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Dirty engineering data‑driven 
inverse prediction machine learning 
model
Jin‑Woong Lee1,4, Woon Bae Park2,4, Byung Do Lee1, Seonghwan Kim3, Nam Hoon Goo3* & 
Kee‑Sun Sohn1*

Most data‑driven machine learning (ML) approaches established in metallurgy research fields are 
focused on a build‑up of reliable quantitative models that predict a material property from a given 
set of material conditions. In general, the input feature dimension (the number of material condition 
variables) is much higher than the output feature dimension (the number of material properties 
of concern). Rather than such a forward‑prediction ML model, it is necessary to develop so‑called 
inverse‑design modeling, wherein required material conditions could be deduced from a set of desired 
material properties. Here we report a novel inverse design strategy that employs two independent 
approaches: a metaheuristics‑assisted inverse reading of conventional forward ML models and an 
atypical inverse ML model based on a modified variational autoencoder. These two unprecedented 
approaches were successful and led to overlapped results, from which we pinpointed several novel 
thermo‑mechanically controlled processed (TMCP) steel alloy candidates that were validated by a 
rule‑based thermodynamic calculation tool (Thermo‑Calc.). We also suggested a practical protocol to 
elucidate how to treat engineering data collected from industry, which is not prepared as independent 
and identically distributed (IID) random data.

Recent materials science research has spotlighted machine learning (ML) techniques that involve deep learning 
(DL)1–11. In particular, metal alloy design would be one of the most suitable research areas for DL. A reliable 
DL model for quantitative material conditions and performance relationships (QCPR) would be the prerequi-
site for a successful alloy design. To guarantee a successful DL-based QCPR model it is necessary to secure a 
sufficient amount of training data, but the lack of real-world data in metallurgy research is a serious concern. 
Therefore, it is customary to use synthetic data to compensate for the dearth of real-world data. Synthetic data 
are computer-generated using theoretical simulation tools for thermodynamics, molecular dynamics, ab initio 
quantum mechanics, etc., which have been systematically collected and stored in well-known databases such as 
NOMAD, AFLOW, OQMD, and Materials  Project12–15.

Although real-world data-driven ML should work in parallel with simulated data-driven ML, the amount 
of obtainable real-world data is lacking. A further complication is that the acquired real-world data exhibit 
many problems having to do with non-identically-distributed, non-curated, and highly-biased status. In addi-
tion, although almost all simulated data-driven ML approaches are easily supported by independent identically 
distributed (IID) random training data, which was the case that we prepared more than 800,000 synthetic XRD 
patterns in IID random  status16, it would be nearly impossible to prepare IID random real-world engineering 
data due to expert intervention while the data are being produced. The present investigation deals with a data-
set collected from the industry, consisting of alloy compositions, processing conditions, and tensile properties 
for 5473 thermo-mechanically controlled processed (TMCP) steel alloys. The data have been collected by the 
Hyundai steel Co. for the past few years. One of the major aims in the present investigation was to introduce a 
reasonable protocol to handle this sort of real-world, non-IID dataset collected from an industry.

Several data-driven alloy design strategies are in existence. Metaheuristics along with the experimental evalu-
ation of instantaneous objective function values is also a promising alloy design strategy. Over the past decade 
we have successfully discovered many inorganic functional materials using metaheuristics  strategies17–19, but this 
approach has never been used for metal alloy design. Another promising data-driven approach to metallic alloy 
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design is the reinforcement learning (RL) technique. Since an instantaneous supply of a huge amount of data 
is necessary for RL, simulator-based data generation would be preferred over an experimental data production 
 platform20. The present investigation deals with the most common QCPR models with a fully labeled dataset, such 
as deep neural network (DNN)21, k-nearest neighbors (KNN)22, random forest (RF)23, support vector machine 
(SVM)24, and Gaussian process regression (GPR)25, because these are considered a prerequisite for the major 
focus of the present investigation—inverse design.

ML-based inverse design has attracted a great deal of attention for use in materials  discovery26–30. The inverse 
design we were particularly interested in defines the prediction for an alloy composition, as well as the processing 
conditions required to accomplish a desired performance for a specific material. For example, if we wanted to 
produce a steel alloy with a tensile strength and yield strength exceeding a certain level, the inverse ML model 
would answer the question of which alloy contents and processing conditions should be adopted. DNN never 
allows their reversible use, because a DNN is not a reversible function. A conventional DNN has a large number 
of input features that designate the composition and processing conditions of a particular material, but there are 
much fewer output features that designate material performances. Therefore, an inverse architecture would seem 
to be nonsensical, although a successful inverse architecture has very recently been reported as a very unusual 
 case26. It would never be allowed in a general supervised learning case, although the inverse DNN architecture 
could be interpreted as a major part of unsupervised learning algorithms such as a variational autoencoder 
(VAE)29–33 and a generative adversarial network (GAN)34–37. The inverse prediction is also impractical for other 
traditional ML approaches such as K-nearest neighbor (KNN)22, random forest (RF)23, support vector machine 
(SVM)24, Gaussian process regression (GPR)25, etc. Consequently, the inverse design is intractable in the current 
status of ML targeting the deterministic mapping. An enormous time/cost-consuming enumeration strategy 
based on the conventional forward ML (or DL) model is the only possible way to make an inverse prediction. It 
should, however, be noted that a so-called combinatorial explosion problem would never allow for the enumera-
tion strategy in most cases.

The aim of the present investigation is to provide a solution for inverse design even when the data quality 
does not meet a high standard. For this sake, two inverse design approaches were independently implemented. 
One approach involves a metaheuristics-assisted inverse prediction using a conventional forward DNN model, 
and the other approach depends on plausible input data generation via a so-called modified variational auto-
encoder (MVAE). The metaheuristics is a non-gradient-driven global optimization strategy that includes genetic 
 algorithm38–42, particle swarm  optimization43–45, simulated  annealing46,47, tabu search  algorithm48–50, etc. We 
employed an elitist-improved non-dominated sorting genetic algorithm (NSGA-II)40 to inverse-predict desired 
input solutions using a fully trained forward DNN model. The inverse-prediction in this case represents the 
optimization of a fully trained ML (or DL) model by taking input data for ML (or DL) model as decision vari-
ables and output data as objective functions for NSGA-II. Although there have been several attempts to combine 
ANN and  GA29–31, our approach differed from these in that these previous approaches were only concerned with 
single objective optimization problems based on a shallow ANN architecture with a single output feature along 
with a limited amount of training data, but our approach is based on multi-objective optimization using a deep 
ANN architecture (DNN) with multi-output features along with an extensive training dataset.

The second approach includes a modified variational auto-encoder (MVAE)32, 33. A similar encoder-decoder 
approach has been used for a molecular inverse design that uses the combination of a DNN (encoder) and a 
recurrent neural network (decoder)28. The MVAE approach sharply differs from the conventional auto-encoder-
based approach in that the MVAE version is not based on deterministic one-to-one mapping. The MVAE focuses 
more on the generation of plausible data distribution—so-called a probabilistic generative model. The MVAE 
never aims at a deterministic input–output pair matching but instead plausible input data are generated stochasti-
cally. The inverse prediction can be achieved via input data generation on the condition that the generated input 
data is likely to correspond to desirable output data.

As a result of the NSGA-II and MVAE approach, we obtained 100 alloy candidates, which were concurrently 
suggested by both the approaches. In other words, the suggested candidates are those that approximately overlap 
both the NSGA-II and MVAE prediction results. These novel thermo-mechanically controlled processed (TMCP) 
steel alloy candidates were validated using a rule-based thermodynamic calculation tool (Thermo-Calc.)51.

Results and discussion
Forward and inverse DNN architectures. The simplest idea for the inverse design model is to set up an 
inverse DNN architecture by switching input and output layers. However, such a naïve approach would never 
work, because of the dimension difference between input and output features. When an inverse DNN is thought 
of as a sort of mapping function that deterministically matches a specific input value with a feature to a corre-
sponding output vector with many features, its inverse architecture would not make sense at all since a variety of 
output values should be mapped from a certain single input value. One might be misunderstood that Bayesian 
neural  network52 would work out as an inverse architecture since it does not give a deterministic output predic-
tion but a distribution of predictions originating from the parameter distribution. However, this sort of Bayesian 
probabilistic prediction still resides within a narrow range so that it can never be regarded as a desirable inverse 
prediction method.

The intractability of simple (naïve) inverse DNN architecture is also related to the data distribution. Despite 
a certain dimension difference between the input and output features, the naïve inverse architecture would 
seem appropriate sometimes. Figure 1a shows a representative example of data distribution for a simple dataset 
with two input features constituting an IID random distribution and an output feature, and Fig. 1b shows an 
extremely rare case of data distribution that can allow for a simple inverse-architecture DNN model. It is unfor-
tunate, however, that our dataset seems to resemble that shown in Fig. 1a. The data distribution shown in Fig. 1b 
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indicates that there is a strong correlation between input features (the data projection on the  x1–x2 plane), that 
is, it is unnecessary to involve both the input features but instead either  x1 or  x2 would be sufficient to represent 
the input data. Accordingly, the inverse DNN architecture-available data distribution shown in Fig. 1b is practi-
cally non-existent unless deliberately manipulated. This means that we need another more intricate strategy to 
make it possible to achieve inverse design modeling for our dataset similar to Fig. 1a. A simple inverse DNN 
architecture must not be used in this case.

Dataset preparation. In addition to the above-mentioned intractability of the inverse DNN architecture, 
another practical problem with the inverse design is an inappropriate data status that is highly biased and cor-
related. It should be noted that most ML (or DL) regression algorithms work well based on the premise that 
the output loss (the difference between real and model-predicted outputs) should be IID Gaussian random, 
although it is not necessarily to secure an IID random input data. However, the IID condition would be required 
to be met when dealing with the inverse design based on the probabilistic generative models. In fact, however, 
the data acquired from the industry are not IID random in general. Real-world data are highly biased by human 
intervention while being produced either in industry or in a laboratory. As a result, some input features exhibit 
distributions that significantly deviate from the normal distribution. In this regard, we introduced a data reduc-
tion process and thereby eventually secured a form of pseudo-IID random input data for use in the inverse 
design, especially for the probabilistic generative model.

We collected 5473 alloy entries with 14 alloy components, 2 processing variables, and two materials proper-
ties such as yield strength (YS) and ultimate tensile strength (UTS).  X1–14 are elemental compositions for C, Si, 
Mn, P, S, Cu, Sn, Ni, Cr, Mo, V, Nb, Ti, and Ca.  X15 and  X16 represent heating time and temperature, respectively. 
This amounted to 16 input features and 2 output features. The input features were min–max normalized such 
that each feature ranged from 0 to 1, and the output features were standardized such that the mean was 0 and the 
variance was 1. The distribution of each feature (variable) was plotted as shown in Fig. 2a. The output features (YS 
and UTS) can be approximated to Gaussian distribution. It is obvious, however, that several of the input features 
could not be approximated to the continuous random variable. Because the data production process involved 
a certain degree of biased human intervention, the acquired data were neither continuous nor IID random. 
Some of the continuous variables were not in a unimodal normal distribution, but were, instead, in the form of 
multi-modal distributions, and the discrete variables were either in distributions similar to Binomial and Poisson 
distributions or even in a distribution similar to a Bernoulli distribution. Although there are some systematic 
ways of mapping data from various distributions to a normal distribution, e.g., Box-Cox53, Yeo-Johnson54, and 
Quantile  transformations55, we did not incorporate them in the present investigation, since the data discretiza-
tion methodology that we adopted outperformed them.

The inter-correlations between the input features were also examined in terms of the Pearson correlation coef-
ficient. The schematics (so-called Pearson correlation matrix) for 2-D data distribution and Pearson correlation 
coefficients for every possible input variable pair appear in Fig. 2b. The data distribution was not continuous 
IID random, and was discrete and highly biased. This sort of ‘dirty data’ could never be avoided when raw data 
are collected from an industrial setting. We did not employ the principal component analysis (PCA)-based data 
reduction since the ‘dirty data’ trait survived even in the PCA-reduced lower dimensional space.

The use of an intact raw dataset (16 input and 2 output features) appears to be inefficient for the inverse 
design based on the probabilistic generative model, since it is not IID-random. However, we employed 16 input 

Figure 1.  Data distributions along with simple ML models consisting of two input features  (x1 and  x2) and an 
output feature (y). (a) A more general data distribution available only for a forward ML prediction model, the 
parabolic surface represents a forward ML model. No correlation between  x1 and  x2. (b) A very specific data 
distribution case, wherein both the forward and inverse ML prediction models are available, the thin solid 
curve represents both the forward and inverse ML models. Due to a strong correlation between  x1 and  x2, either 
of them could be considered substantially non-existent. The data projection on the  x1–x2 plane, marked in 
tansparent blue, shows the IID random status in (a) and the severe correlation in (b).
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and 2 output features for the conventional forward-prediction DNN model by maintaining the intact, raw state 
of the industrial data. Since one of the most prominent merits of deep learning is ‘the use of raw data with no 
handcrafted feature engineering’, it is unnecessary to employ the preliminary data-dimension-reduction process. 
In fact, some of many hidden layers in the DNN architecture could be responsible for a possible data dimension 
reduction, as was the case that single hidden-layer auto-encoders have proven equivalent to a typical  PCA56, 57. 
Accordingly, there should be no need for feature engineering such as PCA prior to the DNN training, as far as a 
conventional forward prediction model is used. Other forward prediction models such as KNN, RF SVM, and 
GPR also worked for the raw industrial dataset. However, MVAE never worked for the raw industrial dataset. 
Therefore, a special measure should be taken to constitute a dataset exhibiting IID-random normal distribu-
tion, which could be used for the MVAE-based inverse prediction model. More details about the data reduction 
process are discussed in the Method section.

Figure 2.  (a) 1-D data distribution for each of the 16-input and 2-output features, (b) the Pearson correlation 
coefficient matrix for 16-input features; the upper off-diagonal components are the Pearson correlation 
coefficients and the lower off-diagonal components are 2-D data distribution plots. (c) 1-D data distribution for 
each of the 8-input and 2-output features, (d) the Pearson correlation coefficient matrix for 8-input features.
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Conventional forward DNN models for 16‑ and 8‑input features. We set up 60 different DNN 
architectures for the 16-input-feature DNN and tested them individually. All the architectures are thoroughly 
described in Supplementary Table S1a. The architecture selection process did not seem to be as promising as 
the recently spotlighted Bayesian  optimization58 that has been widely utilized in the hyper-parameter tuning 
process. Since the test MSE was not highly dependent on the DNN architecture among the 60 candidates as 
evidenced in Supplementary Table S1, however, the test of this limited number of architectures was sufficient to 
tentatively pinpoint the best one. From the architecture selection procedures, we finally adopted a three-hidden-
layer-architecture with (16):64:32:16:(2) nodes per each layer, as shown in Fig. 3a. The dropout and/or batch 
normalization did not take effect for the best architecture. The training was executed by employing a fivefold-
cross-validation strategy and thereafter a test was implemented using a holdout dataset that was not used for 
the training process. The MSE and  R2 values for the hold-out test dataset are listed in Supplementary Table S2. 
The predicted YS and UTS were plotted versus the real values for both the training dataset and the holdout test 
dataset, as shown in Fig. 4a,b.

The reduced 8-input-variable dataset, which can be roughly approximated to an IID-random version (so 
called pseudo IID-random), was used for alternative DNN training. We also tried 60 different architectures for 
the 8-input-feature DNN, as shown in Supplementary Table S1b and thereby a three-hidden-layer architecture 
with (8):32:64:32:(2) nodes per each layer was finally selected, as shown in Fig. 3b. The test MSE for the 8-input-
feature dataset was slightly higher than that of the 16-input-feature DNN. The simplified reduction of the original 
input dataset was the reason for the slight improvement. The predicted YS and UTS was plotted versus the real 
values for both the training dataset and the holdout test dataset, as shown in Fig. 4c,d. Since the creation of the 
8-input-feature dataset originated from the intention to use it for a more advanced inverse design model such 
as MVAE, the results of this conventional DNN training for the forward prediction should be considered a trial 
run prior to development of the ultimate inverse design model.

Figure 3 also show failed naïve inverse architectures (two architectures on the bottom). The difference in the 
number of features between the input and output layers matters in judging whether or not an inverse architec-
ture would work. Inverse architectures with significantly fewer input features than output features could never 
constitute a promising inverse predictor. In the present study, unfortunately, the difference in the number of 
features between the input and output layers was significant (2:16 and 2:8) for an inverse architecture. It should 
be noted that a simple architecture inversion is not a solution for an inverse prediction. We also implemented 
another forward DNN approach by transforming regression to classification, and the full details are provided 
in the Supplementary information.

Other forward ML models for 16‑ and 8‑input features. We employed K-nearest neighbors (KNN)22, 
Random forest (RF)23, support vector machine (SVM)24, Gaussian process regression (GPR)25 along with the 
DNN approach. Similar to DNN training, both regression and classification were also implemented for the 16- 
and 8-input feature datasets when the KNN, SVM, RF, and GPR algorithms were employed. The predicted YS 

Figure 3.  (a) The DNN architecture selected for 16 input features, and (b) for 8 input features, (top) along with 
inverse architectures that could never succeed (bottom).
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and UTS was plotted versus the real values for both the training dataset and the holdout test dataset, as shown in 
Fig. 5. Supplementary Table S2 shows the results in terms of the test MSE and  R2 for regression and the test accu-
racy for classification. The same hold-out test dataset was used for all the algorithms. All the algorithms yielded 
similar performances. However, a DNN is more favorable from the viewpoint of inverse predictability. Once 
a DNN is fully trained, the training data are no longer needed to produce new predictions. The training data-
set could be replaced by a smaller-sized parameter dataset (weights and biases). This is obviously not the case 
with some others, and, therefore, basing the traditional ML algorithms on brute force would make the inverse 
prediction more expensive. This concept is concerned with an issue of whether the ML algorithm of interest is 
parametric or non-parametric. DNN belongs to the parametric ML algorithm that plays a role in data reduction. 
However, KNN is a typical nonparametric ML algorithm, in which the entire data set is required every time a 
new prediction is to be made.

Inverse prediction based on a non‑dominated sorting genetic algorithm (NSGA‑II). The 
NSGA-II was employed for an inverse prediction using fully trained 16- and 8-input feature DNNs. The genetic 
algorithm (GA) is the most popular form of  metaheuristics38. The objective function (or fitness function) is 
either minimized or maximized by adjusting the decision variable based on the principle of natural selection. 
This sort of artificial evolution was affected by several hyper-parameters controlling selection, mutation, cross-
over, and elitism. A more advanced GA would enable multi-objective optimization. The NSGA was developed 
by employing a Pareto optimality theory, and was improved when a new elitism strategy was  introduced39. The 
elitist-improved NSGA, the so-called NSGA-II, was a very versatile multi-objective optimization algorithm for 
materials  discovery40, but its performance is restricted to double-objective  problems41, 42. The NSGA-III was 
recently introduced to tackle actual multi-objective optimization problems, but we adopted the NSGA-II in the 
present investigation since only two objective functions existed. A brief schematic of the NSGA-II algorithm-
assisted inverse prediction process is given as a flow chart in Fig. 6. A brief introduction is described in Supple-
mentary information, and a more detailed introduction is aptly described in our previous  reports59–61.

GAs have previously been used in association with  ANNs29–31. However, single-objective problems were only 
concerned with single-feature-output ANNs. As mentioned above, neither the NSGA-II nor the NSGA-III has 
ever been used for an inverse prediction using ANN optimization. The objective functions of our optimization 
problem were YS and UTS, which are two output features in our DNN, and the decision variables were the 
16- or 8-input features. Both of these objective functions should be simultaneously maximized by the NSGA-II 
iteration. Each NSGA-II execution produced 200 generations with a population size of 50 per each generation. 
Every NSGA-II execution provided a very narrow Pareto frontier in the last (200th) generation, so that we ran-
domly collected one representative solution from the Pareto frontier in the last generation. We had 100 NSGA-II 

Figure 4.  The predicted output versus the real output for (a) the training dataset, (b) the hold-out test dataset 
for a 16-input-feature DNN, (c) the training dataset, and (d) the hold-out test dataset for an 8-input-feature 
DNN.
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executions for 16- and 8-input-feature DNNs (50 per each). The solution that we picked up in every single NSGA-
II execution differed from one another but occasionally converged on a similar solution. This means that the 
terrain of the output feature in such a high dimensional (16- or 8-)input-feature space for a fully trained DNN 
(although it is impossible to visualize) does not provide so many local optima. Accordingly, various NSGA-II 
implementations could by chance reach the same optimal point.

In total, 100 plausible solutions (50 per each of the 16- and 8-input-feature DNNs) were finally obtained 
from the NSGA-II-assisted inverse prediction process. It has also been noted that some of the solutions from 
both the 16- and 8-input-feature DNNs are similar, and those from the 8-input-feature DNN were a bit crude 
since the nine features chosen for the merge were not precisely pinpointed, and only a rough range was actu-
ally available. The solutions from the 8-input-feature DNN were decoded into the original 16-input features by 
adopting the center values for every range, so that a one-to-one transformation could be available between the 
16- and 8-input-features. To examine the similarity between the 16- or 8-input-feature DNN solutions, the 2500 
norms (50 × 50 distances) between the solutions (input feature vectors) from the 16- and 8-input-feature DNNs 
were computed and ranked. It should be noted that the rank is based on the solution norm, not on the YS and 
UTS value. The higher the rank, the smaller the norm. As a result, the top 50 solutions were selected from either 
the 16- or 8-input-feature DNN solutions in terms of the norm values. This means that the top 25 norms were 
selected out of 2500, and these pinpointed both the solutions constituting the norm. These solutions could be 
approximately regarded as an overlap (a.k.a. pseudo-overlap) between the 16- and 8-input-feature DNN solutions 
and thereafter appointed as the final predictions corresponding to desirable (maximized) YS and UTS. These 
solutions obtained from the NSGA-II execution will also be compared with those from the other inverse design 
method, so-called MVAE. Supplementary Table S3 shows the solutions obtained from the NSGA-II executions 
for both the 16- and 8-input-feature DNNs, which denote the input features (= decision variables), i.e., the alloy 
compositions and processing conditions. Figure 7 shows the Pareto-sorted YS and UTS data corresponding to the 
50 pseudo-overlapped solutions selected from the NSGA-II executions. Unfortunately, however, it was impossible 
to graphically visualize the solutions (input feature vectors) that were located in the 16-dimensional hyper-space.

Modified vibrational autoencoder (MVAE). An alternative inverse design was also attempted by 
employing a modified variational autoencoder (MVAE). The main function of an autoencoder (AE) is to find 
hidden features (a latent vector) from which the input data can be  reproduced31. AE consists of an encoder that 
reduces the input data dimension to a latent vector with much lower feature dimensions and a decoder that 

Figure 5.  The ML results for KNN, RF, SVM, and GPR. The predicted output versus the real output for (a) 
the training dataset, (b) the holdout test dataset for a 16-input-feature ML, (c) the training dataset, and (d) the 
holdout test dataset for an 8-input-feature ML.
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Figure 6.  The flow chart briefly describing the NSGA-II algorithm execution.

Figure 7.  The Pareto-sorted YS and UTS data predicted by the NSGA-II execution. Each Pareto rank is 
represented in different colors; the first Pareto frontier is in black.
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reproduces the input data from the latent vector. The variation autoencoder (VAE)32, 33 differs from an AE in 
that the purpose of AE is to find hidden features to be used for the reproduction of input features, but the VAE 
aims to generate plausible feature vectors that are not in complete agreement with the input feature vectors but 
in the same style. For VAE, the hidden feature distribution is approximated to a diagonal normal distribution, 
N(0, σ2·I), or to a standard normal distribution, N(0, I), and the data (Z) sampled from this hidden feature 
distribution will be used as input for a decoder to achieve plausible data generation. In this regard, the VAE is 
a probabilistic generative model for plausible data generation based on the unsupervised learning algorithm, 
whereas a conventional AE is akin to a deterministic one-to-one data mapping that is based on the least square 
regression process (maximum likelihood estimation) with the same data used for both input and output. In fact, 
the conventional AE never worked for our datasets (both the 16- and 8-input-feature). We employed the VAE 
as an alternative to the NSGA-II-assisted inverse prediction with the expectation that it could generate plausible 
input data that could give rise to a desired set of YS and UTS values. This implies that the inverse prediction 
could be accomplished using the VAE algorithm.

Instead of the conventional VAE, wherein a hidden feature (Z) distribution is approximated to be either N(0, 
σ2·I) or N(0, I), we modified the conventional VAE in a way that the latent feature distribution can be equated 
to the real YS and UTS data distribution. The mean and covariance of real YS and UTS distribution are located 
in the hidden layer in the center of VAE. This indicates that the Z distribution was approximated to the real YS 
and UTS data distribution that is certainly a non-diagonal Gaussian. We adopted the assumption that the hid-
den features could be anything as far as the input features could be inferred from them. In a contradiction to 
the conventional idea that the Z data should be in an arbitrary Gaussian distribution with a diagonal covariance 
matrix, we equated the Z distribution to the real YS-UTS distribution, which is a Gaussian distribution with a 
non-diagonal covariance matrix.

The raw data collected from the industry were not suitable for most probabilistic generation algorithms 
that were designed on the basis of assumptions that the training data would be well-curated IID random data. 
It is relatively easy to prepare such data when the virtual data were produced using theory-based simulation 
programs. To the contrary, industry data generally are extremely biased, anomalous, and discontinuous. For 
this reason, only the 8-input-feature dataset approximately presumed to be a pseudo-IID Gaussian was adopted 
for MVAE training, and the non-IID 16-input-feature dataset was precluded from the MVAE approach. In fact, 
when the 16-input-feature dataset was applied to the MVAE, it was never successful. As shown in Eq. (1), the 
VAE algorithm was developed on the basis of a prerequisite that both the input and Z data constitute multivariate 
Gaussian distributions. Therefore, only the 8-input-feature dataset is eligible for the MVAE. Figure 8a shows the 
MVAE architecture exhibiting both the encoder and decoder and the distribution of Z data sampled from the 
hidden features (= the mean and covariance for Z) along with the real YS and UTS distribution. The loss function 
responsible for the encoder training is given in Eq. (1).

In Eq. (1),  DKL stands for the Kullback–Leibler (KL) divergence based on the assumption that both distribu-
tions are Gaussian. The KL divergence is a measure of how one probability distribution differs from  another62. 
Both the normal distributions,  N0(μ0,Σ0) and  N1(μ1,Σ1), stand for the hidden feature distributions at the encoder 

(1)DKL(N0 � N1) =
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Figure 8.  (a) The MVAE architecture exhibiting both the encoder and decoder and the distribution of Z data 
(blue crosses) sampled from the latent vector, along with the real YS-UTS data plot (amber dots), and the red 
dots in the Z distribution that designate the top four Pareto frontiers to be selected as a decoder input batch for 
an inverse prediction; (b) the MVAE-generated X̂ data distribution sampled from the decoder output layer (blue 
crosses) and the input X data (amber dots); the multivariate X̂ and X data are schematically represented as 2-D 
data distributions for all possible binary feature e pairs.
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output layer (subscript 0) and the real YS vs. UTS distribution (subscript 1), respectively, μ and Σ denote the 
mean vector and covariance matrix, respectively, and k is the dimension of Z (two in our case). The first �N

1  
on the right side of Eq. (1) does not designate the covariance matrix but stands for a summation symbol with 
the sample batch size (N). The VAE training led to a minimization of the KL divergence, which means that two 
normal distributions,  N0(μ0,Σ0) and  N1(μ1,Σ1), should be equated by adjusting the weight and bias of the encoder. 
The non-diagonal distributions of the real YS and UTS data were represented as a mean vector and a covariance 
matrix, as shown in Eq. (2).

Since we adopted standardized YS and UTS data, the mean was a zero vector. The covariance is not a diagonal 
matrix in sharp contrast to the conventional VAE wherein the covariance matrix is in the form of either a diagonal 
or an identity matrix. The inset of Fig. 8a also shows the non-diagonal shape of the Z distribution (blue crosses), 
which is almost coincident with the real YS vs. UTS distribution (amber dots). A sampling method follows the 
conventional re-parameterization trick that allows for the back-propagation  algorithm32, 33. Such a good agree-
ment between the Z distribution obtained from the fully trained encoder and the real YS vs. UTS distribution 
indicates that the training was relatively well done.

The reconstruction loss for decoder was defined as a negative log likelihood, as shown in Eq. (3). The 8-D 
input features were approximated as a multivariate Pseudo-Gaussian with a diagonal covariance. The decoder 
output features σi,j and µi,j constitute an output vector, the dimension of which is twice the input dimension (2J). 
The reconstruction loss was given as double summations. The first summation for j should be done from 1 to 
the input feature dimension (J), and the second for i from 1 to the sample batch size (N). It should be noted that 
µi,j andσ 2

i,j designate the decoder output features for a particular sample i, indicating the individual components 
of mean vectors and covariance matrixes. These differ from those with the same symbols in Eq. (1), which are 
referred to as the mean vector and the covariance matrix. xi,j are also components of the input feature vector.

Both the KL divergence loss for regularization and the negative log likelihood loss for reconstruction were 
minimized simultaneously for training of the entire MVAE. The sum of these terms is referred to as negative 
evidence lower bound (ELBO). The MVAE produces an 8-D multivariate Gaussian data distribution as an output, 
such that individual output vectors can be sampled from the mean and covariance nodes that are located on 
the output layer of the decoder. The MVAE training result in the decoder part was visualized by the 2-D binary 
distribution for every possible output feature pair, as shown in Fig. 8b wherein the MVAE-generated data ( ̂X ) 
distribution sampled from the decoder output layer is marked by blue crosses and the input data (X) is marked 
by amber dots. The MVAE-generated data distribution and the real input data distribution exhibits an acceptable 
coincidence as a result of the MVAE training.

The next step is to clarify how to achieve an inverse prediction using the fully trained MVAE. The ultimate 
goal of the present investigation was to extract alloy compositions and processing conditions that maximize YS 
and UTS but do not belong to the training dataset. We Pareto-sorted the Z data sampled from the mean and 
covariance at the center hidden layer (the latent vector) in the fully trained MVAE and pinpointed a small number 
of higher ranks, which are marked as red dots in Fig. 8a. These selected Z data were inputted to the fully trained 
decoder, and the X̂ data sampled from the resultant decoder output could be regarded as a prediction. Because 
the Z distribution was forcibly equated to the actual YS and UTS distribution during the MVAE training, we 
appointed only about ten samples belonging to the higher Pareto ranks of the Z data, which suggested higher 
values for YS and UTS, as input for the fully trained decoder in order to obtain predictions that showed greater 
promise. Accordingly, the X̂ data that corresponded to the selected Z data could be regarded as a promising 
prediction. The selected Z data in every MVAE execution slightly differed from one another due to the sampling 
process that involved a stochastic choice. In this regard, we repeated a number of MVAE executions and col-
lected all the selected Z and X̂ data. It should be noted that the MVAE is not a deterministic prediction model 
but a data generation model in a real sense. However, we demonstrated that the MVAE approach could be used 
appropriately as a promising predictor in the present study. In practice, the MVAE training was reiterated a huge 
number of times, and the resultant X̂ data corresponding to the higher Pareto-ranked Z data were instantaneously 
collected. As a consequence, we ultimately gathered 1,000 solutions. Most of the inverse-predicted solutions by 
MVAE executions converged on a relatively narrow range of the solution space, although highly scattered outli-
ers sometimes appeared.

We also suggested an alternative VAE-based inverse design approach using a well-known conditional vari-
ational autoencoder (CVAE)63. This CVAE approach would seem to be similar to our MVAE approach, but CVAE 
was not successful as our engineering dataset due to the unclear labeling. In fact, we appointed a Pareto rank as a 
label by Pareto-sorting the real YS and UTS data. The most simplified labeling scheme was a three-label system 
that grouped the Pareto ranks into only three classes. Since the inverse-predictability of the CVAE was not as 
good as the other approaches due to the labeling complication, we skipped the CVAE in this paper, and instead 
described the CVAE process briefly in the Supplementary information. However, CVAE would work properly if 
more data were available along with reasonable labeling.
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The final alloy candidates predicted by NSGA‑II and MVAE. All the candidates recommended by 
NSGA-II were compared with those from the MVAE. The NSGA-II produced at best 100 solutions in total 
because the computational time would have been too long to generate as many solutions as the MVAE produced. 
We finally pinpointed 50 pseudo-overlapped solutions from the 16- and 8-input-feature DNNs in case of the 
NSGA-II-based inverse design. By comparison, the MVAE was able to generate an even greater number of solu-
tions in a relatively shorter time frame. Accordingly, we produced 1000 candidates by implementing the MVAE 
training independently 100 times.

Norms were computed between the NSGA-II and MVAE solutions and we pinpointed 50 MVAE solutions 
that were closer to the NSGA-II solutions using the same method that was used for the selection of the final 50 
candidates from both the NSGA-II-solutions for the 16- and 8-input-feature DNNs. This method is referred 
to as a so-called ‘pseudo-overlapped-data extraction method’. Supplementary Table S3 shows the final entries 
that were selected from both the NSGA-II and the MVAE. We did not aim to reckon the relative performance 
superiority between the MVAE and NSGA-II approaches to the inverse design, but instead, we focused on the 
coincident result both from the MVAE and NSGA-II. Although these two inverse design approaches come from 
completely different origins, they ended up with overlapped results. As a result, several plausible solutions were 
selected from the pseudo-overlapped data by taking into account metallurgy common sense and applying it to 
theoretical thermodynamic calculations to confirm acceptability.

Instead of the experimental validation that we expect some others who are engaged in the experimental met-
allurgy to realize, a widely-accepted theoretical computational tool was utilized for the validation of the result. 
The thermodynamic calculation was performed using the Thermo-Calc. TM TCFE-9  database51. The Ae1 and 
Ae3 temperatures were calculated, and the precipitation reactions of (Ti,Nb)C and VC were evaluated. Such 
a calculation allowed us to determine whether the alloying compositions could be applied to a typical TMCP 
process. Prior to thermodynamic calculations, we selected five superior alloys from the final entries obtained 
through both the NSGA-II and MVAE. The selection criteria were as follows: (1) sufficient alloying elements 
necessary for strength increase, (2) phase change and precipitate formation in a general hot rolling or heat-
treatment process, and (3) control of impurities such as P and S. Supplementary Table S4 shows a group of the 
best candidate alloys obtained through the above-described selection criteria. The austenite-to-ferrite reaction 
occurred between 670 and 860 °C, and the precipitation reactions of (Ti,Nb)C and VC were completed at more 
than 350 °C, which indicates the maximum precipitation. These thermodynamic conditions are quite reasonable 
in terms of conventional hot rolling and subsequent heat-treatment processes. The increased amount of C, Mn 
and Nb in the group (in Supplementary Table S4) contributed to improving the strength such that a targeted 
strength of 800 MPa could be achieved. The impurity levels of P and S were well controlled to match the severe 
impurity restrictions of API grades.

Besides strengthening by thermodynamic stability of the precipitation, C, Si, and Mn contents of the alloys 
play a positive role for the TMCP application. Through an appropriate TMCP condition, the alloy would have 
a typical microstructure, which leads to improved low-temperature toughness. The alloys contain enough Si to 
inhibit carbides’ formation and promote a robust bainitic  structure64. The C and Mn contents are set lower than in 
the conventional HSLA alloys, which have 0.10 wt% C and 1.5 wt% Mn. C and Mn are alloying elements essential 
for securing strength and toughness, but give rise to a severe side effect increasing brittleness when excessively 
added. It is particularly sensitive to hydrogen embrittlement or stress corrosion cracking due to the segregation 
band of C and Mn produced through the continuous casting and hot rolling processes. In particular, the band 
structure containing a large amount of Mn becomes a preferred site for hydrogen. When the hydrogen level 
increases above a critical point, crack propagation proceeds very rapidly to induce catastrophic failure. Likewise, 
the segregation zones of C and Mn exhibit very brittle properties against stress corrosion. Usually, the hot rolled 
steel plate has the segregation in the center region. This region is susceptible to hardening by applying accelerated 
cooling of TMCP. In a line pipe steel for sour gas containing  H2S, sulfide stress cracking takes place in the center 
segregation region. The reduced alloying content of C and Mn is also crucial for preventing the center segregation 
and subsequent crack and fracture  problems65. In general, it is hard to find out the alloy composition of 800 MPa 
strength without significantly increasing the amount of C and Mn. Through the present data-driven searching 
algorithm, we obtained the outstanding optimum alloy combinations of sufficient strengthening with keeping 
the C and Mn content below 0.1 wt% and 1.5 wt%, respectively. This implicates a novelty of the suggested alloys.

The improved weldability is another critical factor for alloy design of either HSLA or TMCP steel. The field 
weldability could be improved by decreasing the value of C_eq. The C_eq value is nominally defined as the fol-
lowing formula.

The C and Mn contents of our suggested alloys are relatively low compared to the conventional HSLA alloys 
for TMCP; the  Ceq values are in the range of 0.3–0.35. The novelty of the suggested compositions is also backed 
up by the fact that this value is just half of the costs in the traditional TMCP steel products of 800 MPa  grade66.

Method
Dataset preparation details. Rather than typical PCA-based data reduction strategies, we employed an 
alternative feature engineering technique (data merge or discretization technique), which is heuristic but reason-
able. The input features (variables) exhibiting a non-Gaussian distribution (either multi-modal or discrete) were 
merged such that a resultant, single merged feature could be approximately regarded as a continuous random 
Gaussian. The non-Gaussian input features (alloy components) such as Mn, Cu, Sn, Ni, Cr, Mo, V, Nb, and Ca 
were merged. The first step in the merge process was to re-discretize the variables of concern into 2–5 levels. The 
discretization boundaries are marked as thin vertical lines in Fig. 2a. For instance, the Mo content was simplified 

Ceq = C + Mn/6+ (Cr + Mo + V)/5+ (Ni + Cu)/15(wt%)
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as either ‘low’ or ‘high’, and the Cr content was categorized from level_1 to level_5. Consequently, a new merged 
variable representing the above-mentioned nine variables will be referred to as variable ‘S9’. Variable  S9 was dis-
cretized into 3240  (23 × 34 × 51) different levels. However, the total number of available levels for  S9 was reduced to 
just 51, since most of the nine constituents were extremely biased, as discussed earlier. This implies that although 
 S9 provides 3240 available slots, 5473 data points reside only in 51 slots, indicating that the selected nine origi-
nal variables were highly concentrated and biased. The creation of the  S9 variable reasonably distributed over 
51-discretezied levels sorted out the non-IID input data problem to a certain extent. Since the remaining seven 
variables along with  S9 can constitute a new pseudo-continuous input data space, which can be approximated 
to a multivariate Gaussian distribution, it could be eventually applied to MVAE-based inverse design. Figure 2c 
shows the distribution for each of the eight variables including  S9. Since either discrete distributions or non-
unimodal Gaussian distributions remained, this 8-input-feature system can be defined as ‘pseudo-IID’.

Although  S9 is a discrete variable consisting of only 51 classes,  S9 could be approximately regarded as a 
continuous random variable, as with Ti. Moreover,  S9 could also be roughly approximated to even a Gaussian 
distribution since this rough approximation would be much more pragmatic than using the severely anomalous 
distributions of all the previous nine variables. The Pearson correlation coefficient matrix for every possible input 
feature pair is schematically represented in Fig. 2d. In contrast to the prior case of 16-input features, the correla-
tion between input variables was alleviated and thereby the 8-input features could be approximately regarded as 
IID-random, because the highest Pearson correlation coefficient reached only 0.482 while most of the Pearson 
correlation coefficients approximated zero. The Pearson correlation coefficient for 16-input features are much 
higher, as shown in Fig. 2b. The pseudo-IID random variables that we derived are acceptable for inverse-design-
available deep-learning algorithms based on the probabilistic generative model.

Data availability
All data generated or analyzed during this study are included in this published article (and its supplementary 
information file), and the datasets used for DNN and MVAE during the current study are available from the 
corresponding author on reasonable request.
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