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Alzheimer’s Disease is a complex, multifactorial, and comorbid condition. The asymptomatic 
behavior in the early stages makes the identification of the disease onset particularly challenging. 
Mild cognitive impairment (MCI) is an intermediary stage between the expected decline of normal 
aging and the pathological decline associated with dementia. The identification of risk factors for 
MCI is thus sorely needed. Self‑reported personal information such as age, education, income level, 
sleep, diet, physical exercise, etc. is called to play a key role not only in the early identification of MCI 
but also in the design of personalized interventions and the promotion of patients empowerment. 
In this study, we leverage a large longitudinal study on healthy aging in Spain, to identify the most 
important self‑reported features for future conversion to MCI. Using machine learning (random forest) 
and permutation‑based methods we select the set of most important self‑reported variables for MCI 
conversion which includes among others, subjective cognitive decline, educational level, working 
experience, social life, and diet. Subjective cognitive decline stands as the most important feature for 
future conversion to MCI across different feature selection techniques.

The progressive aging of the population is increasing the prevalence of diseases associated with age such as 
dementia. Specifically, the worldwide prevalence of dementia is expected to affect more than 130 million people 
by  20501. Alzheimer’s Disease (AD), the most common form of dementia, is a multifactorial neurodegenerative 
disorder whose neuropathological changes in the brain are estimated to occur several decades before the cogni-
tive impairment is  noticeable2. This means that there is a long period of time in the development of the disease, 
from its very early onset characterized by subtle signs to the appearance of the typical symptoms of dementia. 
All this constitutes a complex continuum in which preclinical and prodromal stages can be distinguished before 
the onset of dementia syndrome. Precisely, the inability of current drugs to modify the natural course of the 
disease has fostered a growing consensus that prevention and therapeutic interventions are more likely to be 
effective at the early  stages3.

Mild cognitive impairment (MCI) is an intermediary stage between the expected decline of normal aging and 
the pathological decline associated with dementia. MCI is defined by the presence of minor cognitive deficits 
which are noticeable to the patient and/or to others but are not severe enough to significantly affect everyday 
 activities4. The prevalence of MCI may vary depending on the studies with estimates from ∼ 3 to ∼ 42% preva-
lence, existing however an agreement that age is the most important risk  factor5. Compared to cognitively normal 
individuals, MCI patients have a higher risk of progressing to  dementia6–10. The annual conversion rate from MCI 
to AD is approximately ∼ 5–17%11, much higher than for the general population whose rate is about ∼ 1–2%12.

Prognostic estimates can decipher specific patterns on disease progression and support policymakers in 
allocating resources for developing specifically suited healthcare  programs13. Since the diagnosis of MCI has a 
marked prognostic value, its early detection has become a priority target in aging research for the last few  years1. 
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However, there is not only a concern with the early identification of cognitive decline, it is important as well to 
understand the stability over time of the MCI  diagnosis14,15.

The yo-yo effect refers to fluctuations between normal and MCI diagnoses observed for the same person. The 
variability in symptoms may lead to a spurious diagnosis, for instance, a neurologist or a neuropsychologist may 
diagnose a person with MCI and later in the future retract the  diagnosis16. These fluctuations may even reflect 
the underlying etiology of MCI, as this condition can be caused by a wide variety of pathologies (e.g., vascular 
disease, psychiatric disorders, traumatic brain injury, side effects of drugs, etc.)17. Longitudinal studies are best 
equipped to deal with yo-yo effects, determine the underlying etiology, and gain an overall view of personal 
trajectories of disease progression.

Testing cognition in a large elderly population on a regular basis, rather than when memory loss starts to 
occur, might help us understand the role played by fluctuations between normal and MCI conditions in the 
risk of later developing dementia. The systematic examination via, for example, cognitive testing, brain imaging 
techniques, or gene expression profiling, of a very large pool of subjects, is in all cases extremely costly. Prior 
to or in addition to such an effort, it is worth collecting information variables that can be directly reported by 
the individuals and demonstrably have an effect on cognitive performance, such as lifestyle, diet, sleep patterns, 
or subjective cognitive  decline18–22. These low-cost, non-invasive, and easy-to-obtain variables have demon-
strated high predictive accuracy to predict conversion from MCI to  AD23. Complex diseases such as dementia 
involve a large number of factors with non-linear associations, making them unfit to be studied with standard 
statistics that rely upon linear modeling. Studies using traditional statistical methods for disease prognosis are 
possible as long as a small number of variables are involved in the analysis. Machine learning in disease predic-
tion is a growing trend towards personalized and predictive medicine. Machine learning is used to analyze and 
interpret data allowing inferences or decisions that could not otherwise be made using conventional statistical 
 methodologies24–26. The use of machine learning techniques to study cognitive disorders is not new, notably, sup-
port vector machine have been used for the last two  decades27. While historically, algorithms have been primarily 
based on a set of MRI parameters to try to predict the transition from MCI to  AD28–30, new algorithms include a 
larger repertoire of data such as molecular  biomarkers31, electrophysiology, and  magnetoencephalography32, and 
standardized cognitive  tests33. However, the field is still in its adolescence and there is room for improvement in 
the robustness of the results-accuracy and specificity of the predictors may greatly vary between studies, from 
slightly better than chance to high performance. In any case, there is a growing consensus that machine learning 
models that combine feature-rich heterogeneous feature spaces are particularly  promising23,34–37.

In this work, we will use the dataset collected in The Vallecas Project, an ambitious longitudinal community-
based study for healthy aging in Spain. The project focuses on early detection of cognitive impairment and Alz-
heimer’s type dementia with a rationale and a methodology similar to other international initiatives. Relevant 
examples of comparable large-scale national initiatives can be found in Japan with the IROOP registry system 
for identifying risk factors for  dementia38, the Sidney (Australia) memory and ageing  study39, the Framingham 
heart study in the  US40, the UK Biobank study of lifestyle and genetic factors incidence in  dementia41, the Euro-
pean Prevention of Alzheimer’s Dementia Longitudinal Cohort  Study42, the FINGER project in  Finland43 or the 
INTERCEPTOR Project in  Italy44.

Our goal is to study the most important features using machine learning techniques to predict conversion 
from normal cognition to MCI in older adults in a 5-year period of time. For the reasons above discussed, we 
will focus on features that can be self-reported by the participants (e.g. age, income level, education, sleep, diet, 
physical exercise, etc.). Since these types of features are non-invasive and can be easily collected in clinical 
practice, both the algorithm and the methodology used for feature selection will be helpful in both primary care 
and specialized cognitive impairment services. Specifically, Random Forest and permutation-based techniques 
help us understand the real effect of the predictors (self-reported variables) in the target (conversion to MCI).

Methods
The Vallecas Project is an ongoing single-center, observational, longitudinal cohort  study45,46. The participants, 
originally recruited between 2011 and 2013 in Madrid, Spain, are home-dwelling volunteers, aged 70 to 85, 
without relevant psychiatric, neurological, or systemic disorders. The initial cohort size was 1,180 subjects at 
baseline. Since then, the number of active subjects has decreased across the years, 964 subjects came to the second 
visit, 865 the third visit, 773 the fourth visit, 704 the fifth visit, and 509 to the sixth visit, the last yearly visited 
completed. At the time of this writing (03/13/2020) the project is running the 7th and 8th visits.

After signing informed consent, they undertake a yearly systematic clinical assessment including medi-
cal history, neurological and neuropsychological exam, blood collection, and brain MRI. Ethical approval for 
The Vallecas Project was granted by the Research Ethics Committee of Instituto de Salud Carlos III and written 
informed consent was obtained from all the participants. The authors assert that all procedures contributing 
to this work comply with the ethical standards of the relevant national and institutional committees on human 
experimentation and with the Helsinki Declaration of 1975 and its later amendments. All procedures of this 
study were approved by the Ethics Committee of Instituto de Salud Carlos III.

The main objective of The Vallecas Project is to elucidate the best combination of features that are informa-
tive about developing cognitive impairment in the future. The subjects in each visit are diagnosed as healthy, 
mild cognitive impairment (MCI) or dementia. The Vallecas Project dataset includes information about a wide 
range of factors including magnetic resonance imaging (MRI), genetic, demographic, socioeconomic, cognitive 
performance, subjective cognitive decline (SCD), neuropsychiatric disorders, cardiovascular, sleep, diet, physical 
exercise, and self-assessed quality of life.

In this work, we focus on features that are self-assessed by the participants in The Vallecas Project for the 
completed visits, that is, from visit first to sixth. Specifically, the features of interest fall within the following 
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categories: demographics, anthropometric, neuropsychiatric, traumatic brain injury, cardiovascular, quality of 
life, engagement with the external world, physical exercise, social engagement, sleep, diet, and SCD. This latter 
feature, SCD, refers to a self-experienced persistent decline in cognitive abilities in comparison with a previously 
normal status and independently of the objective performance on neuropsychological  tests47. Table 1 shows the 
types of self-assessed features collected in The Vallecas Project and studied here.

We are interested in selecting the most important self-assessed features for conversion to MCI for subjects that 
have at least 2 visits (920 subjects). The number of subjects that converted to MCI is 112 subjects ( ∼ 12.17% con-
version rate ( ∼ 12.64% male, ∼ 11.89% female). The gender ratio in the study was 340 ( 37% ) male and 580 ( 63% ) 
female, the average age at the basal visit of the participants was 74.6± 3.84 , the body mass index 27.29± 3.58 , 
and the number of years of schooling of the participants 10.9± 5.8 ( 12.42± 6.12 male and 10.05± 5.42 female). 
The total number of features considered to study conversion to MCI was 91 (Supplementary Materials Table S1). 
A complete description of the dataset is provided  in46.

Automated feature selection. We are interested in studying the predictive power of self-assessed fea-
tures collected in The Vallecas Project on future conversion to mild cognitive impairment (MCI). This is a feature 
selection problem aiming at detecting the most important features to predict conversion to MCI. The engine 
of the automatic feature selection problem has as input the set of self-assessed features (Table S1) measured in 
year 1 and as output target, the conversion to MCI diagnosis in the latest available visit (year 2 to year 6 both 
inclusive).

If properly tackled, the problem of feature selection needs to deal with at least three milestones. First, How 
many features must be included in the minimum set of important features; second, Which are the most important 
features and third; Why are those features the most important ones. Thus, we must address how many features 
we need to consider, identify which are those, and finally explain why those features are important in terms of 
prediction.

How many features? The one in ten rule. The first question to be pondered is, How much data is enough to con-
sistently predict the target? The answer is not straightforward and depends on a number of factors, for example, 
the type of model (linear or non-linear), the accuracy we want to achieve, the quality of the data (signal-to-noise 
ratio), the number of inputs, and so on. The required size of the training data is thus an ill-posed question, how-
ever, heuristics that address this problem are available. One such heuristic is the one in ten rule which states that 
the amount of data needed is 10 times the number of parameters in the  model48. For example, according to the 
one in ten rule of thumb, in a sample of 1000 subjects with 140 positive cases (e.g converted to MCI), 14 param-
eters, that is, the 10% or 1 in 10 of the minority class, can be used to reliably fit the total dataset.

The one in ten rule effectively transforms the problem of deciding the size of the training set by that of 
knowing the number of parameters in the model. In the case of linear models, this is trivial since the number 
of parameters is equal to the number of inputs. Nevertheless, the one in ten rule should be seen as a reasonable 
guess on the number of features and never as a prerequisite.

Which features? As important or more as deciding about the number of features to be included in the model 
is to be able to assess the relative importance of the features. To study which are the most important features for 
prediction accuracy, we need to discuss first the required methodology to estimate the usefulness of the features. 
Depending on the evaluation metric, we can distinguish between two methodologies for automated feature 
selection: filter and embedded methods. Both methodologies are apt to be used to remove the non-essential 
features for the task of predicting new values of the target feature, that is, the Which are the important features 
question. Filter methods and embedded methods (random forests) are introduced next.

Filter methods pick up the intrinsic properties of the features estimated via univariate correlation matrix. 
In essence, a filter method is a linear approach to finding variables that contain information about the target 
variable by means of statistical tests (e.g. chi-squared test, Fisher’s exact test) or related quantities such as the 
correlation coefficient.

The algorithm SelectKBest49 is one possible implementation of the filter method. SelectKBest uses a score 
function to remove all but the highest scoring features, that is to say, only the k most important features are 
retained. The algorithm can take as score function the Fisher’s test, the χ̃2 , and the mutual information. For 
example, the referred algorithm with χ̃2 as the score function selects the k most important input features X to 
predict the target feature y. A small value of the χ̃2 statistic for (x ∈ X, y) means that the feature x is independent 

Table 1.  Feature types, each category contains several features.

Demographics Anthropometric

Neuropsychiatric Diet

Cardiovascular Quality of life

Engagement external world Physical exercise

Social engagement Traumatic brain injury

Sleep Subjective cognitive decline
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of y. On the other hand, a large value means that x is non-randomly related to y, and therefore likely to contain 
information about target y.

Random forest is one of the most popular machine learning algorithms. Random forests tend to perform well 
in small and medium-size datasets, and most importantly for this study, random decision forest is the algorithm 
of choice for automated feature  selection50. Random forests solve the real problem of feature selection because 
it tells us which are the most important features to optimize the prediction. Filter methods, on the other hand, 
do not solve any optimization problem, they rather tell us which features are most linearly correlated with the 
target feature.

How ensemble methods such as random forest work may be understood by using the analogy of asking a 
thousand people (experts) and then aggregating their answers. Likely, the aggregated response is better than 
the individual expert’s responses. By the same token, the aggregation of many inaccurate predictors (forest) will 
give better answers than the individual predictions (tree). Or going from analogy to allegory: Don’t look at the 
tree, look at the forest instead!

A random forest consists of a large number of decision trees (tree-like model of decisions) where each tree 
is trained on bagged data (sampling with replacement) using random selection of  features51. Thus, a random 
forest is, in essence, a meta estimator that fits many decision tree classifiers. Decision trees are nonparametric 
models, that is to say, the model will have as many parameters as it needs to fit the data. It follows that if left 
unconstrained, the tree will fit the data very closely, most likely overfiting. Decision trees are unstable in the 
sense that small changes in the input may produce very different decision trees.

Although in principle, random forests do not suffer from multi-collinearity issues due to highly correlated 
features, it is, however, advisable to take care of redundancy before training a random forest. As a matter of fact, 
having a large set of variables containing similar information may induce the model to weigh heavily on this 
set in detriment of  others52. Random forests effectively address the overfiting and the stability problems exist-
ing in decision trees. Furthermore, random forests do not suffer from the limitations of the beforementioned 
filter methods. Filter methods use correlation to assess the relevance of features, but they are likely to fail to 
find the best subset of features when features do not behave linearly, e.g. non-normality, multicollinearity, or 
 heterocedasticity53 exist in the data set.

The Gini importance—a computationally efficient approximation to information  entropy54—is a score that 
provides a relative ranking of the spectral features and is a by-product of the training process in a random forest 
classifier, that is to say, the feature selection mechanism is embedded in the training algorithm of the classifier. 
To understand the Gini importance is necessary to understand first Gini impurity which is a measure used in 
decision trees to determine how often something is incorrectly labeled if that labeling were random. For example, 
if half of the data points are in class “A” and the other half in class “B”, a data point randomly chosen will have a 
50% chance of being labeled incorrectly. Formally, the Gini impurity for a set of M classes with pi the fraction 
of items labeled with class i shown in Eq. 1. The Gini impurity reaches its minimum (zero) when all points fall 
into the same category.

Now, since Random forest is an ensemble method of individual decision trees, the Gini impurity can be used to 
calculate the mean decrease in Gini across all trees or Gini importance. The Gini importance for a node is the 
average decrease in node impurity, weighted by the proportion of samples reaching that node in each decision 
tree in the random forest. A higher Mean Decrease in Gini indicates higher variable importance. The importance 
of node j, I(j), assuming only two child nodes (binary tree) is then calculated as:

where wjGj is the impurity value of node j weighted by the number of samples reaching node j, wL(j)GL(j) is the 
weighted impurity value of the child node from the left split on node j and wR(j)GR(j) is the weighted impurity 
value of child node from the right split on node j.

Why the important features are important? Once How many and the Which ones questions have been addressed, 
there is one question left: Why the important features are such?. As it was shown in the section above, random 
forests compute the importance of features as the mean decrease of the Gini impurity. However, from a more 
fundamental standpoint, the importance of a feature can be seen as the increase in the prediction error of the 
model after we permute the feature’s values. By virtue of permuting the feature’s values, the relationship between 
the feature and the true outcome is broken. If the feature were important for model accuracy, the accuracy will 
worsen upon the permutation of the feature values. By the same token, is a feature is unimportant, shuffling its 
values will likely leave the model error unchanged.

The permutation feature importance measurement was introduced by  Breiman50,55 for random forests, how-
ever, the procedure is model-agnostic and can be used for any other machine learning model. Feature importance 
can be assessed via permutation methods which in essence quantify the effect on model accuracy of randomly 
reshuffling each predictor variable. Permutation-based importance methods are a reliable technique that does 
not suffer from the bias existing in Gini impurity which might inflate the importance of continuous and high-
cardinality categorical variables.

This approach directly measures feature importance by observing how random re-shuffling (thus preserving 
the distribution of the variable) of each predictor influences model performance. However, removing each feature 
from the dataset to then re-train the estimator is computationally very intensive. A more efficient approach that 

(1)G =

M∑

i=1

pi
∑

k �=i

pk = 1−

M∑

i=1

p2i

(2)I(j) = wjGj − wL(j)GL(j)− wR(j)GR(j)
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avoids retraining as many estimators as features was proposed by Fisher and  colleagues56. The algorithm calculates 
the importance of features based on changes in the prediction error and is described below.

Input: Trained model F, Input feature matrix X, Target vector y and Error measure L. 

Step 1: Estimate the original model error ǫo = L(y, F(X))
Step 2: For each feature j do: 

Step 2.a: Shuffle the values in Xj to obtain Xperm (the original association between Xj and the target y 
is broken).

Step 2.b: Estimate the new error based on the predictions of the shuffled data, ǫperm = L(y, F(Xperm)).
Step 2.c: Calculate the permutation feature importance of feature j ( Ij ) as the difference between the 

error before and after shuffling the values, Ij = ǫperm − ǫo.

Step 3: Sort the features, argmax jI
j.

The above algorithm measures the importance of features via the change in the model’s prediction error after 
permuting each feature. However, permutation feature importance does not contain information about how 
changes in the range of values of the variable change prediction.

The partial dependence plot (PDP) shows the marginal effect one or two features have on the predicted out-
come of a machine learning model. Importantly, the PDP can capture the relationship between the feature(s) 
and target whether the relationship is linear or more  complex57.

The partial dependence function for classification is defined as:

where n is the number of instances used in the machine learning model F, XS is the set of features for which 
the PDP is plotted and XS̄ is the rest of the features, XS ∪ XS̄ = X . The features in the set S, typically 2 (with 2 
features the PDP has three-axis, more than 2 features makes the PDP hard or impossible to visualize), are those 
for which we want to know the effect on the prediction. Equation 3 shows that the partial function marginalizes 
the machine learning output over the features we are not interested in ( XS̄ ). For the PDP to yield meaningful 
results the features in S and the complementary set S̄ must be  uncorrelated58.

The last permutation-based method borrows from cooperative game theory which is a game between groups 
or coalitions of players that focuses on predicting the collective payout, this is in contrast with non-cooperative 
Nash equilibria of individual  players59. When a machine learning model yields a prediction for an observation, 
not all the features have equal weight in the prediction, some features may be very important while others are 
irrelevant. As we have seen above, it is always possible to estimate the effect of a single feature by removing it 
or shuffle its values, the bigger the change in the model’s output the larger the role played by the feature in the 
prediction. However, in this discovery process, the dependencies between features are not being considered. 
To take into account the interaction among features we cannot single out features but we can use each possible 
subset of features to study how the prediction changes. In this way, we can determine the unique contribution 
of each feature without breaking the interdependencies among them.

The Shapley value  method60 was originally developed in cooperative game  theory61, and is apt for computing 
feature contributions for single predictions independently of the machine learning model used to fit the data. 
The Shapley value permits to calculate the contribution of a feature value as its contribution to the payout of the 
game of predicting the right label weighted and summed over all possible feature value combinations. Shapley 
values show how much a given feature changed the prediction compared to the prediction at the baseline value 
of that feature. Shapley (or SHAP for short) values allow us to decompose any particular prediction into the 
sum of the effect of each feature in that particular prediction. Thus, feature contributions can be positive or 
negative, a Shapley positive value indicates that the feature acts as a force that pushes the prediction towards 
“1” (conversion to MCI) while a negative value reflects a force working in the opposite direction, towards “0” 
(non-conversion to MCI).

Formally, the Shapley value � is defined via a value function ν of all features in a set S. Specifically, the Shap-
ley value of a feature value is its contribution to the payout (e.g. if the average prediction for all instances is 0.9 
and the actual prediction is 0.8, the payout of 0.1) weighted and summed over all possible value combinations.

where p is the number of features, S is the subset of features, x is the vector of feature values of the particular 
instance to be explained and ν(S) is the prediction for feature values in S, marginalized over features that are 
not included in the set S.

The Shapley value is arguably the best permutation-based method for explaining the effects of feature values 
in the average prediction. Furthermore, Shapley value satisfies the properties of Efficiency (feature contributions 
must add up to the difference of prediction for an instance and the average), Symmetry (the contributions of two 
feature values are the same if they contribute equally to all possible coalitions), Dummy (a feature that does not 
change the predicted value has a Shapley value of 0) and Additivity (in the case of a random forest, for a feature 
value, the average of the Shapley value for each tree individually is equal to the Shapley value for the feature 
value for the random forest).

(3)
1

n

n∑

i=1

F(XS ,X
i
S̄
)

(4)�j(ν) =
∑

S∈{x1,...,xp}\{xj}

|S|!(p− |S| − 1)!
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An example of the computation of Shapley Values is included in the Supplementary Material, also for a more 
in-depth description of Shapley value,  see58.

Results
The automated feature selection problem is analyzed using the methods defined in the previous section -filter 
method, random forest feature importance, and permutation-based importance.

Filter method. According to the one in ten rule discussed in Sect. 2.1, the number of features to be retained 
is 12 ( 10% of the number of cases in the positive class, 112). Figure 1 shows the 12 most important features based 
on the filter method SelectKBest49 which were in this order: APOE (APOE is not a self-assessed feature but it 
provides valuable information and allows us to have an idea about the importance of self-assessed variables 
compared to genetic variables), subjective cognitive decline (SCD), age, a diet high in sweets, frequency family 
relationships, body mass index (BMI), self-perceived deterioration in executive function, weight, thyroid-related 
problems, participation in cultural/art activities, difficulties remembering facts, and history of heart health (no 
heart problems, angina, infarct).

Pearson’s correlation between features is also shown in the figure when r > 0.1 . The larg-
est Pearson’s correlation with conversion to MCI are APOE and subjective cognitive decline (SCD), 
r(APOE,MCI) = 0.15, r(SCD,MCI) = 0.11.

Embedded method: random forest. Embedded methods such as random forest have the evaluation 
metric built in the model during the learning process, in our case we build random forest that tries to maxi-
mize the accuracy score. Dummy classifiers provide a null metric and work as a sanity check on the model’s 
performance. Figure 2 shows the random forest accuracy and how it compares with three dummy predictors: 
random predictor, majority predictor, and minority predictor. The accuracy score of the random forest using 
cross-validation ( K = 5 ) is superior to the uniform and the minority class and is as good as the majority class 
dummy predictor.

Figure 1.  Evaluation of the importance of features for conversion to MCI classification using the filter method 
SelectKBest. The 12 features most informative for MCI conversion are displayed in order of importance 
(increasing importance from bottom to top or from left to right). The target feature, conversion to MCI, is 
displayed in the last row/column. Pearson’s correlation among all pairs of features, including the output target 
(conversion to MCI), are shown when r > 0.1 . Only APOE and SCD correlate above this threshold.
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Table 2 shows the results obtained for the K-fold grid search cross-validation for random forest classifier using 
multiple metric evaluations. The Random Forest is refitted using three scorers -AUC, precision, and accuracy- for 
either train and the test sets. Accuracy might not be the best metric to be used in this imbalanced dataset and 
scorers different than accuracy, such as the Area Under the Curve (AUC) or precision less prone to overfiting 
and are arguably a better choice.

The most important features as determined by the random forest are shown in Fig. 3. Since the approaches 
for feature selection are different -linear vs. non-linear- it was expected that the set of important features varies 
from one method to the other. However, there was a subset of features that was retained as the 12 most important 
in both methods, namely, subjective cognitive decline (SCD), APOE, age, a diet rich in sweets, frequency of fam-
ily relationships, and body mass index (BMI). The subjective cognitive decline (SCD) was the most important 
self-assessed feature in both methods.

Permutation‑based importance methods. Figure 4 shows the output of the permutation importance 
algorithm which measures how the importance score decreases when a variable is shuffled and so breaking any 
prior relationship between variable and target. The features colored in green indicate that, as expected, the pre-
dictions of the shuffle data are less accurate than the real data. The red-colored, on the other hand, indicate that 
the predictions of the shuffle data happened to be more accurate than the real data. Although this may seem sur-
prising (by introducing noise we get better predictions), the rationale is uncomplicated, random chance caused 
the predictions of the noisy data to be more accurate than the actual values because the features most likely do 
not contain information about the target feature and the improvement in the accuracy is purely coincidental and 
due to chance. The most important feature again is subjective cognitive decline (SCD).

Once we have studied the most important features according to the Gini score and analyzed the effect of 
random shuffling, it is possible to go a step further and look at the specific effect in prediction within the range 
of values of each feature. Partial Dependence Plots (PDP) separate out the effect of each feature on prediction. 
Figure 5 shows the PDP of four important features: SCD, APOE and Dietary Habits, sweets, and whitefish. The 
X-axis represents the range of values of the feature and the Y-axis shows changes in the prediction, positive values 
represent the contribution of the feature to the increase in the prediction (increase in the odds to convert to MCI) 
and negative values represent the contribution of the feature to the decrease the prediction (reduction in the 

Figure 2.  Comparative analysis of the accuracy score for the random forest predictor (in red) and 3 dummy 
predictors (in blue). The uniform predictor predicts with equal probability that a subject has or has not MCI. 
The “constant0” or majority predictor, always predicts the majority class (not MCI), and conversely, the 
“constant1” or minority predictor always predicts the minority class (MCI). The accuracy score in the test set 
of the random forest is 0.875, for the uniform predictor is 0.542, the majority predictor is 0.877 and for the 
minority predictor is 0.123.

Table 2.  Results of k-fold, K = 5 , grid search cross validation for random forest classifier using multiple 
metric evaluation. Each estimator is refitted using the best combination of hyperparameters. Random Forest 
is refitted using three scorers -AUC, precision, and accuracy- for either train and the test sets. In detail 
description of random forest fitting is given in the Supplementary Material.

Training Test

AUC Precision Accuracy AUC Precision Accuracy

AUC 0.89 0.829 0.8478 0.54 0.25 0.848

Precision 0.77 0.391 0.8315 0.56 0.187 0.77

Accuracy 0.98 0.97 0.992 0.52 0.33 0.875
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odds to convert to MCI). For example, if PDP(X = 2) = 0.1 the feature X with value 2 increases 10% the chances 
to convert to MCI, by the same token, if PDP(x = 2) = −0.1 the feature X with value 2 reduces the chances to 
convert to MCI 10% . The shaded area represents the standard deviation which is always 0 at the baseline point 
in the origin (x = 0, y = 0).

Figure 6 plots the SHAP values of every feature for every new sample (184 subjects or 20% in total included 
in the test set). Figures a) and b) show in the vertical axis the features ranked by importance (top to bottom) 
calculated as the sum of the SHAP value magnitudes over all samples. The horizontal axis in a) represents the 
impact on the model prediction (0: no impact, SHAP > 0 : push towards “1” (conversion to MCI) and SHAP < 0 
push towards “0” (non-conversion)). The horizontal axis in b) represents the average impact of the SHAP value 
calculated with the distribution from the left side figure. The figure reveals, for example, that high values of SCD, 
age, APOE, and sweets increase the prediction of conversion to MCI. The most important feature is again the 
subjective cognitive decline (SCD).

Discussion
AD is a multifactorial neurodegenerative disorder that begins affecting the brain many years before cognitive 
impairment is noticeable. The most common staging of AD includes a succession of three phases. First, the 
preclinical phase in which some of the disease hallmarks in the brain have taken place such as the presence of 
amyloid plaques, but no objective cognitive impairment is  present63. A second stage, called prodromal AD or 
MCI due to AD, involves minor cognitive changes that are noticeable to the patient and/or to others but are not 
severe enough to significantly affect everyday  activities64. Finally, the third and last stage in which the intensity 

Figure 3.  Evaluation of the importance of features for conversion to MCI. The 12 features most informative are 
displayed on the x-axis, the y-axis shows the importance of each feature based on the Gini impurity described in 
Eq. (2). The sum of the Gini importance of all the features in the model is equal to 1, the figure shows only the 
top 12 features.
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Figure 4.  The figure shows feature importance using the ELI5  library62. The most important features are at the 
top and those at the bottom matter the least. The first column in each row shows how much model accuracy 
decreased with a random shuffling ± how the accuracy varied from one-reshuffling to the next. The most 
important feature is subjective cognitive decline (SCD), followed by diet features(sweets and white fish), hours 
of sleep during the day, and APOE. The rows in red show predictions of the shuffle data that happened to be 
more accurate than the real data. The idea behind this is that random chance caused the predictions of the noisy 
data to be more accurate, this indicates that the features do not contain information about the target feature.

Figure 5.  Partial dependence plots (PDP) of the variables identified SCD, sweets dietary habits, and years of 
schooling. PDP allows us to look inside the range of values of the variable and estimate the effect in the increase/
decrease of conversion to MCI for specific values of the feature.
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of the cognitive disorder leads to a functional impairment that ends up with a dementia  syndrome65. The cur-
rent lack of effective drug treatments for the cure of the disease has boosted the search for early markers for 
preclinical AD or, in other words, for the prediction of those individuals at high risk of developing dementia in 

Figure 6.  The five most important features are SCD, age, APOE, frequency family relationship and sweets 
eating habits. (a) Each point represents a subject, blue for healthy, and for red for MCI. (b) is the aggregate of the 
Shapley values. The more sparse the distribution of points as depicted in (a) or what is the same the longer the 
bar is in (b), the more important the feature is.
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the future. This will allow preventive interventions to begin at the earliest possible stage in the hope of altering 
the natural course of the AD continuum. In any case, there is not an iron law of progression from normal to 
MCI to dementia, some people with MCI might never get worse, and a few would even get eventually  better66.

In this work, we have studied the most important self-assessed features for MCI conversion using The Vallecas 
Project Dataset. The rationale and motivation behind solving this feature selection problem are twofold. First, 
to reduce the complexity to gain interpretability, the Vallecas Project dataset has thousands of variables possibly 
including many redundant and irrelevant features. Second, to provide an algorithm to be used as a prognosis 
support tool that aids clinicians to identify cognitively healthy older adults at higher risk of developing MCI in 
a 5-year prediction.

The feature selection problem of choosing the self-assessed features that contribute most to the target feature 
(conversion from normal cognition to MCI) was investigated using three different techniques. First, the Filter 
method or univariate selection to find the variables that contain the most information about the target variable. 
Second, embedded method, specifically, the random forest a learning algorithm with feature selection decision 
integrated into the learning algorithm. And last, permutation-based methods, including random shuffling, partial 
dependence plot, and Shapley  values67. Filter methods pick up the intrinsic properties of the features estimated via 
the univariate correlation matrix. In Embedded methods (random forest) the selection of the feature is integrated 
with the classifier itself rather than being decided from the external accuracy metric. And finally, permutation-
based methods assess the importance of features by studying how shuffling the feature values affect the model’s 
accuracy, important features, when shuffled, will likely make the model predictions to drop.

Random Forest showed a high predictive performance with an accuracy of 0.851 which may be considered 
relatively high bearing in mind that we only focused on self-reported features. We are aware that the inclusion 
of cognitive parameters or other more expensive or sophisticated techniques (e.g. MRI, PET-FDG, amyloid 
PET) would increase the predictive capacity of the model. However, the idea behind this work is to provide a set 
of tools easy to use by any health professional without the need to use other tools more sophisticated or time-
consuming. Our results underlie then the utility of ensemble methods such as random forest and permutation-
based methods as a triage risk screening tool, for example, to identify early on individuals that will likely require 
medical care at a later stage.

Unlike most previously published machine learning studies to predict cognitive disorders, our algorithm 
shows two distinctive characteristics. First, it achieves acceptable predictive performance based only on a reduced 
set of self-reported variables (sociodemographic, clinical, lifestyle, quality of life, sleep, SCD). Thus, our algo-
rithm does not use expensive or invasive procedures such as the obtaining of biomarkers via lumbar puncture 
or amyloid PET; rather our predictions are only based on a restricted set of sociodemographic, lifestyle, and 
self-perceived feature,s which makes its application easy translation into clinical practice. Second, to the best 
of our knowledge, this is the first algorithm that is focused on predicting conversion from preclinical phases to 
MCI in 5 years.

The strongest result in this study is that the most important self-assessed variable for future conversion to 
MCI is the subjective cognitive decline (SCD) which is selected as the most important across all the feature 
selection techniques -filter method, embedded method, and permutation-based methods. This result is not 
unexpected if we acknowledge that self-report of subtle cognitive decline can appear at the end of the preclinical 
stage of AD even in the absence of significant objective impairment detectable in standardized neuropsychologi-
cal  assessment68–70. Subjective cognitive decline may span for over one decade before it eventuates in MCI and 
 AD12,71,72. Furthermore, there is evidence about the relationship between SCD and AD biomarkers such as brain 
amyloid deposition, cerebral hypometabolism, altered brain connectivity, and  atrophy73–75.

There is also overwhelming epidemiological data in favor of the relationship between SCD and the increasing 
risk of cognitive impairment. For example, a 2014 meta-analysis on the longitudinal value of SCD for detecting 
later MCI and dementia, showed that independently of the objective memory performance, 6.6% of older adults 
with SCD develop MCI per year and 25% in a 4-year follow-up12. In addition to this, the rate of progression 
to dementia among those individuals who report SCD is twofold during a 5 year following period. Finally, the 
analysis of SCD’s temporal dynamics for a 3-year follow-up has highlighted the existence of two main stages 
into the preclinical AD phase -No SCD and SCD- that precede the MCI stage through the AD continuum. 
Progression may occur from No SCD to SCD, but opposite transitions from SCD to No SCD are very unlikely. 
Importantly, once an individual is at the SCD phase there may be a progression to a severe form of cognitive 
concerns, the sub-stage SCD-Plus, in which the risk of MCI is the highest compared to No SCD and  SCD76. For 
all the above-mentioned reasons and in line with our results, SCD might be considered as a highly informative 
and reliable forerunner of MCI and dementia in older adults and accordingly should be carefully considered in 
clinical settings.

Apart from SCD, our results show other recurrent risk factors that increase the likelihood of developing MCI 
and AD. Specifically, two are worth noting: APOE genotyping and cognitive reserve related variables. APOE is 
a plasma protein involved in cholesterol transport in the brain from astrocytes to  neurons77. The gene coding 
for APOE is located on chromosome 19 and is polymorphic with three common alleles ( ε2 , ε3 , ε4 ). Individuals 
possess two alleles of APOE that are inherited one from each parent, thus leading to six possible genotypes ( ε2ε2 , 
ε2ε3 , ε3ε3 , ε3ε4 , ε4ε4 , ε2ε4)78. The APOε4 variant is considered a genetic risk factor for developing AD in old 
age because it plays a critical role in inducing Aβ accumulation and affecting white matter  volume79,80. Individuals 
who possess a copy of the ε4 allele have more than 2–3 times higher risk for suffering AD whereas homozygotes 
are at least 10 times more likely to develop  AD81. Also, it has been found evidence supporting the relationship 
between Apoε4 and cognitive decline in prodromal AD at risk for  dementia82. On the other hand, the concept of 
cognitive reserve accounts for the frequent discrepancy between the level of brain pathology and the cognitive 
performance of an individual. Many epidemiological, clinical, neuropsychological, and neuroimaging studies 
show protective effects of cognitive training and other social or mentally stimulating activities against neural 
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injuries or  degeneration83. Cognitive reserve is usually operationalized according to the educational attainment, 
occupation, and leisure or mentally stimulating  activities84. In our algorithm, some features have the capacity 
to confer cognitive reserve such as years of schooling, total years of work, or socioeconomic status. Those features 
might act as protective factors against the development of MCI as expected according to available  evidence85–87.

This work has important limitations that need to be laid out. When building machine learning or any other 
statistical inference decision making, the performance of the model prediction can suffer from at least three major 
factors. First, the predictors do not contain relevant information about the target that needs to be predicted. 
Second, the model fits poorly the data, for example, it has memorized the data producing overfiting, and lastly, 
the data set is imbalanced i.e. the data do not have enough samples of the minority class. The feature selection 
problem studied is affected by all these three issues. The predictors are self-assessed by the participants who 
logically introduce noise due to the subjective nature of the data collection process. While the accuracy of the 
random forest is very good especially considering that we are predicting conversion to MCI in a time window 
from 1 to 5 years, the model performance deteriorated strongly using other metrics like recall or precision. A 
likely rationale for this circumstance is the imbalanced data set, the ratio of non-converter/converter is 0.82/0.12. 
It is entirely possible that we do not have enough cases of converters for the classifier to extract a consistent 
pattern. The dataset used here is small  900, leaving a test set of fewer than 200 samples and far from the sample 
size in Big Data which go from the order of 10,000 to millions.

A gap in the predictive performance between the training and the test sets must not be used as the sole cri-
terion for overfiting. The model, together with the task at hand and the data distribution must all be considered. 
Cross-validation can work as a preventative measure against overfiting. However, cross-validation may lose its 
effectiveness when the dataset is small or unbalanced, and our dataset is admittedly both. We use k-fold cross-
validation that is the preferred method for small datasets. However, the model could perform poorly in a low 
variance dataset. One effective approach to addressing low variability and more specifically the imbalanced 
problem that exists in our dataset is to oversample the minority  class88.

Although the problem at hand is particularly challenging, it is, however, worth emphasizing that the deliber-
ate choice of looking at the space of self-assessed features brings the possibility to intervene on those factors. 
For example, dietary and sleeping habits identified as important features for MCI conversion are lifestyle factors 
that are suitable to be changed. More importantly, we use a set of permutation-based techniques that allow us 
to estimate the importance of features relative to its range of values and on an individual basis, that is to say, we 
do not only open the black box in identifying which are the most important features in the machine learning 
algorithm but we also look inside each feature to identify how variations in the feature values affect the predic-
tion, increasing or decreasing the chances to convert to MCI.

The epistemological implications of the data-driven approach of machine learning are, at this point, still 
unclear. However, what is incontestable is that research in problems lacking a clear theoretical framework such as 
chronic diseases will bring a more intensive (never less) use of data and predictive analytics. Building prediction 
machines for conversion to MCI using self-informed features, i.e. variables that can be reported by the subject 
herself, represents a step forward towards a new medicine that aspires to be closer to P4  medicine89: Predictive, 
Preventive, Personalized, and Participatory.
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