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Artificial intelligence 
and thermodynamics help solving 
arson cases
Sander Korver1, Eva Schouten1, Othonas A. Moultos1, Peter Vergeer2, Michiel M. P. Grutters2, 
Leo J. C. Peschier2, Thijs J. H. Vlugt1 & Mahinder Ramdin1*

In arson cases, evidence such as DNA or fingerprints is often destroyed. One of the most important 
evidence modalities left is relating fire accelerants to a suspect. When gasoline is used as accelerant, 
the aim is to find a strong indication that a gasoline sample from a fire scene is related to a sample 
of a suspect. Gasoline samples from a fire scene are weathered, which prohibits a straightforward 
comparison. We combine machine learning, thermodynamic modeling, and quantum mechanics 
to predict the composition of unweathered gasoline samples starting from weathered ones. Our 
approach predicts the initial (unweathered) composition of the sixty main components in a weathered 
gasoline sample, with error bars of ca. 4% when weathered up to 80% w/w. This shows that machine 
learning is a valuable tool for predicting the initial composition of a weathered gasoline, and thereby 
relating samples to suspects.

Understanding the weathering of gasoline due to fire is crucial in forensic investigation of  arson1. In such cases, 
DNA-comparison is often not possible and forensic researchers are deemed to look for other ways to collect 
evidence against arson suspects. A comparison of the composition of a weathered gasoline sample taken at the 
crime scene with original (unweathered) gasoline samples found in the possession of a suspect can provide evi-
dence which links the suspect to the fire scene. Due to the refining process, neat gasoline has a very characteristic 
composition fingerprint, which can be used by forensic scientists to discriminate between different gasoline sam-
ples. For weathered samples this is far from trivial, because: (1) the composition of gasoline changes significantly 
upon weathering, (2) gasoline is a complex mixture of hundreds of components (all with different weathering 
behavior), and (3) the weathering process may be affected by many factors such as the evaporation temperature, 
fire extinguishing water, preferential adsorption on the substrate (matrix effects), and microbial  degradation1,2. 
Despite these possibly interfering effects, gasoline in fire debris samples is often sufficiently preserved to make a 
forensic comparison possible. Unfortunately, this composition cannot be directly linked to the composition of the 
original (unweathered) sample, because of weathering effects. For this reason, a strategy needs to be developed to 
successfully compare weathered and unweathered samples. Different approaches have been proposed to overcome 
this  complication3. Researchers have tried to tackle the problem without using an explicit evaporation model, for 
instance by using statistical methods such as principal component analysis (PCA)4–6, linear discriminant analysis 
(LDA)4,6, canonical variate analysis (CVA)6, hierarchical cluster analysis (HCA)5 or by covariance  mapping7. One 
proposed method is a likelihood ratio  approach8, implicitly using a simple evaporation model. Other studies have 
used explicit evaporation models based on Raoult’s  law9,10 or by using gas chromatographic retention  data11–14, 
and other experimental  methods15,16. All these methods suffer from major drawbacks, e.g., only a limited number 
of components can be dealt with, the methods cannot be applied to highly weathered samples, large experimental 
data sets are required, and most importantly, the methods cannot predict the initial (unweathered) composition 
of a weathered sample. This is highly important as a sample found at a suspect is nearly always unweathered. 
To make a quantitative comparison between weathered and unweathered samples, we propose a method which 
combines machine learning, advanced thermodynamic modeling, and quantum chemical calculations. For the 
first time, this allows accurate predictions of the initial (unweathered) composition of a weathered sample. Our 
method can be generalized to any number of components and is able to discriminate between samples of differ-
ent degree of weathering. Additional complicating effects such as preferential adsorption and fire extinguishing 
media are not considered here, as these are highly case specific. The artificial neural networks (ANNs), which 
are machine learning algorithms, were trained on field data from the Netherlands Forensic Institute (NFI).The 
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proposed method is applied to model composition changes of gasoline samples assuming that the effects of 
preferential adsorption, pyrolysis, microbial degradation, and eventual fire extinguishing media are negligible. 
We will investigate this ideal case in which composition changes are solely due to evaporation. These simplified 
conditions are important for model development and testing, because models that fail under these conditions will 
also fail when all interfering effects are included. The simplified conditions represent a limiting case in practice, 
for example, when gasoline is ignited on a non-adsorbing ground.

In Fig. 1, a schematic overview of the problem and the proposed method is illustrated. Neglecting the inter-
fering effects described above, the problem can be reduced to the calculation of the evaporation of gasoline, the 
determination of the degree of weathering, and the backward or forward tracking of the composition change 
of weathered and unweathered samples. In backward tracking, the challenge is to recover the initial composi-
tion of a sample starting from a weathered sample. In forward tracking, one starts with the original sample and 
records the composition change as the degree of weathering is increased. The aim is to devise a method that 
can model the evaporation of gasoline considering the nonideality of the multicomponent mixture arising from 
the presence of polar compounds. We propose a thermodynamic model supplemented with quantum chemical 
calculations and machine learning to obtain a quantitative understanding of the weathering process of gasoline.

The thermodynamic model is based on the gamma-phi approach for vapor–liquid equilibrium (VLE) calcula-
tions and requires a numerical solution of the differential equation given by Eq. (1) in Fig. 1, which is essentially 
a modified version of Raoult’s  law18. In Eq. (1), the following assumptions have been made; (1) the liquid phase is 
well-mixed and the evaporation process is not limited by mass transfer in the liquid, (2) the gas phase is assumed 
to be ideal, which is a reasonable and common assumption at standard conditions, (3) the mass transfer coef-
ficient in the gas phase, k, is equal for all components, and (4) the temperature of the liquid is constant during 
the evaporation process. As the evaporation time is irrelevant, k and t can be combined to yield a dimensionless 
variable ϕ. In principle, the mass transfer coefficient is component dependent, but it is extremely challenging 
(almost impossible) to measure it for such a complex mixture, and it is not necessary for the present analysis. It 
is important to note that the assumptions above are crucial to keep the model tractable in absence of any other 
experimental data. The temperature dependent vapor pressure of gasoline components can be found in databases 
such as NIST, DIPPR, and  DDBSP19–21. The activity coefficient is a measure for the nonideality of a system, where 
γ = 1 means an ideal solution, and depends on the composition and temperature of the mixture. The activity 
coefficients required to describe the nonideality of gasoline were obtained from the COSMO-RS model, which 
relies on quantum chemical computations of the individual components in the  system17,22. We will show that 
activity coefficients have a strong influence on the weathering of gasoline in the presence of polar components 
such as ethanol and ethers (e.g., methyl-tert-butylether). By integrating Eq. (1) either forward or backward in 
time, we can model the evaporation as well as back trace the original (unweathered) composition of a weathered 
sample. In the latter case, there is a serious practical complication: for a given weathered sample one usually does 
not know the degree of evaporation, so one does not know when to stop the backward integration of  Eq. (1). 

Figure 1.  Schematic representation of the weathering process and the used modeling approach. Left: an 
unweathered (original) gasoline sample, which is found in possession of a suspect. Right: the composition 
changes or weathering of a gasoline mixture due to fire. A combination of thermodynamic modeling, quantum 
chemical calculations, and machine learning is used to link the composition of the weathered and unweathered 
samples. The weathering process is described by Eq. (1), which is based on the gamma-phi approach of vapor–
liquid equilibrium calculations. Forward integration of Eq. (1) is used to predict the composition of a weathered 
sample starting from the original sample. Backward integration of Eq. (1) is used to obtain the composition of 
the original gasoline starting from a weathered sample. In Eq. (1),  ni,  xi, γi, and  Pi

sat are the number of moles, 
the mole fraction, the activity coefficient, and the saturated vapor pressure of component i in the liquid phase, 
respectively. Activity coefficients of the multicomponent mixture were obtained from the COSMO-RS  model17. 
Artificial neural networks (ANNs) were trained on field data and used to predict the evaporation percentage or 
the degree of weathering for a given composition.
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We overcome this complication by using artificial neural networks (ANNs), which can be trained to recognize 
patterns in data and solve highly non-linear problems. The composition change of a multicomponent mixture is 
correlated with the degree of weathering in a highly non-linear way. For example, the most volatile components 
are completely evaporated at relatively low degree of weathering, while the least volatile components remain in 
the mixture up to high degree of evaporation. This correlation is related to the properties of the molecules that 
comprise the mixture, which depend on composition and temperature, making it a highly non-linear process. 
Due to the complexity of gasoline mixtures, such a correlation is difficult to observe with bare eyes, but machine 
learning is perfectly suited for this  task23. Like the human brain, ANNs can be trained to recognize patterns in 
data, e.g., evaporation data of gasoline  mixtures24. Here, we have trained the ANN on a large dataset of evapo-
ration curves, starting from 459 gasoline samples collected in 2011 at petrol stations in the Netherlands and 
analyzed by the NFI. In our model, we have used a mixture of 60 main components of gasoline, which comprises 
the most abundant components observed in arson samples. This ANN model enables us to predict the degree of 
evaporation in weathered gasoline samples with differences of ca. 3%, for gasolines that are evaporated up to 80 
w%. The composition of individual components in the predicted initial (unweathered) samples is estimated with 
a maximum deviation of 4% for the most volatile components. The intervariation of components in unweathered 
gasoline is much larger than 4%. The main conclusion from these results is that all components, including the 
volatile ones, can now be included for an effective forensic gasoline comparison.

Results
The proposed thermodynamic modeling approach is first tested for the evaporation of a seven-component 
nonpolar mixture representing an artificial gasoline. Figure 2a shows the compositional change of the mixture 
as a function of the weathering degree. The model correctly describes the evaporation behavior of this mixture 
compared with experimental data from literature. The following observations are made: (1) the composition 
change of the sample strongly depends on the weathering degree; (2) the low volatile components accumulate 
in the residue as more gasoline is evaporated; (3) the activity coefficients seem to have a small effect, which is 
not surprising for such a nonpolar mixture; and (4) as shown in the Supplementary Information, temperature 
effects tested up to 330 K are very small. However, real gasoline contains several polar components like ethanol 
and/or ethers, which drastically change the evaporation process. To illustrate the effect of polar compounds on 
the weathering of gasoline, we have used a synthetic four component gasoline-like mixture containing ethanol, 
toluene, trans-3-octene, and heptane. In Fig. 2b, a clear effect of ethanol on the evaporation behavior is observed. 
The evaporation behavior of ethanol and the other components strongly depends on the activity coefficients. For 
example, ethanol is completely evaporated at around 90 wt% when the mixture is considered ideal, and at 40 wt% 
when the more realistic activity coefficients from COSMO-RS are used. Therefore, it is crucial to consider the 
nonideality of the mixture caused by polar-nonpolar interactions to correctly describe the evaporation process. 
This requires the computation of activity coefficients, which are functions of composition and temperature. 
Activity coefficients higher than one (positive deviation from Raoult’s law) or lower than one (negative deviation 
from Raoult’s law) will increase or decrease the vapor pressure of the components in the mixture.

The large number of components in gasoline prohibits the use of classical activity coefficient models such as 
NRTL and Wilson, which require a huge amount of experimental data for fitting binary  parameters25. Further-
more, these binary parameters cannot account for higher order interactions that are present in multicomponent 
mixtures. We have used the COSMO-RS  model17, which is based on quantum chemistry, to predict the activity 
coefficients of the mixtures. COSMO-RS uses a quantum chemical calculation to obtain the screening charge 
density (i.e., sigma-profiles) of molecules from which thermodynamic properties such as the activity coefficient 

Figure 2.  Effect of weathering degree (i.e., % evaporated) and activity coefficients on the composition change 
of synthetic gasoline-like samples. (a) Composition change of a seven component (hexadecane, eicosane, 
naphthalene, toluene, butylbenzene, ethylbenzene, and octane) synthetic nonpolar gasoline mixture as a 
function of the degree of weathering at 298.15 K. Lines are modeling results and symbols are experimental data. 
Note that the activity coefficients have a small effect on the evaporation behavior of this nonpolar mixture (the 
lines of γ = 1 coincide with the lines computed from COSMO-RS). (b) The effect of activity coefficients on the 
evaporation behavior of a four component (ethanol, toluene, trans-3-octene, and heptane) synthetic gasoline-
like mixture at 298.15 K. Dashed lines are for ideal evaporation (γ = 1) and the solid lines show non-ideal 
behavior with activity coefficients computed from COSMO-RS.
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are  derived17,22. We note that in absence of any experimental data, the COSMO-RS method is currently the 
state-of-the-art approach to compute activity coefficients of multicomponent  mixtures26. Typical errors in the 
activity coefficients computed from COSMO-RS compared to experiments are < 10% and < 30% for nonpolar 
and polar compounds, respectively.

We now have all the required tools to model the evaporation of real gasoline samples. The direct use of the 
thermodynamic model requires the composition of the weathered or unweathered sample and a stopping crite-
rion for the forward or backward integration. Starting from a weathered sample requires backward integration to 
successfully compare the unweathered sample. Similarly, starting from an unweathered sample requires forward 
integration (i.e., evaporation) to compare the composition of the weathered sample. This requires knowledge on 
the degree of weathering, which is unknown for samples collected at a crime scene. To overcome this complica-
tion, we use artificial neural networks to estimate the degree of weathering from a given input composition, which 
were obtained from field data collected and analyzed by the NFI. In total 459 gasoline samples were collected at 
different petrol stations throughout the Netherlands and analyzed for 60 main components, see the Supplemen-
tary Information for details. The thermodynamic model was then used to perform the evaporation experiments 
of these sixty-component gasoline samples. The full evaporation curves of 400 samples (each containing 6000 
data points) were used to train the ANNs. The remaining 60 gasoline samples were used to validate the trained 
model. The input to the ANNs are the mole fractions of all 60 components and the predicted variable is the degree 
of weathering (i.e., evaporation percentage). After training, 360,000 data points from the 60 remaining gasoline 
samples were used to evaluate the accuracy of the ANN model. In Fig. 3a–c, the performance of the ANN for 
estimating the degree of weathering for 10%, 50%, and 80% evaporated samples is shown. In Fig. 3d, a scatterplot 
of the actual evaporation percentage and the estimated evaporation percentage is shown. The histograms show 
that the ANN is very accurate in predicting the degree of weathering for samples evaporated up to 10%, showing 
deviations up to 0.5%. The accuracy of the ANN model drops slightly as the degree of weathering is increased 
from 10 to 50% and 80%, which results in a deviation of around 3% for the highest degree of evaporation. This 
is expected as experiments indicate that it is more challenging to track the composition of heavily weathered 
samples. The reason for this is that an increasing number of components are almost completely evaporated as the 
degree of weathering is increased, leading to larger errors when predicting the original composition. Similarly, 
the ANN model requires many more training data for heavily weathered samples than for slightly weathered 
samples. Overall, the accuracy of the ANN model in predicting the evaporation percentage of a randomly selected 
sample not part of the training set is within 3%.

Figure 3.  Performance of ANNs for predicting the degree of evaporation for samples evaporated up to (a) 
10%, (b) 50%, and (c) 80% at 298.15 K. The deviation percentage is defined as the difference between the 
actual degree of evaporation and the estimated degree of evaporation by the ANN. (d) Scatterplot of the 
actual evaporation percentage and the evaporation percentage estimated by the ANN model. The data points 
correspond to degrees of evaporation between 0 w% and 95 w%.
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Backward tracking of evaporation
In the previous section, we have used an ANN model to predict the degree of weathering from a given composi-
tion. The goal is to predict the original composition of a sample with an unknown degree of weathering. By first 
estimating the degree of weathering using the ANN model and then performing the backward integration of Eq. 
(1), we are able to track the initial composition of the sample. Figure 4a,b show a comparison of the composition 
of an unweathered sample and the predicted composition of a 50% weathered sample using the ANN model. In 
Fig. 4c, one can see the corresponding deviation in the predicted composition and the actual composition. The 

Figure 4.  Back tracing of the initial composition of a 50% weathered sample using the ANN model. (a) the 
composition of an unweathered sample, (b) the initial composition of a 50% weathered sample estimated by the 
ANN, and (c) the deviation between the estimated composition and the actual composition. The names of the 
components can be found in the Supplementary Information. The error bars show the 95% confidence interval. 
The deviations for the oxygenated components (58, 59, 60) are less than 4% (not shown here).
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maximum deviation is observed around 4% for the oxygenated components. For the other, aromatic and non-
aromatic, compounds the deviation is less than 1%. This means that it is more challenging to accurately predict 
the composition change of volatile compounds. Since the intervariation between compositions of gasoline is 
much larger than 4%, a forensic comparison including volatile compounds now becomes possible. This makes 
such a comparison much more effective.

Discussion
Tracking the composition change of a weathered gasoline sample is a challenging problem, which is of utmost 
importance for forensic investigators dealing with arson crimes. The comparison of the composition of a (weath-
ered) sample from a crime scene and an unweathered sample found in possession of a suspect is complicated by: 
(1) the complexity of gasoline mixtures, and (2) the interfering effects of evaporation, preferential adsorption, 
combustion, pyrolysis, microbial degradation, and fire extinguishing water. By assuming that the composition 
change of a gasoline sample is solely due to evaporation, and thus neglecting the other interfering effects, allowed 
us to predict the weathering process with a thermodynamic model supplemented with quantum chemical cal-
culations and machine learning tools. To describe the evaporation process, we demonstrated that it is crucial 
to consider the nonideality of gasoline mixtures. The activity coefficients were computed from COSMO-RS, 
which has a typical error of < 10% and 30% for nonpolar and polar compounds, respectively. This accuracy is 
acceptable for the current application, because the results show that errors in predicted compositions for volatile 
compounds are less than 4%, which is much lower than the intervariation between gasolines. By training ANNs 
with field data from the NFI, we were able to estimate the degree of weathering and back trace the composition 
of the weathered sample. The accuracy of the predictions from the ANN model depends on the degree of weath-
ering, e.g., the deviation in the estimated composition increased from 0.5% to 4% for 10% and 80% weathered 
samples, respectively. The accuracy of the ANN model can be increased by using more data for the training, 
especially for highly evaporated samples. Furthermore, the accuracy of thermodynamic model can be improved 
by using a more accurate activity coefficient model for the highly weathered solutions. The COSMO-RS model is 
relatively accurate for dilute solutions, but may deteriorate at high concentrations (high degree of weathering). 
The thermodynamic model based on the gamma-phi method is restricted to non-supercritical conditions. For 
supercritical conditions, the model will require extrapolation of vapor pressure data or the use of the phi-phi 
approach for VLE calculations. However, for the current problem, the gamma-phi method is straightforward 
to use and the expectation is that the performance in the supercritical regime will not be affected that much, 
since the temperature (tested up to 330 K) seems to have a small effect on the weathering process, see the Sup-
plementary Information.

Methods
Thermodynamic modeling. The evaporation process is modeled by iteratively solving Eq. (1). The satura-
tion vapor pressures of the components were taken from literature, while the activity coefficients were computed 
with the COSMO-RS method. A Python code is used to numerically solve the equation using Heun’s method, 
which is an improved version of Euler’s method. For each calculation step, the code sends the composition of 
the mixture to the Amsterdam Density Functional (ADF, version 2018.104) software package, which uses the 
COSMO-RS method to compute the activity coefficients. 41 out of the 60 components could be found in the 
ADF database. The remaining 19 components were created in the ADF software package and the COSMO-RS 
sigma profiles were calculated. The computed activity coefficients from COSMO-RS were then used in the next 
integration step, which was continued until a desired degree of weathering was achieved.

Generation of gasoline data for the simulations. Details of collecting gasoline reference samples are 
provided by Peschier et al.27 . The gasoline samples were collected in the period of May–August 2011 from 230 
different petrol stations in the Netherlands. In total, 28 different brands were collected from international oil 
companies (Shell, Esso, BP, Q8, Texaco, Gulf, Total, Avia, Tamoil), regional operating companies (Tango, Tinq, 
Brand Oil, Firezone), and local sellers. At every petrol stations, gasoline from two fuel pumps was collected, one 
with an Euro 95 grade gasoline and one with high octane (98 RON) or high-performance grade gasoline (such 
as Shell V-power, Esso Energy Supreme, BP Ultimate, Total Exellium) leading to a total of 459 gasoline samples.

The chemical composition of the gasoline samples was determined by gas chromatography with flame 
ionization detection (FID) following the procedure by Vergeer et al.8. An Agilent 6890 N gas chromato-
graph was used, equipped with an FID detector and an Agilent 7683 Series autosampler. The column was a 
25 m × 0.20 mm × 0.33 μm methyl silicone (Ultra 1) column. The oven temperature was ramped with 2 °C/min 
from 50 to 160 °C. An automated procedure, using Chromeleon software, was used to integrate a selection of 
60 well resolved peaks in the chromatograms. Mole fractions have been calculated by dividing the peak areas 
of the components by the number of carbon atoms in the molecule. The oxygenated components were not 
measured, due to coelution with the solvent. However, as these components influence the evaporation process 
greatly, they have been added manually, using typical concentrations as applied in gasoline in the Netherlands: 
3 w% ethanol, 1 w% MTBE and 1 w% ETBE have been added. After that, the data were normalized so the mole 
fractions add up to 1.

Machine learning. Here, we have used a dense neural network, which was integrated in the existing sys-
tem using TensorFlow. The built-in DNNRegressor estimator was used, combined with the ProximalAdagrad 
optimizer. The constructed deep neural network consists of 5 hidden layers, which contain 1024, 512, 256, 128 
and 64 nodes, respectively. The hyperparameters of the neural network were not systematically optimized. We 
verified that the accuracy of the neural network predictions did not change when slightly changing the number 
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of neurons in the first hidden layer. The dataset used for training consist of the evaporation curves of 400 gaso-
lines. The remaining 60 gasolines were used for the validation of the trained model. This neural net takes the 
mole fractions of all 60 components as input. The output is an estimation of the evaporation percentage. After 
training, 360,000 data points from the 60 remaining gasolines were used to evaluate the accuracy of the model.

Data availability
All data used in this work are provided in the Supplementary Information. Vapor pressure data of all components 
and compositions for the 459 gasoline mixtures used for training the ANN are provided in an Excel file in the 
Supplementary Information.

Code availability
The Python code for the thermodynamic modeling and machine learning will be made available upon reasonable 
request. The COSMO-RS tool can be obtained from the ADF developers at https ://www.scm.com.

Received: 13 March 2020; Accepted: 2 November 2020

References
 1. Hendrikse, J., Grutters, M. & Schafer, F. Identifying Ignitable Liquids in Fire Debris—A Guideline for Forensic Experts (Elsevier, 

Amsterdam, 2015). https ://doi.org/10.1016/C2015 -0-01499 -X.
 2. Sigman, M. E., Ph, D. & Williams, M. Degraded Ignitable Liquids Database: An Applied Study of Weathering and Bacterial Degrada-

tion on the Chromatographic Patterns of ASTM E 1618 Ignitable Liquid Classes (University of Central Florida, National Center for 
Forensic Science, Orlando, 2016).

 3. Sigman, M. & Williams, M. Advances in fire debris analysis. Separations 6, 13 (2019).
 4. Sandercock, P. M. & Du Pasquier, E. Chemical fingerprinting of gasoline. 2. Comparison of unevaporated and evaporated automo-

tive gasoline samples. Forensic Sci. Int. 140, 43–59 (2004).
 5. Smith, R. W., Brehe, R. J., McIlroy, J. W. & McGuffin, V. L. Mathematically modeling chromatograms of evaporated ignitable liquids 

for fire debris applications. Forensic Chem. 2, 37–45 (2016).
 6. Petraco, N. D. K., Gil, M., Pizzola, P. A. & Kubic, T. A. Statistical discrimination of liquid gasoline samples from casework. J. Forensic 

Sci. 53, 1092–1101 (2008).
 7. Sigman, M. E. & Williams, M. R. Covariance mapping in the analysis of ignitable liquids by gas chromatography/mass spectrometry. 

Anal. Chem. 78, 1713–1718 (2006).
 8. Vergeer, P., Bolck, A., Peschier, L. J. C., Berger, C. E. H. & Hendrikse, J. N. Likelihood ratio methods for forensic comparison of 

evaporated gasoline residues. Sci. Justice 54, 401–411 (2014).
 9. Drivas, P. J. Calculation of evaporative emissions from multicomponent liquid spills. Environ. Sci. Technol. 16, 726–728 (1982).
 10. Birks, H. L., Cochran, A. R., Williams, T. J. & Jackson, G. P. The surprising effect of temperature on the weathering of gasoline. 

Forensic Chem. 4, 32–40 (2017).
 11. Hirz, R. & Rizzi, A. M. Simulation of concentration changes in complex volatile mixtures during evaporation by using gas chro-

matography. Chromatographia 31, 224–232 (1991).
 12. Hirz, R. & Rizzi, A. M. Simulation of the weathering of gasolines using gas chromatographic retention data. J. Forensic Sci. Soc. 

31, 309–319 (1991).
 13. Mann, D. C. Comparison of automotive gasolines using capillary gas chromatography I: comparison methodology. J. Forensic Sci. 

32, 12365J (1987).
 14. Mann, D. C. Comparison of automotive gasolines using capillary gas chromatography II: limitations of automotive gasoline 

comparisons in casework. J. Forensic Sci. 32, 12366J (1987).
 15. Ferreiro-González, M. et al. Characterization and differentiation of petroleum-derived products by E-nose fingerprints. Sensors 

17, 2544 (2017).
 16. de Figueiredo, M. et al. Evaluation of an untargeted chemometric approach for the source inference of ignitable liquids in forensic 

science. Forensic Sci. Int. 295, 8–18 (2019).
 17. Klamt, A., Eckert, F. & Arlt, W. COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid 

mixtures. Annu. Rev. Chem. Biomol. Eng. 1, 101–122 (2010).
 18. Prausnitz, J. M., Lichtenthaler, R. N. & Gomes de Azevedo, E. Molecular Thermodynamics of Fluid-Phase Equilibria (Prentice Hall 

PTR, Upper Saddle River, 1999).
 19. NIST REFPROP database. Available at: https ://www.nist.gov/srd/refpr op.
 20. DIPPR database. Available at: https ://www.aiche .org/dippr .
 21. Dortmund Data Bank. Available at: http://www.ddbst .com.
 22. Klamt, A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. 

J. Phys. Chem. 99, 2224–2235 (1995).
 23. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 

559, 547–555 (2018).
 24. Poort, J. P., Ramdin, M., van Kranendonk, J. & Vlugt, T. J. H. Solving vapor-liquid flash problems using artificial neural networks. 

Fluid Phase Equilib. 490, 39–47 (2019).
 25. Kontogeorgis, G. M. & Folas, G. K. Thermodynamic Models for Indutrial Applications: From Classical and Advanced Mixing Rules 

to Association Theories (Wiley, New York, 2010).
 26. Klamt, A. COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design (Elsevier, Amsterdam, 2005).
 27. Peschier, L. J. C., Grutters, M. M. P. & Hendrikse, J. N. Using alkylate components for classifying gasoline in fire debris samples. 

J. Forensic Sci. 63, 420–430 (2018).

Acknowledgements
This work was sponsored by NWO Exacte Wetenschappen (Physical Sciences) for the use of supercomputer facili-
ties, with financial support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands 
Organization for Scientific Research, NWO). T.J.H.V. acknowledges NWO−CW for a VICI grant. The authors 
thank NFI for providing the experimental data of gasoline samples.

https://www.scm.com
https://doi.org/10.1016/C2015-0-01499-X
https://www.nist.gov/srd/refprop
https://www.aiche.org/dippr
http://www.ddbst.com


8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20502  | https://doi.org/10.1038/s41598-020-77516-x

www.nature.com/scientificreports/

Author contributions
T.J.H.V. and P.V. conceived the idea and guided the project, S.K. and E.S. performed the calculations, P.V., 
M.M.P.G., and L.J.C.P. provided experimental data and participated in all discussions, M.R. wrote the first draft 
of the manuscript, and O.A.M. co-supervised the project. All authors contributed to the design of the project, 
interpretation of results, and manuscript editing and reviewing.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https ://doi.org/10.1038/s4159 8-020-77516 -x.

Correspondence and requests for materials should be addressed to M.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-77516-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Artificial intelligence and thermodynamics help solving arson cases
	Results
	Backward tracking of evaporation
	Discussion
	Methods
	Thermodynamic modeling. 
	Generation of gasoline data for the simulations. 
	Machine learning. 

	References
	Acknowledgements


