ and ex situ were 3.315 ± 0.004 and 3.281 ± 0.041 s, respectively, which were significantly longer 
than 3.230 ± 0.055 s of the DI water solution. Similarly, with solutions aged for 2 days, T1 values of the PAW 
solutions in situ and ex situ were 3.290 ± 0.032 and 3.240 ± 0.004 s, respectively, which were still longer than 
3.139 ± 0.022 s of the DI water solution. These analyses of NMR relaxation times suggested an intrinsic reduc-
tion of HB structures in the PAW solution. These energy-rich chemicals of reduced HBs show promise as an 
energy-storage resource for PAW solutions.

Distinctly electrochemical performance of prepared PAW. Water molecules exist in the form of 
water clusters in bulk water due to strong HB interactions. It was reported that the interaction energy of  H3O+–
OH− is 46.9 kJ mol−1, and it increases approximately 2.5-times when  H3O+ associates with an additional four 
water  molecules32. Based on these facts, creating PAW solutions with markedly weaker HB interactions could 
be advantageously used for efficient water splitting, compared to conventional DI water solutions. Potential 
applications of PAW solutions in OERs and HERs were evaluated by electrochemical linear sweep voltammetry 
(LSV). Figure 4a demonstrates the corresponding results of OERs in PAW-based and DI water-based solutions 
(0.1 M KCl). The onset potentials for the PAW solutions were markedly smaller (cathodic shifts) than that for 
the DI water solution, especially for the PAW solution in situ. This indicates that the required electrolytic energy 
for the OER was indeed reduced via weakening water’s HBs. As the applied potential exceeded the onset poten-
tial, the current distinctly increased. At a vertex of 1.5 V, the respective recorded currents were 1.060 ± 0.165 
and 0.479 ± 0.033 mA for the PAW solutions in situ and ex situ, which were ca. 220% and 40% higher than the 
0.331 ± 0.005 mA for the DI water solution. As shown in the literature, to increase the efficiency of OERs, the 
most common approaches have focused on new and cheap catalysts with different chemical compositions and 
 structures33,34. Investigations of the effect of the structure of reactant water itself on the corresponding efficiency 
of OERs have been less reported in the literature. Moreover, the increased efficiencies (depending on the recorded 
currents) of OERs performed in PAW solutions decreased with storage time (Fig. 4b). Similar currents for as-
prepared DI water solutions and those aged for 3 days mean that the HB structure in DI the water solution was 
stable during storage. However, the phenomenon of decreasing efficiencies for PAW solutions suggests that the 
broken HBs within water molecules recombine over time, resulting in a reduction in the efficiency of electrolytic 
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water splitting. For the PAW solution ex situ, this increased efficiency in the OER was slight after aging for 1 day. 
Interestingly, for the PAW solutions in situ, these increased efficiencies in OERs of ca. 64% and 22% in magni-
tude were still significant after aging for 1 and 2 days, respectively. Again, as shown in Fig. S2, this increased 
efficiency of OERs for the as-prepared blank solution was slightly higher by ca. 9.2%, compared to that for the DI 
water solution, indicating that HET for weakening HBs of water only occurred in the presence of AuNPs under 
solar irradiance. Figure 4c,d demonstrate the corresponding OERs performed in alkaline solutions containing 
0.1 M NaOH. Comparing Fig. 4c showing experiments performed in alkaline solutions with Fig. 4a showing 
experiments performed in neutral solutions, it was found that the recorded currents in alkaline solutions were 
significantly larger than those in neutral solutions. This is reasonable because an alkaline solution is favorable 

Figure 2.  Specific heat (compared to the 0.1 M KCl deionized (DI) water solution) of plasmon-activated water 
(PAW)-based solutions (0.1 M KCl) after exposure to solar irradiation for 3 h. (a) Rates of rising temperatures 
measured in the as-prepared PAW-based and DI water-based solutions (0.1 M KCl) with the same masses under 
a constant applied power. (b) The temperature-heating time dependence between room temperature and 40 °C 
of the as-prepared PAW-based and DI water-based solutions. (c) The temperature-heating time dependence 
between room temperature and 40 °C of aged (for 2 days) PAW-based and DI water-based solutions. The blank 
solution was obtained using experimental conditions similar to those for preparing the PAW solution in situ but 
using blank ceramic rods without an AuNP coating.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20868  | https://doi.org/10.1038/s41598-020-77815-3

www.nature.com/scientificreports/

for OERs. At a vertex of 1.5 V, the recorded currents were 2.5400 ± 0.1949 and 2.2830 ± 0.2621 mA for the PAW 
solutions in situ and ex situ, respectively, which were ca. 25% and 12% higher than the 2.0386 ± 0.1708 mA of the 
DI water solution. Interestingly, for the PAW solutions in situ and ex situ, these respective increased efficiencies 
in OERs were of ca. 14% and 3.8% after aging for 3 days, as shown in Fig. 4d. This increase was still significant 
for the PAW solution in situ.

Similarly, Fig. 5a shows the corresponding results of HERs in PAW-based and DI water-based solutions (0.1 M 
KCl). Onset potentials of the PAW solutions exhibited significant anodic shifts compared to the DI water solu-
tion, especially for the PAW solution in situ. At a vertex of − 1.4 V, the recorded currents were − 0.0793 ± 0.0006 
and − 0.0494 ± 0.0013 mA for the PAW solutions in situ and ex situ, respectively, which were ca. 120% and 35% 
higher than the − 0.0367 ± 0.0015 mA of the DI water solution. As expected, the increased efficiencies (depending 
on the recorded currents) of HERs performed in the PAW solutions decreased with the storage time (Fig. 5b). 

Figure 3.  NMR-T1 represents the time required for the longitudinal component of magnetization to recover to 
its equilibrium value after applying a perturbing pulse sequence. Spectra represent spectral signals as a function 
of the repetition time for (a) the deionized (DI) water solution (0.1 M KCl, as-prepared), (b) the plasmon-
activated water (PAW) solution ex situ (0.1 M KCl, as-prepared), (c) the PAW solution in situ (0.1 M KCl, 
as-prepared), (d) the DI water solution (0.1 M KCl, aged for 2 days), (e) the PAW solution ex situ (0.1 M KCl, 
aged for 2 days), and (f) the PAW solution in situ (0.1 M KCl, aged for 2 days).
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Similar currents for the as-prepared DI water solution and that aged for 3 days mean that the HB structure in DI 
water solutions was stable during storage. For the PAW solution ex situ, this increased HER efficiency was slight 
after aging for 2 days. Interestingly, for the PAW solutions in situ, these increased efficiencies in HERs of ca. 60%, 
50% and 28% in magnitude were still significant after aging for 1, 2, and 3 days, respectively. Correspondingly, 
experimental results of evaporation rates, specific heats, OERs, and HERs suggest that the created metastable 
PAW solution in situ can serve as a new energy-storage material with energy-rich chemicals of reduced HBs.

Figure 6a demonstrates typical triangular voltammetric curves in the 5th scan for anodic dissolution and 
cathodic redeposition of Au respectively onto Au substrates in an as-prepared PAW solution in situ, an as-pre-
pared PAW solution ex situ, and an as-prepared DI water solution for reference. Basically, the anodic dissolution 
and cathodic redeposition of AuNPs on substrates were easier in PAW solutions (a reflection of the enhanced 
current), especially in the PAW solution in situ, than in the DI water solution. In the oxidation–reduction cycle 
(ORC) treatment for roughening the Au substrate, AuNPs were deposited on the Au substrate. Intrinsic activation 
energy is necessary for this electrochemical reaction. In our previous  study21, it was proposed that the chemical 
potential of PAW is higher than that of DI water. Because the PAW solution is energetic, the actual required 
activation energy was correspondingly reduced, compared to the DI water solution. Therefore, enhanced currents 
were obtained in the PAW solutions. Compared to the DI water solution, the cathodic redeposition currents at 
ca. 0.28 V vs. Ag/AgCl respectively increased by 13% and 9.7% for the PAW solutions in situ and ex situ. With up 
to 25 scans, as shown in Fig. 6b, these increases in cathodic redeposition currents at ca. 0.28 V vs. Ag/AgCl were 
similar. Compared to the DI water solution, the cathodic redeposition currents respectively increased by 13% 
and 5.4% for the PAW solutions in situ and ex situ. Similarly, as shown in Fig. 6c (the 5th scan) and 6d (the 25th 
scan) for solutions aged for 2 days, smaller increased currents were observed in experiments performed in the 
PAW solutions, especially in the PAW solution in situ, compared to the DI water solution. Other experimental 
results (Figs. 1, 2, 3, 4, 5 discussed before, and Figs. 7, 8 discussed later) all indicate that the property differences 
between the PAW solution and the DI water solution after aging for 2 days are significant. Therefore, this small 
difference in increment drops to around 2.2%, as Fig. 6d, most likely can be ascribed to the solution difference. 
This also suggests that the PAW solution in situ is suitable for serving as an energy-storage resource. As described 
in the experimental section, the electrolytes of KCl were added in water before and after the creations of PAW 
for the PAW solution in situ and the PAW solution ex situ, respectively. Additional energy is necessary for the 
dissolution of KCl in water. Thus, the potential energy of the intrinsically energetic PAW is reduced for the 
preparation of the PAW solution ex situ. This results in the enhanced current being correspondingly reduced, as 

Figure 4.  Linear sweep voltammetry (LSV) recorded on a planar Pt electrode for the oxygen evolution 
reaction (OER) in plasmon-activated water (PAW)-based and deionized (DI) water-based solutions. (a) LSV 
at scan rates of 0.05 V s–1 in the PAW solution in situ, the PAW solution ex situ, and the DI water solution (all 
containing 0.1 M KCl). (b) OER currents at 1.5 V vs. Ag/AgCl in the PAW solution in situ, the PAW solution ex 
situ, and the DI water solution (all containing 0.1 M KCl) for 0, 1, 2, and 3 days after their preparation. (c) LSV 
at scan rates of 0.05 V s–1 of the PAW solution in situ, the PAW solution ex situ, and the DI water solution (all 
containing 0.1 M NaOH). (d) OER currents at 1.5 V vs. Ag/AgCl in the PAW solution in situ, the PAW solution 
ex situ, and the DI water solution (all containing 0.1 M NaOH) for 0, 1, 2, and 3 days after their preparation.
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compared to the PAW solution in situ. The higher currents at cathodic peaks observed in PAW solutions may be 
also ascribed to the higher diffusion coefficient and the higher electron transfer rate constant for electrochemical 
experiments performed in the PAW solution systems, as discussed below.

Figure 7a shows the CVs of  K3Fe(CN)6 in the as-prepared PAW solutions and the as-prepared DI water solu-
tion. It can be observed that both the anodic and cathodic peak currents based on the PAW solutions were the 
highest ones, especially for the PAW solution in situ. Similarly, the potential energy of the intrinsically energetic 
PAW would be reduced in the dissolution of electrolytes for the preparation of the PAW solution ex situ. Thus, 
this results in the enhanced currents being correspondingly decreased, as compared to the PAW solution in situ. 
In accordance with the Randles–Sevcik  equation35, the peak current is proportional to the square root of the dif-
fusion coefficient. The calculated diffusion coefficients of  K3Fe(CN)6 in the PAW solution in situ (2.34 ± 0.01 × 10−6 
 cm2 s−1) and in the PAW solution ex situ (2.27 ± 0.01 × 10−6  cm2 s−1) were ca. 17% and 14%, respectively, higher 
than that in the DI water solution (2.00 ± 0.01 × 10−6  cm2 s−1). These results suggest that the PAW solution has 
a function of enhancing the diffusion ability of species in water. The reason might be attributed to the reduced 
size of hydrated Fe(CN)6

3−/4− in the water. Within the DI water solution, hydration is associated with large water 
clusters due to the strong HB network of water. Contrarily, breaking the HB structure can reduce the size of water 
clusters in the PAW solution, resulting in higher mobility of Fe(CN)6

3−/4−–H2O. Figure 7b shows the correspond-
ing CVs of  K3Fe(CN)6 in aged solutions. Also, the diffusion coefficients of  K3Fe(CN)6 in the in situ PAW solution 
(2.32 ± 0.06 × 10−6  cm2 s−1) and in the PAW solution ex situ (1.99 ± 0.04 × 10−6  cm2 s−1) were ca. 25% and 7%, 
respectively, still higher than that in the DI water solution (1.86 ± 0.03 × 10−6  cm2 s−1) after the samples had aged 
for 2 days. Moreover, as discussed in the supporting information (SI, Figs. S3–S5), electron transfer rate constants 
(ks) of  K3Fe(CN)6 in the PAW solution in situ (0.233 ± 0.014 s−1) and in the PAW solution ex situ (0.226 ± 0.015 s−1) 
were ca. 6.9% and 3.7%, respectively, higher than that in the DI water solution (0.218 ± 0.014 s−1). Also, these 
constants for the PAW solution in situ (0.257 ± 0.008 s−1) and for the PAW solution ex situ (0.233 ± 0.005 s−1) were 
still ca. 18% and 7.4%, respectively, higher than that for the DI water solution (0.217 ± 0.005 s−1) after the samples 
had aged for 2 days. Moreover, as discussed in Fig. 7, including Figs. S3–S5, the higher diffusion coefficients and 
the higher electron transfer rate constants for experiments performed in PAW-based solutions contributed to 
the corresponding more-efficient OERs and HERs. In this work, the energy from the solar energy conversion is 
stored in the PAW solutions. This concept is quite different from the conventional situation. Two days later, the 
PAW solution can be retreated with the same process to again become an energetic PAW solution. That means 
that the PAW solution can be recycled.

Figure 5.  Linear sweep voltammetry (LSV) recorded on a planar Pt electrode for the hydrogen evolution 
reaction (HER) in plasmon-activated water (PAW)-based and deionized (DI) water-based solutions (0.1 M 
KCl). (a) LSV at scan rates of 0.05 V s–1 in the PAW solution in situ, the PAW solution ex situ, and the DI water 
solution. (b) HER currents of at − 1.4 V vs. Ag/AgCl in the PAW solution in situ, the PAW solution ex situ, and 
the DI water solution for 0, 1, 2, and 3 days after their preparation.
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The energy-conversion efficiency, η, in the preparation of a PAW solution under illumination of sunshine 
was estimated from the ratio of the energies required for breaking the HBs of bulk water and for raising the 
temperature of the PAW solution to that provided by solar energy, as defined below.

where the energy of hydrogen bonds,  EHB, of 20 kJ mol−1 was used. To obtain 250 g (or 250  cm3, when using a 
density of 1 g cm−3) of a PAW solution the moles of bulk water,  Mwater, in which hydrogen bonds were broken, were 
calculated from the moles (14 mol) multiplied by the difference in values of DNHBW (degree of non-hydrogen-
bonded water) of DI water (21.29%) and PAW water (26.23%)21 under illumination by sunshine. The sunshine 
power  (Psunshine) of 1 kW m−2 was  used36 and the 3-h illumination time, t, is 10,800 s. The surface area of a 500 mL-
glass bottle is ca. 0.035  m2. The mass of the PAW solution is 250 g. A specific heat, s, of 0.0042 kJ g−1 °C−1 is used 
for the PAW solution. The measured temperature difference, ΔT, is 11 °C. Therefore, the energy-conversion 
efficiency of the preparation of the PAW solution under the illumination of sunshine was approximately 6.7% 
((13.8 + 11.6) kJ/378 kJ). Excluding the obtained sensible heat the energy-conversion efficiency from the solar 
energy conversion in the PAW solution is ca. 3.7%. Moreover, in Eq. (2),  EHBMwater and msΔT are equivalent to the 
required energies on the latent and sensible heats, respectively. The required latent heat is roughly proportional 
to the increased evaporation rate of PAW compared to DI water. As discussed before in Fig. S1, for sunshine-
irradiated experiments performed in open bottles, magnitudes of the evaporation rates of the PAW solutions 
in situ were higher by ca. 17.5%, 15.3% and 9.8% in the first, second and third hours, respectively, compared to 
those of the blank solutions. Based on the calculated  EHBMwater of 13.8 kJ for 3-h sunshine-irradiated experiment, 
the estimated  EHBMwater are ca. 5.67 kJ (13.8 × (17.5%/(17.5 + 15.3 + 9.8)%)) and 10.6 kJ (13.8 × ((17.5 + 15.3)%/
(17.5 + 15.3 + 9.8)%)) for 1-h and 2-h sunshine-irradiated experiments, respectively. Also, the measured tem-
perature differences, ΔT, are 4.3 and 8.4 °C for 1-h and 2-h sunshine-irradiated experiments, respectively. Thus, 
the energy efficiencies for the preparations of the PAW solutions under the illumination of sunshine are ca. 8.1% 
((5.67 + 4.52) kJ/126 kJ) and 7.7% ((10.6 + 8.82) kJ/252 kJ) for the 1-h and 2-h sunshine-irradiated experiments, 
respectively. Excluding the obtained sensible heats the energy-conversion efficiencies from the solar energy 
conversions in the PAW solutions are ca. 4.5% and 4.2% for 1-h and 2-h sunshine-irradiated experiments, respec-
tively. The energy-conversion efficiency uniquely developed in this work based on a water solution is comparable 
to other complicated systems, like the bifunctional NiFeSP/NF electrocatalyst implements unassisted solar-driven 
water splitting with a solar-to-hydrogen conversion efficiency of ∼ 9.2%37. It is also comparable to that of the 

(2)η = (EHBMwater + ms�T)/ (Psunshinet)× 100%

Figure 6.  Cyclic voltammogram (CV) recordings on the same planar Au electrode showing the 5th (at the 
beginning) and the 25th (at the end) scans with oxidation–reduction cycle (ORC) treatments at 0.5 V s–1 to 
roughen the Au electrodes in plasmon-activated water (PAW)-based and deionized (DI) water-based solutions 
(0.1 M KCl). (a) The 5th scans in the as-prepared solutions; (b) the 25th scans in the as-prepared solutions; (c) 
the 5th scans in the solutions aged for 2 days; and (d) the 25th scans in solutions aged for 2 days.
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 TiO2/dots/hibiscus/CdS photoanode with the poly(3,4-ethylenedioxypyrrole) @MnO2 counter electrode in an 
aqueous polysulfide–silica gel electrolyte delivers a power conversion efficiency of 6.11%38.

PAW can be created for water on AuNPs under resonant  illumination21. In this work, an energetic PAW solu-
tion was obtained from HET of AuNPs excited by solar irradiation. Actually, this effect could also be observed 
on the rough surface of the Au substrate with AuNPs obtained from the ORC procedure under illumination 
from indoor fluorescent lamps. Figure 8a demonstrates the corresponding CV curves in the 5th scans for anodic 
dissolution and cathodic redeposition of Au, respectively, onto Au substrates in DI water with 0.1 M KCl under 
different degrees of illumination. Basically, the anodic dissolution and cathodic redeposition of AuNPs on sub-
strates were easier in DI water solutions (a reflection of enhanced currents) with illumination, especially for 
more-powerful illumination with fluorescent lamps with no shadows on the substrate, than in a fully dark condi-
tion. Compared to the fully dark condition, cathodic redeposition currents at ca. 0.30 V vs. Ag/AgCl respectively 
increased by 10% and 6.9% for the environments with full illumination and with shadows on the substrate. With 
up to 25 scans, as shown in Fig. 8b, these increases in cathodic redeposition currents at ca. 0.30 V vs. Ag/AgCl 
were similar but more significant because more AuNPs were deposited on the substrate with the increase in scan-
ning. Compared to the fully dark condition, the cathodic redeposition currents respectively further increased 
by 14.1% and 7.6% for the environments with full illumination and with shadows on the substrate because more 
AuNPs were available for HET at higher scans.

The experimental results discussed above support that the relatively large energetic barrier of HBs of bulk 
water can be overcome by utilizing solar-illuminated AuNPs to facilitate the dissociation of  H2O. Moreover, the 
created PAW solution with a higher chemical potential preserved from solar energy can serve as a new energy-
storage resource to enhance water-related chemical reactions (like oxygen reduction reaction and production 
of  H2O2 from water) and physical processes (like efficient water evaporation in desalination). This also resolves 
the concerning issue of the effective utilization of solar-driven HET with picosecond lifetimes.

In summary, we have successfully utilized the HET of solar energy-excited AuNPs to prepare PAW solutions 
with energy-rich chemicals as a new energy-storage resource for further chemical reaction. The PAW-based 

Figure 7.  Cyclic voltammogram (CV) recordings on the same planar Au electrode showing the 3rd scans of 
the oxidation–reduction cycle (ORC) at 0.5 V s–1 in plasmon-activated water (PAW)-based and deionized (DI) 
water-based solutions (50 mM  K3Fe(CN)6). (a) For the as-prepared solutions and (b) for solutions aged for 
2 days.
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energy-storage system is simple and practical. This developed strategy of effectively utilizing transient HET makes 
relative applications more convenient. The energy storage efficiency of the solar energy conversion of the PAW 
solution is ca. 6.7%, which is comparable to other complicated systems shown in the literature. Compared to 
conventional DI water, the activity of the created energetic PAW solution can last for 2 days. The resulting meta-
stable PAW solutions exhibited their ability to enhance HERs and OERs in fields of green energies. In particular, 
for the PAW solution in situ system, enhanced OER efficiencies of ca. 220%, 64%, and 22% were measured for 
the as-prepared solution, and solutions aged for 1 and 2 days, respectively. These findings of a metastable PAW 
solution in situ with distinct activity for chemical reactions at room temperature, like energy-rich chemicals, are 
first presented in the literature. Further innovative applications of PAW in water-related fields and development 
of strategies for maintaining distinct activities of PAW are worthy of studies in the future.

Methods
Preparation of AuNP‑coated ceramic rods. Twenty rinsed ceramic rods (with a diameter of 0.8 cm 
and a length of 4 cm, also see Supporting Information (SI) for their components) were immersed in a sealed 
glass container with a 200-mL solution containing 50 ppm AuNPs (ca. 10 nm) in the dark for 1 day (see SI for 
the detailed preparation of AuNPs). After this process the AuNP concentration was reduced to ca. 42.7 ppm 
because some AuNPs were adsorbed onto the ceramic rods. Therefore, the calculated quantity of AuNPs on each 
ceramic rod was ca. 7.3 × 10−5 g (0.2 L × (50 − 42.7) ppm(mg  L−1)/20). Then the AuNP-coated ceramic rods were 
rinsed thoroughly with deionized (DI) water, and finally dried in an oven at 120 °C for 1 day. Before preparing 
the PAW solutions, the AuNP-coated ceramic rods were immersed and rinsed with DI water for several cycles 
until the pH values of the DI water were almost identical (ca. pH 7.15 and water temperature at ca. 24 °C) before 
and after the rinsing process.

Preparation of the PAW solutions in situ and ex situ in sunshine. Eighteen AuNP-coated ceramic 
rods were placed in sample vials containing 250 mL of 0.1 M KCl-containing DI water solutions. Then the sealed 
sample vials were placed in direct natural sunshine for 3 h around noon (from ca. 10:30 to 13:30) to create the 
PAW solutions in situ. After this solar irradiation, the pH of the solution slightly changed from 7.15 to 7.21, and 

Figure 8.  Cyclic voltammogram (CV) recordings of the same planar Au electrode showing the 5th (at the 
beginning) and the 25th (at the end) scans of the oxidation–reduction cycle (ORC) treatments at 0.5 V s–1 
for roughening the Au electrode in deionized (DI) water-based solutions (0.1 M KCl) under different degrees 
of illumination from indoor fluorescent lamps. (a) The 5th scans in a completely dark condition, with full 
fluorescent lamps, and in the shadow of fluorescent lamps. (b) The 25th scans in a completely dark condition, 
with full fluorescent lamps, and in the shadow of fluorescent lamps.
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the temperature of the solution increased from 24 to 35 °C. The first examination of the created PAW solution 
in situ was immediately performed after the solution had been naturally cooled down to room temperature. 
Generally, this cooling process took less than 2 h after solar irradiation. Because all of the experiments based 
on the prepared PAW were performed at room temperature the created warm PAW under sunshine was further 
cooled down to room temperature. The PAW solution ex situ was created by following a similar process for cre-
ating the PAW solution in situ, but no electrolyte was added to the DI water before preparation of PAW in the 
sunshine. Instead, KCl was added to the created PAW immediately after removal from the sunshine to prepare 
the 0.1 M KCl-containing PAW solution ex situ. Similarly, the first examination of the created PAW solution ex 
situ was immediately performed after the solution had been naturally cooled down to room temperature. To 
examine the purity of the prepared PAW solution, further inductively coupled plasma-mass spectrometer (ICP-
MS) analyses indicated that the concentrations of dissolved metals in the PAW solution after irradiation were ca. 
0.48, 23, 14, 17, 7.6, and 2.3 ppb for Au, Na, K, Al, Mg, and Ca, respectively. These values were ca. 0.22, 19, 15, 
21, 10, and 3.6 ppb for Au, Na, K, Al, Mg, and Ca, respectively, for a similar experiment performed in the dark 
as a reference. The increased concentration of Au is from the dissolved AuNPs on the AuNPs-coated ceramics 
due to hot electron transfer after direct  sunlight21. The differences in concentrations of other metals are from the 
measuring fluctuations due to the low concentrations on ppb levels.
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