
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20117  | https://doi.org/10.1038/s41598-020-77050-w

www.nature.com/scientificreports

Bilayer lead oxide X‑ray 
photoconductor for lag‑free 
operation
Oleksandr Grynko1*, Tristen Thibault2, Emma Pineau2, Gytis Juska3 & Alla Reznik2,4

Polycrystalline Lead Oxide (poly‑PbO) was considered one of the most promising photoconductors 
for the direct conversion X‑ray medical imaging detectors due to its previous success in optical 
imaging, i.e., as an optical target in so‑called Plumbicon video pick‑up tubes. However, a signal lag 
which accompanies X‑ray excitation, makes poly‑PbO inapplicable as an X‑ray‑to‑charge transducer 
in real‑time X‑ray imaging. In contrast, the recently synthesized Amorphous Lead Oxide (a‑PbO) 
photoconductor is essentially lag‑free. Here, we report on our approach to a PbO detector where a 
thin layer of a‑PbO is combined with a thick layer of poly‑PbO for lag‑free operation. In the presented 
a‑PbO/poly‑PbO bilayer structure, the poly‑PbO layer serves as an X‑ray‑to‑charge transducer while 
the a‑PbO acts as a lag prevention layer. The hole mobility in the a‑PbO/poly‑PbO bilayer structure 
was measured by photo‑Charge Extraction by Linearly Increasing Voltage technique at different 
temperatures and electric fields to investigate charge transport properties. It was found that the 
hole mobility is similar to that in a‑Se—currently the only commercially viable photoconductor for 
the direct conversion X‑ray detectors. Evaluation of the X‑ray temporal performance demonstrated 
complete suppression of signal lag, allowing operation of the a‑PbO/poly‑PbO detector in real‑time 
imaging.

Direct conversion detectors opened a new era in X-ray medical imaging because of the number of advantages 
intrinsic to the direct conversion scheme, such as spatial resolution that is limited only by the pixel dimensions 
and high dose efficiency even at low radiation exposure.

In the direct conversion method, incident X-rays are absorbed in a layer of photoconductor that directly gen-
erates electron–hole pairs, which are afterwards separated by an electric field to produce an electrical signal. The 
photogenerated electrons and holes drift towards the opposite electrodes, making it possible to create an image 
with a thick detector layer while maintaining high spatial resolution. The first commercial mammographic direct 
conversion detectors based on amorphous selenium (a-Se) photoconductor to directly convert incident X-rays to 
charge, which is subsequently electronically read out by a two-dimensional array of a-Si:H thin film transistors 
(TFTs), made a breakthrough in the breast imaging field due to the excellent detectability of small breast  lesions1.

Currently, the only commercially feasible photoconductor for X-ray imaging is a-Se, which limits the extensive 
use of the direct conversion scheme. Indeed, a-Se has a low atomic number Z, and thus, is efficient only when 
low-energy X-rays are used, e.g., in mammography. To expand the benefits of direct conversion detectors over 
the diagnostic energy range, i.e., in radiography and fluoroscopy, a-Se must be substituted by a high-Z material, 
which can efficiently absorb higher energy X-rays.

Since X-ray imaging detectors should normally have a large active area (one cannot converge X-rays), single 
crystalline photoconductors are ruled out from the application in direct conversion detectors in conjunction with 
large area a-Si:H flat panel technology (i.e., active matrix flat panel imagers or AMFPIs). Thus, it is imperative 
to focus on amorphous and polycrystalline phases of high-Z photoconductors, that can be directly deposited on 
an imaging array of a large area. Potential X-ray photoconductors such as polycrystalline layers of  BiI3

2,  PbI2
3,4, 

 HgI2
5–7,  ZnO8,  CdTe9,  Cd1−xZnxTe10, and  PbO11 have been investigated and have shown potential for use in direct 

conversion detectors. The X- ray-to-charge conversion rate of these materials is 3–8 times larger than that of a-Se 
and thus, they are capable of X-ray quantum noise limited operation at low exposures, since the X-ray quantum 
noise can prevail over the electronic noise. The performance of these polycrystalline photoconductors is far 
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from ideal due to either a large dark current, incomplete charge collection, or inadequate temporal response to 
X-ray irradiation, appearing as a residual current after X-ray exposure is terminated, i.e., signal lag (or from a 
combination of these problems). In addition, the deposition of poly-CdTe and poly-Cd1−xZnxTe layers requires 
a high substrate temperature (400–600 °C), which is incompatible with most of the readout electronics, or 
requires a hybrid deposition method, where the film is firstly deposited on the glass or alumina substrate and 
then coupled to the readout circuitry. The latter involves very precise alignment of the photoconductor relative 
to the matrix array to achieve proper pixel-to-pixel bonding that is technologically challenging, especially for 
high-resolution detectors.

Another promising class of materials to be used in radiation detection are perovskite  semiconductors12; 
however, they are at a very early stage of the development (suffering from material instability, signal lag and, com-
paratively high dark current, technological difficulties in manufacturing a thick and uniform layer over a large 
area) and are not mature enough to be considered as a practical solution to improve radiation medical imaging.

It should be mentioned that among the potential X-ray-to-charge transducers listed above, polycrystalline 
Lead Oxide (poly-PbO) is especially promising because, similarly to a-Se, it has a long history of commercial 
utilization in optical imaging. Previously, thin layers of poly-PbO were used in “Plumbicon” video pick-up tubes 
that were widely used for broadcast, fluoroscopy and digital subtraction angiography in conjunction with image 
intensifiers. However, the first prototype of poly-PbO based X-ray detector with the radiography-thick photo-
conductor film was unsuccessful. The photoconductor exhibited signal  lag13 that did not permit the use of PbO 
detectors in real time fluoroscopic imaging, which is the most clinically demanding  application14.

Recently, we reported on the development of a new polymorphic form of the PbO material, namely amor-
phous Lead Oxide (a-PbO), which had not been previously  synthesized15. In contrast to its polycrystalline 
counterpart, a-PbO is dense, capable of withstanding higher electric fields with lower dark current and exhibits 
no signal  lag16. In this work, we use a-PbO in a bilayer PbO structure, where a thick layer of poly-PbO serves as 
a recording and charge transport layer while a thin layer of a-PbO acts as a lag-preventing layer.

The use of multilayer photoconductive structures is a standard solution in direct conversion detectors. Indeed, 
practical a-Se direct conversion detectors utilize a multilayered structure, consisting of a thick photoconducting 
layer of stabilized a-Se, sandwiched between one or two adjacent blocking layers needed to maintain an accept-
able level of dark current.

In the majority of those detectors, two blocking layers are identified as n-like (hole blocking) and p-like (elec-
tron blocking). Examples of n-like layers are a-Se alloyed with a small percent of As and doped with alkali metal 
(usually Na or LiF)17–23, cold-deposited a-Se19,20,  Sb2S3

24 and  CeO2
23,25. Among p-like layers are  As2Se3

17–20,24, a-Se 
doped with  Cl22, and  Sb2S3

24–26. Additional layers may be used, such as Arsenic-rich a-Se layers to retard crystallite 
formation at the  interface24,26,27; and protective overcoating layer such as  nigrosine28,  Parylene29, epoxy  resin26. 
As it is seen, the manufacturing of an a-Se based detector requires multistage doping and alloying with different 
elements, normally performed in one deposition cycle without breaking the vacuum. This process is technically 
challenging and requires precise control to avoid cross-contamination, leading to high deposition  cost30.

Our approach to combine two allotropic forms of the same material, namely, PbO, in a blocking structure 
reduces technical complexity, in comparison with a-Se technology. At the same time, it will allow to combine 
excellent (low) ionization energy inherent to PbO, adequate hole mobilities and low dark current at practical 
electric fields. This holds a potential to make the direct conversion system simpler and hence, more economical 
to manufacture. Although we do not claim that the developed technology can be immediately used in commercial 
products, we show that it allows for lag-free real-time imaging in the diagnostic energy range. We also report 
on the direct measurements of hole mobilities and demonstrate, for the first time, the application of the bilayer 
PbO structure as a direct conversion X-ray detector.

Results
Experimental sample. A schematic presentation of a bilayer Lead Oxide structure is shown in Fig. 1a. 
The bottom 2 μm lag-preventing a-PbO layer was deposited on an ITO-coated glass substrate (bottom biased 
electrode) by an ion-assisted thermal evaporation  technique31. Subsequently, the a-PbO layer was covered by 
a 12 μm layer of poly-PbO (recording and charge transport layer) using conventional thermal  evaporation31. 

Figure 1.  Schematic diagram (a) and cross-sectional SEM image (b) of a bilayer a-PbO/poly-PbO structure.
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Although this sequential deposition of amorphous and polycrystalline layers was performed in a single deposi-
tion cycle (without breaking the vacuum), it should be noted that it can be done in separate evaporators, giving 
essentially identical results. Finally, a 200 nm thick Au contact was sputtered atop a-PbO/poly-PbO structure by 
magnetron sputtering to serve as the top readout electrode.

The SEM image of the cross-section of the sample is shown in Fig. 1b. As can be seen, the thin and dense layer 
of amorphous material in the lower part of the structure transforms into a less dense, inhomogeneous disordered 
layer of polycrystalline material. It should be noted that the structure of the poly-PbO layer in the presented 
bilayer structure is slightly different from the previously reported single poly-PbO layer structure. Indeed, a single 
poly-PbO film is essentially a porous network of individual platelets oriented mainly in the growth  direction31, 
whereas the layer in the current sample consists of overlapping flakes.

Mobility measurements. Hole mobility was measured by the photo-Charge Extraction by Linearly 
Increasing Voltage (CELIV) technique in a range of electric fields (0.03–0.22 V/μm) and temperatures (260–
350 K). The choice of CELIV was determined by its proven efficacy in the evaluation of field and temperature 
dependencies of mobilities in single poly-PbO layers, characterized by dispersive carrier transport with mobili-
ties which decrease in the course of time. This feature makes a conventional Time-of-Flight (TOF) technique 
ineffective for transport characterization. In contrast, the theory of CELIV was recently extended to dispersive 
transport  regime32 making it a technique of choice as an alternative to TOF for disordered materials with dis-
persive transport.

In photo-CELIV, a light pulse is used to generate charge carriers in the volume of an unbiased sample. The 
wavelength of optical excitation (595 nm) was chosen to provide a uniform bulk absorption so that electron–hole 
pairs are generated in the volume of the layer. Subsequently, a linearly increasing voltage is applied to the sample 
to extract the photo-generated carriers. As the applied voltage increases, so does the photocurrent since charge 
carriers are extracted faster. At the end of the extraction, when most carriers have been collected, the photocur-
rent decays (Fig. 2).

The carrier mobility is derived from the measured time needed to reach the peak of the photocurrent. For 
disordered materials with dispersive transport, the mobility is calculated using an equation

where d—detector’s thickness, tpeak—time to the peak of the photocurrent, A—slope of the voltage ramp, α—dis-
persion parameter derived from the relationship 32

A typical CELIV response at given experimental conditions is shown in Fig. 3, where T—temperature, Rosc—
input resistance of the oscilloscope, tpulse—duration of a light pulse, and tdelay—time delay between the light and 
voltage pulses. The dark-response, which is a capacitive component of the current, was subtracted from the 
photo-response, and the peak time was measured from the differential photocurrent transient.

To satisfy the requirements of the CELIV model and to prevent the accumulation of space  charge33, the 
magnitude and duration of the light pulse were adjusted to make the amplitude of the photocurrent (differential 
signal) smaller than the capacitive (dark) signal; and the input resistance of the oscilloscope was adjusted to 

(1)µ =
α(α + 1)

2α + 1

d2

t2peakA
,

(2)tpeak ∼ A−
1

1+α .

Figure 2.  Schematic diagram of photo-CELIV experimental apparatus.
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minimize the RC-component of the signal. Also, since it has been previously shown that holes are much faster 
carriers in poly-PbO32,34, the experimental conditions were tuned (i.e., a voltage pulse of low amplitude and short 
duration was used throughout the experiments) to make the photocurrent caused by the drift of holes only, so 
that slower electrons do not contribute to the recorded photocurrent.

Figure 4 shows experimentally measured time to peak dependence on the voltage ramp at different tem-
peratures. A slope of a log–log fit curve yields a value of the dispersion parameter α = 0.42, from Eq. (2). The 
dispersion parameter is temperature independent, similarly to what has been found in single poly-PbO  layers32; 
however, its value is twice larger than that in single poly-PbO.

The mobility of holes μ(F) was calculated using Eq. (1) for electric field at the time of maximum extraction 
(

F =
A·tpeak

d

)

 at different voltage ramps A and temperatures (Fig. 5). Hole mobility is strongly dependent on the 

electric field and reaches a value of 0.35  cm2/Vs at 0.22 V/μm. To compare, the mobility of holes in a-Se is 0.15 
 cm2/Vs at 1 V/μm at room  temperature35. The weak dependence of mobility on temperature and the strong 
dependence on applied field indicates a dispersive transport regime mainly governed by spatial  inhomogeneity32.

Temporal performance evaluation. The temporal performance was examined by the X-ray induced 
Photocurrent Method (XPM) in a pulsed mode. The photocurrent in a bilayer PbO structure was measured at 
an electric field of 10 V/μm (negative bias on ITO) under 1 s long X-ray exposure, modulated using a rotating 

Figure 3.  A typical photo-CELIV, dark-CELIV current transients, and differential curve. The peak time is 
measured from the differential signal, exhibiting an apparent photo-peak.

Figure 4.  Time to peak dependence on voltage ramp at different temperatures. The dispersion parameter 
derived from a slope of a log–log fit line is independent of temperature.
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chopper at various frequencies in the range of 10–60 Hz and 50% duty cycle (Fig. 6). In this test, image lag would 
reveal itself as an increase in the signal in each  frame36.

To demonstrate this, Fig. 7 compares outputs of a bilayer PbO structure and a single poly-PbO layer biased 
at 5 V/μm and irradiated with X-rays pulsed at a frequency of 10 frames per second (fps). The exposure was 2 s 
long, during which both samples were exposed to 20 X-ray pulses (100 ms alternating intervals with open and 
closed chopper). When irradiated with pulsed X-rays, a rise of the photocurrent level with each subsequent frame 
is evident in the single poly-PbO layer. In addition, there is a well-pronounced residual signal, that decays to zero 
in approximately 2 s after the termination of X-ray exposure. In contrast, a bilayer a-PbO/poly-PbO structure 
shows a stable photocurrent value and no signal lag.

The temporal performance of the bilayer detector shows a nearly constant amplitude of the signal in each 
frame even at a high readout rate (Fig. 8). A uniform amplitude during the X-ray exposure indicates no build-up 
of the injection current, allowing maintenance of constant dark current. After the termination of the X-ray pulse, 
the photocurrent drops rapidly to zero level with no residual signal, proving lag-free operation.

Frequency of 30 fps used in this experiment corresponds to readout rate conventionally used in a real-time 
fluoroscopy imaging. A reduced frame rate can be used to increase the signal-to-noise ratio (SNR) of the detector 
and to moderate patient dose. A higher readout rate might be necessary when one must image a rapidly changing 
process, such as heart beating (cardiac imaging and coronary catheterization)37.

Figure 5.  Hole mobility dependence on electric field at different temperatures. The mobility is independent of 
temperature but have a strong dependence on electric field.

Figure 6.  Schematic diagram of XPM setup in a fluoroscopic mode.
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Discussion
The performance of a-PbO/poly-PbO bilayer structure has been investigated in terms of whether combining 
these PbO polymorphs into a multilayer structure allows to consolidate the adequate hole mobility inherent in 
poly-PbO with the excellent X-ray temporal response inherent in a-PbO layers. CELIV measurements confirmed 
that hole transport in the bilayer structure is dispersive and qualitatively similar to that in single layers of poly-
PbO32. Weak temperature dependency of mobility μ and dispersion parameter α, and strong field dependence of 
μ indicates that dispersion is governed by spatial disorder rather than energy disorder. Mobility of holes reaches 
value of 0.35  cm2/Vs at relatively low field 0.22 V/μm (the upper value of the applied electric field was limited 
by the bandwidth of the function generator). The fact that mobility increases rapidly with an increase in electric 
field is very desirable since it provides a tool to improve the carrier schubweg i.e. the average distance drifted 
before a carrier is lost to traps (schubweg is a product of the carrier drift mobility µ, the lifetime τ and field F, i.e. 
µτF) and to avoid depth dependent charge collection. Both the dispersion parameter and hole mobility obtained 
for a bilayer a-PbO/poly-PbO structure are somewhat higher than those for poly-PbO. This can be attributed to 
the differences in structural heterogeneity between a single poly-PbO and that grown on a-PbO: depositing a 
poly-PbO layer on a-PbO sublayer makes hole transport less dispersive and increases hole mobility.

Figure 7.  Comparison of X-ray response to pulsed irradiation of (a) poly-PbO and (b) bilayer a-PbO/poly-PbO 
detectors. Poly-PbO exhibits signal build-up and prolonged residual signal after the termination of X-ray pulse, 
while bilayer PbO detector shows perfect temporal response. It should be noted that the poly-PbO sample used 
in this experiment is thicker than a-PbO/poly-PbO, thus it yields a higher amplitude of X-ray response.

Figure 8.  A bilayer detector’s response to X-ray irradiation pulsed at different frequencies. Each waveform was 
normalized and shifted for better visualization. The first and the last frames are affected by asynchronization 
between the chopper and X-ray pulse, and nonuniformity of exposure at the beginning of the pulse.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20117  | https://doi.org/10.1038/s41598-020-77050-w

www.nature.com/scientificreports/

Evaluation of the temporal response of the bilayer structure with the pulsed X-ray radiation did not reveal 
signal lag—a major obstacle for application of poly-PbO layers in the direct conversion X-ray detectors. Indeed, 
the presence of signal lag and subsequently, image lag, does not permit to use poly-PbO detectors in the most 
demanding clinical application that is real time fluoroscopic imaging. Dynamic readout, as that used in real 
time applications, requires very little to no lag at the end of each frame, otherwise previous images will be 
superimposed with the subsequent ones, thus resulting in a misleading view. The elimination of signal lag can be 
explained by decreasing charge trapping at a-PbO/poly-PbO interface and suppressing X-ray triggered injection 
caused by local enhancement of the electric field at the interface between the electrode and  photoconductor13. 
In a bilayer configuration, a lag-preventing layer of a-PbO separates poly-PbO from the electrode, preventing 
charge injection and eliminating image lag.

Despite this, the dark current of a bilayer structure is still higher than the recommended value for digital flat 
panel detectors (~ 10 pA/mm2)38. Further decrease in the dark current may be achieved by using a thin blocking 
layer between the electrodes and PbO bilayer. One of the most suitable candidates is polyimide (PI). It is a well-
developed material that was already successfully used with a-Se  photoconductors36. Careful optimization of the 
film’s thickness allows the tuning of its resistivity to prevent significant voltage drop across the blocking layer 
as well as redistribution of the electric field inside the  structure39. It should be noted that polyimide film can be 
easily applied by a conventional spin coating technique, in contrast to complicated process of growing of the 
doped layers mentioned earlier. The development of the PI blocking layer to be used in a-PbO/poly-PbO-based 
X-ray detectors is left for future work.

Overall, our results demonstrate that combining an a-PbO lag-preventing layer with a poly-PbO X-ray-
receiving layer in a bilayer structure allows to obtain lag-free operation while preserving adequate hole mobilities 
(relative to other disordered photoconductors) needed for adequate schubweg and high efficiency in collecting 
X-ray generated charge.

Methods
Sample preparation. The bilayer PbO sample was thermally evaporated on Indium Tin Oxide (ITO) 
coated glass substrate. To form a-PbO layer, a high purity (5 N) yellow PbO powder was evaporated at the tem-
perature ~ 1000 °C in atmosphere of ionized oxygen at the pressure ~ 0.1 Pa. The growing layer was continuously 
bombarded by Oxygen ions with energy ~ 70 eV. The poly-PbO layer was formed from the same powder and at 
the similar temperatures, but in contrast to a-PbO, evaporation took place in atmosphere of molecular oxygen 
at the pressure ~ 0.3 Pa. The substrate temperature was kept below 150 °C in both processes. A top gold contact 
was sputtered ex situ in a dedicated chamber. Since poly-PbO is known to degrade under ambient conditions by 
forming a hydro-cerussite  compound14, all measurements were performed in the protective atmosphere of dry 
Nitrogen.

CELIV apparatus. A sample was placed in a heating–cooling stage Linkam LTS350 that enables a precise 
temperature control in a wide range of temperatures. A 2-channel function generator Tektronix AFG 3022C was 
used to apply a linearly increasing voltage pulse on ITO and trigger a light pulse from the ITO side. The cur-
rent transients were readout from Au electrode on the oscilloscope Tektronix TDS 2024C with adjustable input 
resistance. For an excitation LED light pulse with a radiant power ~ 100 μW and a wavelength of 595 nm, the 
attenuation depts in Lead Oxide is 90 μm40, which is much larger than the detector’s thickness of 14 μm. This 
provides a homogeneous generation of charge carriers through the bulk of the film. The range of electric fields 
used in these measurements was limited by the bandwidth of the function generator.

XPM apparatus. The sample was placed in the shielded Aluminum box with a 2-mm thick lead collimator. 
A negative DC bias was applied to the ITO from a high voltage power supply (Stanford Research Systems PS350), 
and the photocurrent was readout from the Au electrode on oscilloscope Tektronix TDS 2024C with input resist-
ance of 1 MΩ. The X-ray tube (Dunlee PX1412CS, insert DU-304) with a Tungsten target and a 2-mm Al filter 
was used to generate 60 kVp X-ray pulse (tube current was 200 mA). A chopper controller (Stanford Research 
Systems SR540) drives a 2-mm thick Copper chopper to modulate an X-ray pulse at different frequencies and 
50/50 duty cycle that was used to simulate a pulsed irradiation mode.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.

Received: 23 June 2020; Accepted: 2 November 2020
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