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Frequency selective wave beaming 
in nonreciprocal acoustic phased 
arrays
Revant Adlakha1,3, Mohammadreza Moghaddaszadeh2,3, Mohammad A. Attarzadeh1,3, 
Amjad Aref2 & Mostafa Nouh1*

Acoustic phased arrays are capable of steering and focusing a beam of sound via selective coordination 
of the spatial distribution of phase angles between multiple sound emitters. Constrained by the 
principle of reciprocity, conventional phased arrays exhibit identical transmission and reception 
patterns which limit the scope of their operation. This work presents a controllable space–time 
acoustic phased array which breaks time-reversal symmetry, and enables phononic transition in both 
momentum and energy spaces. By leveraging a dynamic phase modulation, the proposed linear 
phased array is no longer bound by the acoustic reciprocity, and supports asymmetric transmission 
and reception patterns that can be tuned independently at multiple channels. A foundational 
framework is developed to characterize and interpret the emergent nonreciprocal phenomena and 
is later validated against benchmark numerical experiments. The new phased array selectively alters 
the directional and frequency content of the incident signal and imparts a frequency conversion 
between different wave fields, which is further analyzed as a function of the imposed modulation. 
The space–time acoustic phased array enables unprecedented control over sound waves in a variety 
of applications ranging from ultrasonic imaging to non-destructive testing and underwater SONAR 
telecommunication.

In their most general form, phased arrays can be thought of as a coalescence of multiple wave transmitting/
receiving components—also known as transceivers—which share a common excitation/collection port. The 
hallmark feature of phased arrays, setting them apart from antennas, is an additionally imparted phase angle 
on each of its individual transceivers. The ability to manipulate an incident wavefront, made possible by such 
phase variations, breeds new opportunities in beam focusing and guidance as well as the capability to efficiently 
receive a signal from an arbitrary  direction1,2. Phased arrays were first proposed for military use to quickly scan 
a sky range via electromagnetic waves in search of flying objects, replacing bulky mechanically-rotating anten-
nas which served the same  function3. Owing to their ability to steer beams, they quickly infiltrated a wide range 
of civil applications in optics, ultrasonics, and acoustics. Recent examples include  LIDAR4,  RADAR5,  SONAR6, 
medical ultrasound  imaging7, geology and  seismology8,9 as well as Non-Destructive Testing (NDT)10. Ultrasonic 
phased arrays have been employed for obstacle detection, depth measurement, as well as NDT mechanisms to 
identify defects in composite-stiffened  structures11. Another emerging application is acoustic levitation, where 
phased arrays were utilized to create standing waves and trap a particle at pressure  nodes12,13. Using a similar 
configuration, acoustically controlled holograms have been most recently  reported14. Nowadays, phased arrays 
are being used in the development of the SpaceX Starlink constellation to enhance global internet connectivity 
by exploiting its beam forming  properties15,16. They have also been explored to enhance wireless capabilities 
of in-home WiFi and cellular  networks17,18. Additionally, phased arrays have found applications in weather 
 forecasting19, astronomy and interstellar  communication20, among others.

Depending on their geometric configuration, phased arrays are categorized as planar or in-line arrangements. 
By virtue of their sub-wavelength nature, a planar phased array is sufficient to effectively shape wave beams in a 
3-Dimensional (3D) space; an in-line arrangement is capable of the same in a 2D space. As such, phased arrays 
and their underlying operational principles are closely related to metasurfaces, where the generalized Snell’s law 
allows sub-wavelength manipulation by locally controlling a phase  gradient21. This brings about a considerable 
advantage over resonant metamaterials and Bragg-scattering-based periodic crystals: The wave-manipulating 
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medium is not necessarily the same as that of the wave-carrying one. Unlike metasurfaces, phased arrays gen-
erate and transmit signals rendering them strong candidates for experimental implementation. As a case in 
point, phase gradients can be conveniently produced via micro-controllers which can be used to create a series 
of synchronized digital signals with prescribed phase shifts for every element of the array. In order to run the 
transceivers, the digital signals can then be converted to analog ones using conventional D2A converters. In this 
study, we specifically investigate acoustic phased arrays where the wave transceivers are common electrome-
chanical transducers such as piezoelectric patches, speakers, microphones and the like. While we present in-line 
acoustic phased arrays as a proof of concept, the physical insights demonstrated here readily extend to higher 
dimensions which are fairly application-oriented.

In general, phased arrays are capable of operating in both “transmit” (hereafter denoted by TX ) and “receive” 
modes (hereafter denoted by RX)22. In other words, a phased array can transfuse acoustic waves to an arbitrary 
direction and “listen for” acoustic waves incident from an arbitrary direction. By definition, conventional phased 
arrays exhibit identical radiation patterns between TX and RX modes; a direct consequence of the reciprocity 
principle. Due to time-reversal symmetry, linear time-invariant (LTI) systems exhibit a reciprocal behavior 
causing transmission between two spatially separated points to remain unchanged following an interchange of 
the excitation and sensor  positions23,24. As a result, a given array can only detect waves if they are incident from 
the same direction that waves can be transmitted to. Although such dual-mode operation aligns well with some 
real-world applications of phased arrays (e.g., underwater telecommunication of submarines relies on both 
transmitted and received sound signals for navigation, object detection and obstacle identification), the reciproc-
ity significantly diminishes the scope of their operation. A recent surge of research activity has shown that the 
intentional breakage of time-reversal symmetry instigates a nonreciprocal behavior in LTI systems which can 
unlock new opportunities in wave manipulation that were otherwise untapped. Such nonreciprocal systems have 
the potential to fuel the future of many fields ranging from  elasticity25–27,  acoustics28–31, and  electromagnetics32–34, 
to natural hazard protection and quantum computations. In optics, there exists a few studies which investigate 
nonreciprocal wave behavior in  antennas35,36, space–time phase modulated  metasurfaces37–40, and real time 
multi-functional  metasurfaces41. Notable efforts in acoustics attempt to break the symmetry of radiation patterns 
in transmission and reception as  well42–44. Means to induce a nonreciprocal behavior in elastoacoustic systems 
include the exploitation of  nonlinearities45–48, imposing a momentum bias by inducing actual  motion49,50, or an 
artificial momentum bias using space–time  modulations51–53. The latter approach is favored due to the insensitiv-
ity to wave intensity, the low power consumption, and the feasibility of conducting tests in a finite experimental 
 setup54,55.

In this report, we propose an in situ controllable acoustic phased array with space–time–periodic (STP) 
phase variation that breaks time-reversal symmetry and enables nonreciprocal phononic transition in both 
momentum and energy spaces. By leveraging a dynamic phase modulation provided by a series of phase shift-
ers, the proposed linear array is able to support distinct radiation patterns in transmission and reception that 
can be tuned independently. Furthermore, the operational range of the new STP phased array spans multiple 
directions and frequency channels, simultaneously, rendering it a selective wave-beaming device which can be 
rapidly and efficiently tuned as desired, as will be detailed and shown here.

Theoretical background
A conventional acoustic phased array is illustrated in Fig. 1a. By incorporating a static phase gradient, con-
ventional phased arrays are able to “transmit” pressure waves that travel in a desired direction in the free space 
(e.g., θs in Fig. 1a as indicated by the green arrow). Likewise, the array can operate in the “receive” (listening) 
mode. Limited by reciprocity, the array will exhibit the strongest gain for waves incident from the same exact 
θs direction, shown by the red arrow. The proposed STP linear phased array shown in Fig. 1b, however, can 
defy reciprocity by incorporating a dynamically changing phase angle. In here, we impose a phase angle which 

Figure 1.  Acoustic phased arrays. (a) Conventional phased array in TX/RX modes with a static phase gradient. 
(b) STP phased array in TX/RX modes with a dynamically changing phase gradient. Green and red colors 
denote transmitted and incident waves, respectively.
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follows a prescribed space–time–periodic variation to dynamically vary the signal’s phase gradient, contrary to 
conventional phased arrays with static or quasi-static phase angles. In the following, we lay out the theoretical 
framework in transmit ( TX ) and receive ( RX ) modes and then describe the breakage of reciprocal symmetry, 
thereby establishing different and tunable radiation patterns in transmission and reception.

Transmit ( TX ) mode. We begin with the STP acoustic phased array in TX mode. The array, which is 
depicted in Fig.  1b, comprises N acoustic transducers stacked vertically at spatial intervals equal to d. Each 
transducer is coupled with a phase shifter which augments the incoming signal with a STP phase angle, φn(t) , 
described by

where n = 1, 2, . . . ,N is the transducer index, κs is the static phase gradient (static wavenumber; also present 
in the conventional phased array), yn is the vertical position of the nth transducer along the array, δ denotes 
the amplitude of the space–time modulation, ωm is the temporal modulation frequency and κm is the spatial 
modulation frequency. Considering a harmonic input signal in the TX mode, the voltage supplied to the array 
is v(t) = V0 e

iωt , where V0 is the amplitude, ω is the temporal frequency, and i =
√
−1 is the unit imaginary 

number. The coupled STP phase shifters impart an additional phase angle described by Eq. (1) to the input 
voltage signal prior to feeding it to the transducers. Consequently, the supplied voltage to the nth transducer is 
vn(t) = V0 e

i[ωt−φn(t)] , or

The exponential term with dynamic phase variation on the right hand-side of Eq. (2) can be replaced with an 
infinite series of Bessel functions found by a Jacobi–Anger expansion. The result is

where Jq(•) denotes the qth-order Bessel function of the first kind. As can be inferred from Eq. (3), the injected 
power is theoretically split into an infinite number of harmonic signals. However, by tuning the modulation 
amplitude δ , a considerable share of energy can be directed to the desired frequency component(s). As such, 
contributions from second and higher order terms can be reasonably neglected by choosing a relatively small δ . 
Upon using the identity J−q = (−1)qJ+q , vn(t) can be approximated as

where (•)(q±) and (•)[q±] are the shorthand notations for a frequency shift of ±qωm and a wavenumber shift of 
±qκm , respectively. We note that, only the zeroth and first-order Bessel functions (i.e., J0 and J1 ) are retained 
in Eq. (4) and the static wavenumber, κs is carried over to all of the three terms. Hereafter, the three remaining 
terms are referred to as the fundamental, up-converted, and down-converted components, respectively from left 
to right. The up- and down-converted components are the direct consequences of supplementing the array with 
STP phase angle and, as a result, disappear once δ vanishes. We also note the shared coefficient ( V0J1 ) signaling 
that energy is evenly distributed to both higher and lower frequencies. Assuming transducers are isotropic and 
remain in their linear range of operation, i.e., exhibit ideal omnidirectional behavior, the output voltage from 
each phase-shifter described in Eq. (4) is expected to create equivalent acoustic pressure waves of the same 
frequency content and phase angle. Hence, it can be shown that the nth transducer generates three individual 
pressure waves at a distance |rn| away as follows

where rn is the spatial position vector with respect to the nth transducer, P0 = T V0 is the wave amplitude with 
T  as the transformation coefficient of the transducers. Here we limit our attention to acoustic transducers with 
a flat response, which effectively renders T  frequency-independent. In practice, however, T  may be obtained 
accurately from transducer’s frequency response function. The wavevectors of the produced acoustic waves 
are κ , κ (1+) and κ (1−) , respectively. The total acoustic pressure at every spatial point and time is consequently 
computed by adding the waves generated by individual transducers, i.e., pnet(r, t) =

∑N
n=1 pn(rn, t) . Per Fig. 1a, 

the position vector with respect to the origin r is related to rn via r = rn + ynĵ with ĵ being a unit vector in the 
y-direction. As such, the net acoustic pressure becomes

(1)φn(t) = κsyn + δ cos(ωmt − κmyn)

(2)vn(t) = V0 e
i(ωt−κsyn) e−iδ cos(ωmt−κmyn)

(3)vn(t) = V0 e
i(ωt−κsyn)

∞
∑

q=−∞
iqJq(−δ) eiq(ωmt−κmyn)

(4)vn(t) ∼= V0J0(δ) e
i(ωt−κsyn) − iV0J1(δ)

(

ei[ω
(1+)t−κ

[1+]
s yn] + ei[ω

(1−)t−κ
[1−]
s yn]

)

(5)
pn(rn, t) ∼=

P0J0(δ)

|rn|
ei(ωt−κ .rn)e−iκsyn

− iP0J1(δ)

|rn|
(

ei(ω
(1+)t−κ

(1+) .rn) e−iκ
[1+]
s yn + ei(ω

(1−)t−κ
(1−) .rn) e−iκ

[1−]
s yn

)
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In the far field, the magnitude of |r − ynĵ| can be approximated as |r| , which reduces Eq. (6) to

In Eq. (7), we have three dominant spherical waves, fundamental, up- and down-converted, each of them propa-
gating at different frequencies and wavenumbers. The up- and down-conversions in the second and third terms 
are reminiscent of the phononic transition in both energy and momentum spaces as a result of the space–time 
periodicity. The coefficients A0 , A−1 , and A+1 of the three waves are dependent on the modulation amplitude δ 
and the propagation direction θ , as follows: 

In writing Eq.  (8), we considered an arbitrary θ for waves, which leads to wavevectors as 
κ
(q±) = κ(q±)(cos θ î + sin θ ĵ) for q = 0, 1 with wavenumbers given by κ(q±) = ω(q±)

c  and c as the speed of sound 
in air. Since J0(0) = 1 and J1(0) = 0 , it can be verified that both the A+1 and A−1 terms vanish as soon as δ = 0 
and only the fundamental wave component remains, which brings us back to the conventional phased array. 
The variation of the three components with respect to θ and δ are more clearly illustrated in Fig. 2a–c, where the 
color intensity indicates the strength of each wave component in different directions as δ varies on the y-axis. We 
observe that the STP phased array exhibits three independent principal TX channels, each operating at a different 
frequency (namely ω , ω(1+) and ω(1−) ) and is capable of transmitting waves in different non-trivial directions. 
A closer inspection of Eqs. (7) and (8) also reveals how these three principal directions can be calculated. For 
example, from Eq. (8a), we find that the coefficient of the fundamental wave component A0 is dominant in a direc-
tion that nullifies the argument of its exponential term for any given n. This implies that the fundamental wave 
component predominantly propagates along the θ = sin−1( cκs

ω
) direction. While the previous is also a feature of 

conventional arrays, by setting the argument of the exponential term in Eq. (8b) equal to zero, the up-converted 
wave mode now travels primarily in a direction that is given by sin θ = cκ

[1+]
s

ω(1+)  , which maximizes magnitude of 
A+1 . The same feature extends to the coefficient of the down-converted wave A−1 and we get propagation in a 
direction that satisfies sin θ = cκ

[1−]
s

ω(1−)  . The two aforementioned propagation directions in the TX mode are absent 
in conventional systems. These three principal transmission directions can be visualized in the green arrows of 
Fig. 1b and are denoted by θs , θs,+1 and θs,−1 , defined as

 
Instead of using the parameters of the STP array to find these directions, we can alternatively solve the three 

equations in Eq. (9) with q = 0 and 1. Solving for the three tunable parameters κm , κs , and ωm as a function of 
known values of c, ω , θs , θs,+1 , and θs,−1 yields a unique set of parameters that enable a desired performance. 
The outcome is 

(6)

pnet(r, t) ∼=P0

{

ei(ωt−κ .r)J0(δ)

N
∑

n=1

1

|r − ynĵ|
eiyn(κ .ĵ−κs)

− iei(ω
(1+)t−κ

(1+) .r)J1(δ)

N
∑

n=1

1

|r − ynĵ|
eiyn[κ

(1+) .ĵ−κ
[1+]
s ]

− iei(ω
(1−)t−κ

(1−) .r)J1(δ)

N
∑

n=1

1

|r − ynĵ|
eiyn[κ

(1−) .ĵ−κ
[1−]
s ]

}

(7)p(r, t)net ∼=
P0

|r|
{

A0 e
i(ωt−κ .r) − iA+1 e

i(ω(1+)t−κ
(1+) .r) − iA−1 e

i(ω(1−)t−κ
(1−) .r)

}

(8a)A0(δ, θ) = J0(δ)

N
∑

n=1

e−i(κs−κ sin θ)yn

(8b)A+1(δ, θ) = J1(δ)

N
∑

n=1

e−i[κ [1+]
s −κ(1+) sin θ ]yn

(8c)A−1(δ, θ) = J1(δ)

N
∑
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e−i[κ [1−]
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(9)θs,±q = sin−1

(

cκ
[q±]
s

ω(q±)

)

for q = 0, 1

(10a)
cκs

ω
= sin θs

(10b)
ωm

ω
= 2 sin θs

sin θs,+1 − sin θs,−1

− sin θs,+1 + sin θs,−1

sin θs,+1 − sin θs,−1
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The previous approach is particularly useful in the design and operation of acoustic phased arrays in a 
scenario where transmitting signals in various prescribed directions with in situ tunability is highly desirable. 
Figure 3 shows the variation of the left hand side of Eq. (10) as a function of θs,±1 for θs = 0 and θs = 20◦ . It can 
be observed that while κs monotonically decreases with θs , the response of the other parameters of the STP phased 
array are more complex. For instance, in Fig. 3b, we deduce that waves can be transmitted in perfect symmetric 
directions (i.e., θs,+1 = −θs,−1 ), by setting κs = 0 and ωm = 0 as indicated by the dashed line. In Fig. 3d,e, the 
shift by the θs value is clearly apparent compared to the same parameters in b and c (where θs = 0 ). To conclude, 
the framework shown here depicts a non-trivial and unprecedented level of control over both the direction and 
frequency (channel) of the transmitted wave beams in the STP array, which solely emerges as a consequence 
of the imposed space–time modulation. The simultaneous transition in momentum (wavenumber) and energy 
(frequency) spaces brought about by such modulation opens up the possibility of multi-direction and multi-
channel wave-beaming effects, respectively.

Receive ( RX ) mode. In the RX mode, incident acoustic waves are first converted back into electrical signal 
by the transducers and are then sent back through the STP phase shifters to be collected at the output channel, 
thus enabling detection of objects which reflect waves or sources that emit waves. Let us consider a plane-wave 
acoustic beam that is incident upon the STP phased array from an arbitrary direction θ̄ measured from broad-
side with a temporal frequency ω̄ and a wavenumber κ̄ = ω̄

c  , as illustrated in Fig. 1b with a red arrow. Owing to 
the spatial spacing between the array receivers, the beam experiences a time delay in reaching farther transduc-
ers. Specifically, a phase shift of κ̄yn sin θ̄ is induced at the nth transducer. Consequently, the voltage generated 
by the nth transducer can be given by V̄0e

i(ω̄t+κ̄yn sin θ̄ ) with V̄0 being the voltage amplitude. In the previous, the 
transducers were implicitly assumed linear, isotropic, and expected to exhibit a flat frequency response—similar 
to the TX mode. After passing through the dynamic STP phase shifter, the output voltage signal collected at the 
nth transducer becomes

which, using the Jacobi–Anger expansion one more time, gives

(10c)
cκm

ω
= sin θs

sin θs,−1 + sin θs,+1

sin θs,+1 − sin θs,−1

− sin θs,+1

2 sin θs,−1

sin θs,+1 − sin θs,−1

(11)v̄n(t) = V̄0e
i(ω̄t+κ̄yn sin θ̄ ) e−i[κsyn+δ cos(ωmt−κmyn)]

(12)v̄n(t) = V̄0e
i[ω̄t−(κs−κ̄ sin θ̄ )yn]

∞
∑

q=−∞
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Figure 2.  (a–c) Variation of the far-field amplitude coefficients A−1 , A0 and A+1 in TX mode as a function of 
δ and θ . The vertical red arrows indicate the principal transmission directions θs,−1 = −40.8◦ , θs = 10◦ , and 
θs,+1 = 20.7◦ . (d–f) Variation of the far-field amplitude coefficients B−1 , B0 and B+1 in RX mode as a function 
of δ and θ . The vertical red arrows indicate the principal listening directions θ̄s,−1 = −19.1◦ , θ̄s = 10◦ , and 
θ̄s,+1 = 42.4◦ . Parameters used are as follows: ω/2π = 1000 Hz, ωm/2π = 500 Hz, κs = 1.0125π rad/m, 
κm = 2.9154π rad/m, and N = 20 . The white dotted lines indicate δ = 1.5.
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Assuming a sufficiently small modulation amplitude δ , we only retain contributions from the J0 and J±1 terms, 
which reduces Eq. (12) to

which follows the same short-hand notation introduced earlier in the TX mode. As per Fig. 1b, the output chan-
nel at the listening port receives a summation of all the n signals (i.e., v̄(t) =

∑N
n=1 v̄n(t) ), which after a few 

simplifications can be broken down into three signal components:

where the amplitude of each is given by 

Figure 2d–f reveals the variation of the magnitudes of B0 , B+1 and B−1 as a function of the modulation ampli-
tude δ and the incident direction θ̄ . Unlike conventional phased arrays with a single principal listening direction, 
three dominant directions emerge in the STP phased array and are apparent in the figure as predicted. Upon 
inspection, Eq. (14) is effectively the RX-equivalent of Eq. (7) in the TX mode, and can therefore be used to 
identify the three principal listening directions. Eqs. (14) and (15) show that the STP array has three independ-
ent listening channels, each operating at a different frequency, namely ω̄ , ω̄(1+) , and ω̄(1−) . Following the same 
reasoning given in the TX mode, if an incoming signal is incident from a θ̄ that satisfies sin θ̄ = cκs

ω̄
 , then B0 

(13)
v̄n(t) ∼=V̄0J0(δ)e

i[ω̄t−(κs−κ̄ sin θ̄ )yn]

− iV̄0J1(δ)
(

ei[ω̄
(1+)t−(κ

[1+]
s −κ̄ sin θ̄ )yn] + ei[ω̄

(1−)t−(κ
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s −κ̄ sin θ̄ )yn]

)

(14)v̄(t) ∼= V̄0

{
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Figure 3.  (a) Variation of the design parameter cκs/ω with respect to θs . (b,c) The design parameters ωm/ω 
and cκs/ω as functions of θs,−1 and θs.+1 for a fixed θs = 0 . The dashed line indicates ωm = 0 . (d–e) The design 
parameters ωm/ω and cκs/ω as functions of θs,−1 and θs.+1 for a fixed θs = 20 . The dashed curve indicates 
ωm = 0.
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becomes dominant and the fundamental signal component with eiω̄t will be most efficiently detected. While the 
previous is also a feature of conventional arrays, what is unique here is that if sin θ̄ = cκ

[1+]
s
ω̄

 , then B+1 becomes 
dominant and the up-converted signal component can be detected along the θ̄ direction. The same applies to the 
down-converted component. Finally, and as predicted, both B−1 and B+1 disappear by setting δ equal to zero. We 
refer to the three principal listening directions as θ̄s , θ̄s,+1 , and θ̄s,−1 , and summarize them as follows

Figure 4 shows the sensitivity of these three angles to the phased array parameters. Interestingly, all the angles are 
independent of ωm and are shown here as functions of κs and κm . We note that all of the three principal listening 
directions in Eq. (16) are in situ tunable and can be turned towards three different spatial points. Furthermore, 
the listening directions can operate simultaneously without interference and are different than the principal 
transmission directions given by θs,±q in Eq. (9). The former is evidence of asymmetry between radiation pat-
terns in TX and RX modes, which will be further discussed in detail in the following subsection, while the latter 
exemplifies the scanning capabilities of the STP array on top of the multi-directional wave beaming demonstrated 
earlier in the TX mode.

Nonreciprocal behavior. Reciprocity is an integral hallmark feature of linear time-invariant systems. In a 
reciprocal system, transmission between any two arbitrary points remains unchanged if the actuator and sensor 
locations are interchanged. To demonstrate nonreciprocity in the STP phased array, we excite it with a simple 
harmonic input v(t) = V0 e

iωt in the TX mode. Per Eq. (7), we anticipate acoustic waves to propagate in three 
distinct channels (fundamental, up-converted, and down-converted), each having a unique frequency ( ω , ω(1+) , 
and ω(1−) ) and direction ( θs , θs,+1 , and θs,−1 ). In the RX mode, we consider the time-reversed waves, i.e., the 
same three wave components traveling in reversed directions and incident upon the array. The comparison 
between these two modes can reveal breakage of reciprocal symmetry in the STP phased array.

Starting with the fundamental channel, which carries a wave of frequency ω̄ = ω incident from θ̄ = θs , it can 
be shown from Eq. (14) that v̄(t) = V̄0B0e

iωt is the dominantly received signal. In this case, v̄(t) has the same 
frequency content as that of v(t), rendering the fundamental channel reciprocal. The up-converted channel hosts 
a wave of frequency ω̄ = ω(1+) incident from θ̄ = θs,+1 . The same equation implies that the array will dominantly 
up-convert this signal, leading to a received signal of v̄(t) = −iV̄0B

(1+)
+1 eiω

(2+)t . This double up-conversion in 
v̄(t) compared to v(t) is in itself evidence of nonreciprocal behavior within the array. A similar observation can 
be made following an analysis of the down-converted channel. In this case, a wave of frequency of ω̄ = ω(1−) 
incident upon the array from θ̄ = θs,−1 will be dominantly down-converted resulting in v̄(t) = −iV̄0B

(1−)
−1 eiω

(2−)t . 
Such nonreciprocity materializes in the up- and down-converted channels only while the fundamental channel 
remains reciprocal. This is further confirmed using a derivation of the Scattering matrix, which is detailed in 
the Supplementary Information.

To take a closer look at the various ways in which a nonreciprocal behavior manifests itself in the STP phased 
array, we examine the TX radiation pattern depicted in Fig. 5a. The up-converted wave component (solid line) 
is generated using an input voltage with a frequency ω and propagates along the θs,+1 direction. Upon sending 
back a wave with the same frequency (i.e., ω̄ = ω(1+) ), three different scenarios can emerge in the RX mode, as 
shown in Fig. 5b: (I) A down-conversion takes place resulting in an output signal of frequency ω̄(1−) = ω and 
a principal listening direction θ̄s,−1 . In this case, the input voltage signal (in TX ) and the output one (in RX ) 
share the same frequency but maintain different principal transmission and listening directions – Reciprocity 
is broken in the momentum space. (II) An up-conversion takes place resulting in an output signal of frequency 
ω̄(1+) = ω(2+) and a principal listening direction θ̄s,+1 . Here, the principal transmission and listening directions 
are identical, but the frequencies of the input and output voltage signals become different – Reciprocity is broken 
in the frequency space. (III) No conversion takes place resulting in an output signal of frequency ω̄ = ω(1+) and 

(16)θ̄s,±q = sin−1

(

cκ
[q±]
s

ω̄

)

for q = 0, 1

Figure 4.  Effect of changing κm and κs on the three principal listening directions: (a) θ̄s,−1 , (b) θ̄s , and (c) θ̄s,+1.
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a principal listening direction θ̄s . In other words, the input and output voltage signals have different frequencies 
along with different directions associated with the principal transmission and reception directions – Reciprocity 
is broken in both frequency and momentum spaces. Following a similar analysis, the same conclusions can be 
drawn if the down-converted wave component was considered in the first place.

In an intuitive sense, identical acoustic radiation patterns in TX and RX modes are also an embodiment of 
the reciprocity principle; a feature which conventional acoustic phased arrays are bound to  exhibit56. However, 
an STP phased array does not necessarily adhere to this criterion. As a reflection of this, principal transmission 
and listening directions no longer coincide once a temporal modulation kicks in. This hypothesis can be easily 
tested out by inspecting the principal directions of each mode described by Eqs. (9) and (16). For a relatively 
slow temporal modulation of ωm/ω ≤ 0.1 , a binomial approximation can be used to obtain

from Eq. (9) for the TX mode. Without loss of generality, consider a specific case where ω̄ = ω . As a result, 
the difference between the sines of the principal listening and transmission directions can be approximated as

Although �s,±q vanishes for q = 0 (corresponding to the fundamental component), it takes a nonzero value 
for the up- and down-converted wave components. It is also noted that such difference between radiation pat-
terns in transmission and reception becomes stronger as the temporal modulation becomes faster, a behavior 
which is shown in Fig. 6 which displays TX (solid) and RX radiation (dashed) patterns for increasing values of 
ωm/ω . Figure 6a represents the non-modulated system where the difference between θs,±q and θ̄s,±q disappears 
as expected from a reciprocal array. Figure 6b,c correspond to ωm/ω = 0.1 and 0.35 and show increasing dif-
ferences between the solid and dashed lines, respectively. Finally, we note that for ωm/ω > 0.1 , the conclusions 
drawn here remain valid although the binomial expansion may no longer be accurate.

Results and discussions
We report on the transient performance of the STP phased array by using a semi-analytical in-house algorithm 
that does not incorporate far-field approximations. We consider 20 acoustic transducers arranged linearly along 
the y-axis. The transducers are separated by a quarter wavelength distance �/4 where � is the wavelength of the 
fundamental component and are centered at the origin. The simulations are carried out up to 1 second with a 
sampling frequency of 4000 Hz on a 2-dimensional domain of size 7× 14 m 2 , which is discretized using a grid 
of 251× 501 spatial points. Conventionally, the acoustic transducers are modeled as dipoles rather than isotropic 
transducers. Therefore to mimic practical conditions, we account for the directional behavior of the dipoles by 
integrating a Qn coefficient in the acoustic pressure waves of each transducer. As such, the generated acoustic 
waves from the nth transducer—earlier given in Eq. (5)—become dependent on θ as follows

(17)sin θs,±q
∼=

c(κs ± qκm)

ω

(

1∓ q
ωm

ω

)

for q = 0, 1

(18)�s,±q
∼= ∓q

c(κs ± qκm)

ω

(ωm

ω

)

for q = 0, 1

(19)
pn(rn, θ , t) ∼=

J0(δ)

|rn|
Qn e

i(ωt−κ .rn)e−iκsyn

− iJ1(δ)

|rn|
(

Q(1+)
n ei(ω

(1+)t−κ
(1+) .rn) e−iκ

[1+]
s yn + Q(1−)

n ei(ω
(1−)t−κ

(1−) .rn) e−iκ
[1−]
s yn

)

Figure 5.  (a) Transmission pattern of the STP array in TX mode. The up-converted transmission channel 
is represented with the rightmost curve and the green arrow. (b) Listening pattern of the STP array in RX 
mode for an incident wave with a frequency of ω̄ = ω(1+) . Down-converted, up-converted, and fundamental 
listening channels are denoted by the red arrows and are marked (I) through (III). These will be detected if the 
incident direction is θ̄s,−1 , θ̄s,+1 , or θ̄s , respectively. Upon comparing the three listening patterns (I–III) with 
the transmission pattern marked with the green arrow in (a), different types of nonreciprocity (momentum, 
frequency, and double) are shown to have materialized. Parameters used are as follows: δ = 1.5 , κs = 1.0125π 
rad/m, κm = 2.9154π rad/m, and ωm/ω = 0.01.
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where Q(q±)
n  is a function of the wavenumber, directivity coefficient Dn and incorporates other dipole param-

eters. For each source, the dipole directivity coefficient is defined as Dn = D(ϕn, κ) = sin( 1
2
κb cosϕn) , where b 

is the diameter of the dipole, κ is the wavenumber and ϕn is the locally measured polar  angle57. Regardless of the 
wavenumber, we see that D = 0 for ϕ = (2k + 1) π

2
 with an integer k—since commercially available speakers are 

incapable of propagating waves in their respective end-fire direction. Based on the geometry of the phased array 
shown in Fig. 1a, we can verify that ϕn is related to θ through ϕn = tan−1(tan θ − yn

|r| sec θ) for the nth transducer. 
Including the far-field approximation yn ≪ |r| , this relation simplifies to ϕn = θ for all n = 1, 2, . . . ,N.

As described earlier, the STP phase shifters follow a traveling-wave-like variation. Here we consider a temporal 
modulation frequency of ωm

2π
= 10 Hz and a spatial modulation frequency of κm = 2.3344π rad/m. As a result, the 

spatial super cell spans 10 successive transducers. This yields a traveling modulation velocity of νm = ωm
κm

= 8.6 
m/s which is about 1/40 the speed of sound in air, c. In the TX mode, the phased array is provided with a volt-
age input at ω

2π
= 1000 Hz. Figure 7 shows the STP array’s response in the time and frequency domains while 

operating in the TX mode where κs , and thus θs , are set to zero for simpler visualization. Figure 7a illustrates the 
resultant acoustic pressure field at t = 1 s for δ = 0 , where only the fundamental wave component propagates 
along the broadside; resembling a conventional phased array. This is further confirmed by the Fast Fourier 
Transform (FFT) analysis in Fig. 7b which is carried out at the three distinct frequencies shown. Figure 7d shows 
the same array when a space–time modulation is triggered by setting δ = 1.5 . In addition to the fundamental 
wave component traveling along the broadside, down- and up-converted waves can now be observed propagat-
ing at ω(1−) = 990 Hz and ω(1+) = 1010 Hz along the θs,−1 = −24◦ and θs,+1 = 23◦ directions, respectively. A 
visualization of the same is best illustrated in Fig. 7e, where an FFT separates the wave components by frequency 
content, highlighting their respective propagation directions. It is important to note that the propagation angles 
shown here are in excellent agreement with Eq. (9), which is derived using the far-field approximation. Figure 7c,f 
show the amplitude of the wave components at three distinct pressure sensing locations denoted by the red, 
blue, and purple dots in the main figures. These locations are selected at a radius of 15� from the center of the 
phased array at = −24◦ , 0◦ and 23◦ measured from the broadside, respectively. Given the presence of three wave 
components with comparable amplitudes in the δ = 1.5 case, we limit the rest of our analysis to this δ value. In 
order to simulate the behavior of the STP phased array with δ = 1.5 in the RX mode, a plane wave line source is 
placed at a sufficiently far distance from the center of the array, and at 1◦ angular increments spanning the range 
θ̄ = −90◦ to 90◦ , while generating waves with a frequency of ω̄ = 1010 Hz as shown in Fig. 8a. As explained 
earlier, the signal collected from the array shows a dominant amplitude at one of the, ω̄ , ω̄(1+) or ω̄(1−) frequen-
cies depending on the incident direction of the wave. Exploiting this phenomenon enables a substantial multi-
channel scanning capability of the free space as well as an ability to identify the direction of arrival (DOA) (Refer 
to the Supplementary Information for more on the application of multi-channel operation of an STP phased 
array). Figure 8b depicts the FFT of the resultant voltage output of the array when excited at different θ̄ , which 
aligns very well with the coefficients of the fundamental, up- and down-converted signal terms B0 , B+1 , and 
B−1 derived earlier. As anticipated, the principal listening channels—i.e., where the peaks appear in Fig. 8—are 
in the fundamental θ̄ = 0◦ , up-converted θ̄s,+1 = 23◦ , and down-converted θ̄s,−1 = −23◦ directions. In other 
words, the simulations confirm that if a plane wave is incident from the direction of θ̄ = θ̄s,+1 , the dominant 
frequency in the collected voltage signal becomes ω̄(1+) . Examples of this behavior are given in Fig. 8c–g. For 
instance, in Fig. 8d, the plane wave is incident with ω̄

2π
= 1010 Hz while the dominant frequency in the collected 

signal is ω̄
(1+)

2π
= 1020 Hz. As a result, we conclude that the DOA is 23◦ . Similar arguments can be extended to 

Fig. 8e,f where the respective DOAs are found to correspond to 0◦ and −23◦ . Once more, we emphasize that the 
principal directions of the array are in situ tunable, which—in combination with the aforementioned scanning 
capacity—embody the potential of such arrays in the RX mode.

Figure 6.  Nonreciprocity in the STP phased arrays demonstrated by a comparison between acoustic radiation 
patterns in TX and RX modes for increasing temporal modulations: (a) ωm/ω = 0 (no modulation), (b) 
ωm/ω = 0.1 , and (c) ωm/ω = 0.35 . The parameters used are as follows: ω = ω̄ = 1000 Hz, κs = 1.0125π , 
κm = 2.9154π and δ = 1.5.
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Numerical validation and methods
In order to justify the first-order and far-field approximations exercised earlier, a number of highly computational 
finite element COMSOL simulations are herein carried out to assess these assumptions for both the TX and RX 
modes. A two-dimensional acoustic domain comprising an air-filled semicircle with a 7 m radius is considered. 
The speed of sound c is 343 m/s and an air density of ρ = 1.2 kg/m3 is utilized. Plane wave radiation boundary 
conditions are assigned to the surrounding walls to mitigate back-scattering and reflections of acoustic waves 
in order to reproduce the free-space behavior. Similar to the previous experiment, 20 dipole acoustic sources 

Figure 7.  Time transient acoustic pressure field at time = 1 s for (a) δ = 0 and (d) δ = 1.5 . The fundamental 
frequency of the supplied voltage is ω/2π = 1000 Hz and κs is set equal to zero. The spatial and temporal 
modulation frequencies are κm = 2.3344π and ωm/2π = 10 Hz, respectively. In the top panel, the fundamental 
wave component propagates along the broadside direction only. In (b), the FFT amplitudes of the entire 
considered space are shown for three frequencies: 990 Hz, 1000 Hz, and 1010 Hz for δ = 0 . In (c), the FFTs of 
pressure waves at the three sensor locations marked with red ( 23◦ ), blue ( 0◦ ), and purple ( −24◦ ) are shown for 
δ = 0 . In the bottom panel, the fundamental wave component propagates along the broadside, are up-converted 
at 23◦ , as well as down-converted at −24◦ for δ = 1.5 . In (e), the FFT amplitudes of the entire considered space 
are shown for three frequencies: 990 Hz, 1000 Hz, and 1010 Hz for δ = 1.5 . In (f), the FFTs of pressure waves at 
the three sensor locations marked with red ( 23◦ ), blue ( 0◦ ), and purple ( −24◦ ) are shown for δ = 1.5.
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are spaced at a quarter wavelength and used to create the linear STP phased array. The array is excited with 
the voltage signal given by Eq. (2). The same set of parameters listed earlier were used here. A schematic of the 
model is depicted in Fig. 9a, which includes two spatial super cells, each measuring 10d = 857.5 mm in length.

Starting with the TX mode, the pressure field of the STP phased array is depicted in Fig. 9b, exhibiting 
five different transmission channels for the generated components. In Fig. 9c, the transient results are post-
processed and a series of FFTs are computed which break down the frequency content of these wave com-

ponents into various TX channels. The fundamental wave component is observed at ω
2π

= 1000 Hz, the first 

up-converted at ω
(1+)

2π
= 1010 Hz, the first down-converted at ω

(1−)

2π
= 990 Hz, the second up-converted at 

ω(2+)

2π
= 1020 Hz, and the second down-converted at ω

(2−)

2π
= 980 Hz, which approximately propagate along 

Figure 8.  (a) The STP phased array in RX mode with δ = 1.5 . A wave is incident upon the array from an 
arbitrary angle θ̄ with a dominant frequency of ω̄ . (b) FFT amplitude of the collected output signal for waves 
incident from θ̄ ranging from −90◦ to 90◦ with 1◦ increments. Parameters used are as follows: ω̄/2π = 1010 Hz 
and ωm/2π = 10 Hz. (c–g) Slices of (b) at different incident directions: θ̄ = 45◦ , θ̄ = θ̄s,+1 = 23◦ , θ̄ = θ̄s = 0◦ , 
θ̄ = θ̄s,−1 = −23◦ , and θ̄ = −45◦ , respectively. We note that as the incident angles match either of the three 
listening directions of the array, a drastically higher voltage output can be detected which can be employed to 
determine the direction of arrival (DOA).

Figure 9.  Time-domain finite element simulations of the STP phased array in TX mode for a modulation 
amplitude of δ = 1.5 . (a) A schematic diagram of the considered semicircle acoustic domain, dipole sources, 
and sensor locations. (b) Pressure field at t = 0.05 s with ω/2π = 1000 Hz and ωm/2π = 10 Hz. (c) From left to 
right: Directional breakdown and distribution of the FFT amplitudes at 980 Hz, 990 Hz, 1000 Hz, 1010 Hz, and 
1020 Hz. (d) Normalized frequency spectrum of the pressure amplitude for the five sensor locations shown in 
(a). Parameters used are as follows: � = 343 mm, d = �/4 , and principal transmission directions are measured 
at θs,−2 = −55◦ , θs,−1 = −24◦ , θs = 0◦ , θs,+1 = 23◦ , and θs,+2 = 52◦.



12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21339  | https://doi.org/10.1038/s41598-020-77489-x

www.nature.com/scientificreports/

the θs = 0◦ , θs,+1 = 23◦ , θs,−1 = −24◦ , θs,+2 = 52◦ , and θs,−2 = −55◦ directions, respectively. The previous angles 

are in agreement with the principal transmission directions expressed in Eq. (9). We also note that second order 
wave components now appear in Fig. 9 due to the fact that all orders of Bessel functions are inherently consid-
ered in the present numerical simulations. The normalized FFT spectrum of the pressure amplitudes measured 
at the sensors marked on Fig. 9a is shown in Fig. 9d, which follows the same color key. As evident in the figure, 
the smaller amplitudes of the second order waves justify neglecting them in the theoretical derivations. This can 
be attributed to two facts: First, the values of second order Bessel functions are smaller than first order ones. 
Second, as we approach the end-fire axis, the array’s directional effects become stronger and more pronounced, 
which further reduce the amplitudes of such second order components.

The radiation pattern in the RX mode was also verified by sending acoustic waves at ω̄
2π

= 1010 Hz generated 
using a velocity line source from five specific incident angles: θ̄s,−2 = −55◦ , θ̄s,−1 = −23◦ , θ̄s = 0◦ , θ̄s,+1 = 23◦ , 
and θ̄s,+2 = 55◦ as depicted in Fig. 10a. We chose these angles since it is rather impractical to send incident plane 
waves towards the phased array from infinite distinct directions in a finite element model. After passing through 
the space–time phase shifters, the received voltage signals at all the transducers accumulate a dynamic phase angle 
and are collected and summed up for each incident angle in Fig. 10a. Following which, a series of FFTs are carried 
out on these signals and their normalized FFT spectra are presented in Fig. 10b. It is evident that if the incoming 
plane wave is incident from θ̄s,−2 , θ̄s,−1 , θ̄s , θ̄s,+1 , and θ̄s,+2 , then the second down-converted ( ω̄

(2−)

2π
= 990 Hz), 

first down-converted ( ω̄
(1−)

2π
= 1000 Hz), fundamental ( ω̄

2π
= 1010 Hz), first up-converted ( ω̄

(1+)

2π
= 1020 Hz), 

and second up-converted ( ̄ω
(2+)

2π
= 1030 Hz) signal components will be most effectively detected. This agrees well 

with the principal listening directions derived in Eq. (16). As a result, in practical applications, the frequency ( f̄  ) 
and incident angle ( ̄θ ) of the incoming beam can be figured out by inspecting the FFT amplitudes of the received 
voltages only. Furthermore, radiation patterns in the RX mode for different listening channels are presented 
in Fig. 10c, and show the sensitivity of the STP phased array to an incident plane wave of frequency ω̄

2π
= 1010 

Hz as a function of incident angle. Finally, to correlate these patterns with the three nonreciprocity categories 
outlined earlier, the red solid line in Fig. 10d shows the radiation pattern of the array in the TX mode for the 
first up-converted wave component. Comparing Fig. 10d with the listening channels of 1010 Hz → 1000 Hz, 
1010 Hz → 1020 Hz, and 1010 Hz → 1010 Hz in Fig. 10c, is indicative of reciprocity breakage in momentum, 
frequency, and both domains, respectively.

Summary
A linear acoustic phased array was proposed, which provides independent control of transmission and recep-
tion patterns, opening up the possibility of nonreciprocal operation. Unlike its conventional counterpart, the 
space–time–periodic phased array is capable of generating additional side bands that carry higher and lower 

Figure 10.  Time-domain finite element simulations of the STP phased array in RX mode for a modulation 
depth of δ = 1.5 . (a) Plane wave at ω̄

2π
= 1010 Hz incident upon the array from (left to right): θ̄s,−2 = −55◦ , 

θ̄s,−1 = −23◦ , θ̄s = 0◦ , θ̄s,+1 = 23◦ and θ̄s,+2 = 55◦ . (b) Normalized FFT of the collected voltage signal 
amplitude for each case in (a). (c) Radiation pattern in RX mode for the different listening channels. (d) 
Radiation pattern in TX mode with waves propagating in three directions including the first up-converted 
component.
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harmonics. The phased array comprises multiple phase-shifters and transducers which are paired up and stacked 
to form a subwavelength device. The phase-shifters are dynamically modulated to follow a space–time–periodic 
pattern with a modulation that travels relatively slower than the speed of sound. The operational principle of the 
phased array was developed through theoretical derivation and a Jacobi–Anger series expansion. Additionally, 
we demonstrated the dual operation of the space–time–periodic phased array in both transmission and recep-
tion modes. Through multiple numerical simulations, various possible ways of breaking wave reciprocity have 
been illustrated and the control over the directivity of transmitted and received waves was demonstrated. The 
proposed phased array can be of great value to practical applications involving acoustic telecommunication, 
underwater navigation as well as sea bed research.

Data availability
All data generated or analysed during this study are included in this article (and its Supplementary Information 
files).
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