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Protistan and fungal diversity 
in soils and freshwater lakes are 
substantially different
G. Sieber*, D. Beisser, C. Bock & J. Boenigk

Freshwater and soil habitats hold rich microbial communities. Here we address commonalities and 
differences between both habitat types. While freshwater and soil habitats differ considerably in 
habitat characteristics organismic exchange may be high and microbial communities may even be 
inoculated by organisms from the respective other habitat. We analyze diversity pattern and the 
overlap of taxa of eukaryotic microbial communities in freshwater and soil based on Illumina HiSeq 
high-throughput sequencing of the amplicon V9 diversity. We analyzed corresponding freshwater 
and soil samples from 30 locations, i.e. samples from different lakes across Germany and soil samples 
from the respective catchment areas. Aside from principle differences in the community composition 
of soils and freshwater, in particular with respect to the relative contribution of fungi and algae, soil 
habitats have a higher richness. Nevertheless, community similarity between different soil sites is 
considerably lower as compared to the similarity between different freshwater sites. We show that 
the overlap of organisms co-occurring in freshwater and soil habitats is surprisingly low. Even though 
closely related taxa occur in both habitats distinct OTUs were mostly habitat–specific and most OTUs 
occur exclusively in either soil or freshwater. The distribution pattern of the few co-occurring lineages 
indicates that even most of these are presumably rather habitat-specific. Their presence in both 
habitat types seems to be based on a stochastic drift of particularly abundant but habitat-specific taxa 
rather than on established populations in both types of habitats.

Despite the central importance of protists and fungi at the basis of soil and aquatic food webs comparative analy-
ses of protists and fungi community composition in soils and freshwaters are rare. In both habitats protists are 
a very diverse and ubiquitously distributed group of organisms. They fulfill important ecosystem  functions1–3 
channel bacterial secondary production from the microbial food web to higher trophic  levels4,5 thereby inter-
acting indirectly and directly with other taxa such as  fungi6,7. Particularly in aquatic habitats they are also the 
dominant primary  producers8. But constraints structuring their diversity differ fundamentally between both 
habitats: for instance, freshwater habitats are more homogeneous than soil habitats due to mixing of the water 
 body9,10, the availability of water in soils is constrained by e.g. evaporation and soil  irrigation11–13, and soils are 
more heterogeneous than aquatic habitats consisting of various  microhabitats14–17. As diversity is largely sustained 
and maintained by habitat  heterogeneity18–22 soils are therefore expected to harbor a higher protists richness 
even in small  volumes23,24 as compared to aquatic habitats.

Beyond habitat heterogeneity the distinct habitat properties of soil and water put different demands upon 
organisms inhabiting these habitats. Microbial organisms are differentially challenged by environmental factors 
of soil and freshwater  habitats25–28. Their adaptations may therefore systematically differ eventually leading to 
exclusive communities (at least in part) of soils and freshwaters. In fact, protist communities in aquatic habitats 
comprise a high share of phototrophs such as diatoms and green algae while these groups are less important in 
soil  communities29. But also the heterotrophic protist communities differ between both habitat types. In soils 
gliding and substrate attached taxa such as amoeba and cercozoans  have a high  share29. In contrast, free swim-
ming taxa such as katablepharids and (heterotrophic) dinoflagellates as well as the filter-feeding choanoflagellates 
are more abundant in the pelagial of aquatic  habitats30,31. However, several studies suggest that both habitats 
may not be that different for microorganisms. First, even soil pores have been suggested to be basically aque-
ous environments for microbial organisms and soil protists therefore to be basically aquatic  organisms32–34: in 
both habitats protists move by gliding or swimming and they feed by similar mechanisms such as interception 
feeding, filter feeding and grazing. Secondly, as there is no clear boundary between soil and freshwater habitats 
organisms may further easily be exchanged between both habitats. Dispersal via passive mechanisms like surface 
run-offs, interstitial and groundwater flow and flooding is well  known35–38. Further, active dispersal enhances 
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exchange of organism between different habitats. Microorganisms are dispersed by anthropogenic factors like 
ballast water, aquaculture, fishing and  watersport39,40. Resting stages do even survive long distance transport 
and long transport  times41–43. Also non-anthropogenic factors such as animals act as  vector44,45. Thus, due to the 
similar microhabitat properties with respect to movement and feeding and potentially easy exchange between 
both habitats they may be inhabited by basically the same protist  species37. However, easy dispersal does not 
necessarily result in establishment. Dead organisms and resting stages may wrongly indicate the presence of newly 
introduced microorganisms. But even microorganisms which survive in the new habitat may be out-competed 
by adapted/acclimatized taxa. In particular the potential dessication of soil pores may pose environmental con-
straints selecting against freshwater organisms while soil organisms may miss adaptations for buoyancy required 
for staying in the euphotic zone.

Thus, although the dominant microbial eukaryotes differ considerably between different  habitats33,44–46, organ-
isms considered as typical for aquatic environments may occur also in soil (e.g.  Choanoflagellata47) and vice 
versa fungi (e.g. soil fungi occur also on submerged  material48).

Based on the high diversity of microhabitats in soils and the capacity of soils and sediments as seed bank the 
(active) freshwater communities may represent merely subfractions of the more diverse soil  communities49,50. 
These findings suggest an inoculation of the (freshwater) habitats with individual taxa or the existence of habi-
tat–generalistic taxa which occur in both, soil and fresh water. Studies on bacterial and archaeal taxa showed that 
upslope soil environments contain the core community, which inoculate downslope surface waters (58%, 43% 
respectively), but only 18% of the upslope eukaryotic microbes were found downslope in the arctic  tundra49–51. 
Accordingly, protist freshwater communities may be expected as subsets of protist soil communities possibly 
further modified by environmental constraints.

Here we address the community overlap between soil and freshwater protists using a geographically consistent 
set of 30 sampling sites comprising samples from lakes and ponds and adjoined soil samples from the respective 
catchment areas. We studied the molecular diversity of communities based on Illumina amplicon sequencing of 
the hypervariable 18S SSU V9 rRNA gene  region3,29,52,53.

We expect that OTU richness in soils is much higher as in  freshwaters21,54,55, and we hypothesize that the 
freshwater communities are to a large extent composed of taxa present also in soils, i.e. a subset of the soil com-
munities, even though a certain fraction of taxa may be habitat-specific56,57. Following this idea, we further 
hypothesize that the community is composed mostly of habitat-generalists, occurring in both habitat types and 
comprising only few rather habitat-specific  organisms29,58–60.

However, we expect the relative abundance of taxa to be considerably different between both habitat types.

Methods
Sampling and sample processing. We sampled freshwater lakes and corresponding soils from a geo-
graphic consistent set in Germany. Site selection focused on natural lakes (and reservoirs) and corresponding 
soil sites which were typical for the respective area (Fig. S1).

All samples were taken during mid-summer, soil samples were taken 2016 and freshwater samples were taken 
2012 (see Table S1 and Fig. S1 for details on sampling sites). Samples were taken years apart, as the idea of the 
study was to compare freshwater and soil habitats on a similar geographic scale, i.e. use soil samples from the 
(direct) catchment area of the respective freshwaters, but to reduce effects of short-term cross-contaminations 
between both habitat types due to flooding, intense rainfall, recently performed watersports, etc. which may have 
blurred the results. Freshwater sampling and sample processing is described in detail in Boenigk et al. (Genbank, 
PRJNA414052)46. Briefly, the freshwater samples were collected two meters from the waterside and between 0.2 
and 0.8 m below the water surface. Freshwater samples were filtered on Isopore 0.2 µm polycarbonate filters 
(Merck Chemicals GmbH, Darmstadt, Germany) until the filters were clogged (biomass normalized). The filters 
were air dried and subsequently frozen in liquid nitrogen (Cryoshippers). The filters were stored at − 80 °C in 
the laboratory until DNA  extraction46.

Soil samples were taken as top soil composite samples from the upper 5 cm of the surface soil (A horizon) 
with a distance of around 50 m from the corresponding freshwater lake to avoid collecting samples from the 
direct floodplain. For each soil sample three subsamples within one square meter were taken and roots, as well as 
other larger particles like stones and fir needles were manually removed. The three subsamples were combined, 
mixed thoroughly and filled in 1.5 ml tubes. Samples were immediately preserved in a cryoshipper and stored 
at − 80 °C until DNA extraction.

Soil DNA was extracted by using the Power Soil DNA Isolation Kit (MoBio, Germany) according to the 
instructions of the supplier with the following modification: vortexing at maximum speed subsequent centrifu-
gation and transfer of the supernatant to a new tube was repeated until no new pellet was formed. Subseqently, 
two washing steps with C5 solution (MoBio, Germany) were performed and a final dry centrifugation was con-
ducted two times. For PCR we used the forward primer Euk1391F (5′-GTA CAC ACC GCC CGTC-3′61,62) and 
the reverse primerbased on Bock et al.63, i.e. a combination of the primers ITS2_Dino (5′-GCT GCG CCC TTC 
ATCGKTG-3′) and ITS2_broad (5′-GCT GCG TTC TTC ATC GWT R-3′) in a ratio of 10%:90%. Primers used for 
freshwater and soil samples were identical.

The mixture for the PCR of the soil samples consisted of: 0.5 μl DNA template (depending on the concentra-
tion dilutions of 1:1, 1:10, 1:50 or 1:100 were used) in 25 μl reactions with 0.25 units Phusion Taq (Thermo Fisher 
Scientific), 0.75 μM primers, 0.5 μl of 0.4 mM dNTPs and 5× Phusion HF buffer. The PCR-cycling conditions 
included an initial denaturation step at 98 °C for 3 min followed by 35 cycles each including a denaturation step 
at 98 °C for 30 s, annealing step at 61 °C for 75 s, and an elongation step at 72 °C for 60 s. The PCR was completed 
by a final extension step at 72 °C for 10 min.
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The quality and quantity of the DNA was checked using a Thermo Scientific NanoDrop ND-2000 UV–Vis 
spectrophotometer (Thermo Fisher Scientifics), electrophoresis in 1% agarose gel stained with ethidium bro-
mide (0.2 μg mL−1) and ImageJ (v. 1.51d)64. Equimolar subsamples were pooled and commercially sequenced 
using paired-end HiSeq 2500 sequencing, applying 2 × 300 bp reads using the “rapid run” mode on the Illumina 
platform of a sequencing provider (Fasteris, Geneva, CH)46.

The sequencing reads are available through the project PRJNA675443.

Bioinformatical processing
Sequence filtering. Adapter-, quality trimming and demultiplexing using MID sequences were performed 
by the sequencing company (Fasteris). The base quality of the sequence reads was checked using  FastQC65. 
A split-sample filtering protocol for Illumina amplicon sequencing was used by two technical replicates per 
DNA  sample62. The raw sequences were quality filtered (PRINSEQ-lite v.0.20.4)66 to remove reads with an aver-
age Phred quality score below 25. The paired-end reads were assembled and quality filtered with PANDASeq 
(v2.10)67. All reads with uncalled bases, an assembly quality score below 0.9, a read overlap below 20, or a base 
with a recalculated Phread-score below 1 were removed. After dereplicating chimeras were identified and filtered 
using UCHIME (v7.0.1090)68 with default settings. Sequences that were not present in both sample branches 
were  discarded62. The bioinformatical pipeline is available on github (https ://githu b.com/MW55/Natri x).

Statistical analyses. Data processing was carried out with  R69 version 3.6.1. Remaining reads after the 
filtering were clustered using SWARM (v 2.1.9)70, then clustered by identical V9 sequences (first 150 bp, iden-
tity = 100%, to remove the ITS1 region from the sequences to obtain OTUs which are based on the V9 region) 
(“V9_Clust.R” by Jensen 2017 available on https ://githu b.com/manfr ed-uni-essen /V9-clust er)71 and aggregated 
to OTUs. Taxonomic assignment was done by searching against the NCBI nt database using BLASTn (Dec 05th 
2017)72 using an 85% identity value for the best hit and adjusting the taxonomy according to Adl et al.73. All 
sequences assigned to Metazoa and Embryophyta were discarded, as protists and fungi are the targets of this 
study. OTUs that represent less than 0.0005% of a respective site were discarded (total number of reads/OTUs). 
For habitat comparisons we restricted the analysis to OTUs that occurred in at least two sites. Rarefaction curves 
were created by the R-package vegan (v2.5.6.)74 and samples that did not reach saturation were discarded from 
further analyses.

True diversities are based on the Shannon index and were computed from the raw OTU table using R-package 
RAM as well as Pielou’s  evenness75. True diversity were chosen as a measurement for diversity as it is not a non-
linear diversity index (e.g. Shannon index, Simpson index) but is suitable for comparisons. Diversities (true 
diversities, evenness and richness) were statistically compared using a Mann–Whitney-U-test. For distance decay 
relationships, we replaced zeroes in our raw dataset based on a Bayesian-multiplicative replacement (cmultRepl, 
R zCompositions  package76) and calculated the Aitchison distance, as we are dealing with compositional  data77. 
Aitchison distance is used as an community dissimilarity proxy. Linear regression slopes of distance decay rela-
tionships were tested against zero with an ANOVA.

Figures were prepared with R (R Core Team) version 3.6.1, CorelDRAW × 8 and ArcGIS Pro 2.6.

Results
Differential pattern of diversity between soil and freshwater. Total number of assembled reads after 
filtering was 35,445,831 which grouped in 33,745 OTUs. Of these 18,745 OTUs (corresponding to 13,957,146 
reads) were found exclusively in soil sites and 14,337 (corresponding to 13,429,169 reads) exclusively in freshwa-
ter sites. OTU richness was 1212 ± 420 OTUs per sample in soil and 852 ± 427 OTUs per samples in freshwater. 
For habitat comparisons we further restricted the analyses to OTUs occurring in at least two samples resulting 
in 10,515 OTUs (34,139,127 reads) with an OTU richness of 918 ± 334 per sample in soil and of 588 ± 290 per 
sample in freshwater.

Community composition and richness strongly differed between soil and freshwater (Fig. 1). In soil Ascomy-
cota, Basidiomycota, remaining Opisthokonta and Ciliophora dominated while Ciliophora and algae dominated 
freshwater samples, in particular by Chlorophyta and Dinophyta. While in soil 4530 of the 6744 OTUs were 
affiliated with fungi, in freshwaters only 938 of the 4434 OTUs were affiliated with fungi.

Estimates of the effective number of eukaryotic microbial OTUs (true diversity) revealed that the soil com-
munity is more diverse than the freshwater community (p < 0.05, Fig. S2). This was largely due to the higher 
OTU richness in soil samples while evenness was rather similar between freshwater and soil sites (Fig. S5). When 
restricting the analysis to either protists or fungi we found different pattern. We found a higher diversity in soil 
when the analysis was restricted to protists excluding fungi (p < 0.05), even though soil protist richness was 
lower than freshwater protist richness (Fig. S2). The higher diversity in soils is thus to a large extend related to 
a higher evenness (Fig. S5) while protist communities in freshwater are rather dominated by individual OTUs. 
In contrast, the diversity of fungi was similar in freshwater and in soil (p > 0.05) (Fig. S2) but the architecture 
of fungal community composition differed between soils and freshwater. While richness of fungi was higher in 
soils, evenness was higher in freshwater resulting in similar diversity indices (Figs. S2, S5).

Corresponding to the effective OTU number we also found that richness was significant higher in soil sites 
compared to fresh water (p < 0.05). Richness revealed a deviating pattern for protists and for fungi: richness of 
fungi was significantly higher in soil than in freshwater (p < 0.05) while richness of protists was significantly 
higher in freshwater (p < 0.05).

Soil did not only hold a higher richness but also a higher dissimilarity among samples as compared to 
freshwater: The community dissimilarity analyses clearly revealed a generally higher dissimilarity among soil 
samples (Fig. S3). However, neither soil nor freshwater community dissimilarity changed significantly with 
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increasing distance up to 800 km, i.e. both slopes of the linear regressions slopes are not significantly different 
from 0 (ANOVA, p < 0.001).

Community overlap between aquatic and terrestrial habitats. The vast majority of the OTUs were 
exclusive to either soil or freshwater. Only 6.3% of the OTUs (663) were shared between both habitat types 
(Fig. 2B) while 35.9% (3771) occured exclusively in freshwater and 57.8% (6081) exclusively in soil (Fig. 2A). 
Even though the fraction of shared OTUs was already low, the distribution of most of these shared OTUs showed 
strong preferences to either soil or freshwater indicating that the fraction of habitat generalists is considerably 
smaller (Fig. 2C; please refer also to Tables S2 and S3 for an overview on the presumably generalistic taxa, i.e. 
taxa with a relative read abundance between 25 and 75% in soil and in freshwater, respectively. For an overview 
of all shared OTUs see Table S4). It is noteworthy that the analysis of corresponding sites revealed an average of 
20 ± 18 shared OTUs (min. 3, max. 87).

Even though only 6.3% of the OTUs were shared between soil and freshwater, their relative share of the 
OTU richness in individual samples was considerably higher reflecting a comparatively wide distribution of 
these OTUs: shared OTUs on average account for 14.6% of the OTUs in soil sites (min. 6.9%, max. 25.42%) and 
for 13.32% in freshwater sites (min. 5.25%, max. 32.74%). With respect to average relative read abundance, the 
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Figure 1.  Relative total community composition (bottom) and relative total composition of the overlapping 
OTUs (top). Taxonomic composition based on relative abundance of OTUs that are present in at least two sites 
(blue) and taxonomic composition based on presence absence data of OTUs that are present in at least two sites 
(orange). The sites are sorted by the abundance of Ascomycota in soil sites. Remaining OTUs which could be 
assigned to a rough taxonomic level were marked as _rem. Created with the R-package  gplots78.
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importance of the shared OTUs is even higher representing 24.28% of the reads in soil sites (min. 3.52%, max. 
56%) and 31.26% in freshwater sites (min. 1.13%, max. 68.06%).

The importance of highly abundant OTUs among those shared between both habitat types together with the 
slope of the curve in Fig. 2B indicate that in particular soil OTUs may be randomly dispersed to freshwaters 
(Fig. 2B green frame): most of the shared OTUs strongly dominate in soils (with low fractions of reads in fresh-
waters) indicating potential soil origin of these OTUs while considerably less OTUs showed the opposed pattern 
of high read fractions in freshwater and low fractions in soils (Fig. 2B yellow frame). Interestingly this tendency 
to specialize (with respect to habitat type) differed between OTUs with low and high read abundances: while 
many OTUs with low to moderate read abundances occurred in similar fractions in both habitat types, those 
with high read abundances strongly dominated in just one of the habitat types (Fig. 2C), i.e. may be considered 
potential habitat specialists (randomly dispersed to the other habitat type).

Irrespective of the presence of the shared OTUs in both habitat types, the richness of shared taxa within 
distinct samples is systematically affiliated with different taxonomic groups in soil and in freshwater (Fig. 1): In 
soil samples the majority of OTUs detected in both habitat types were affiliated with opisthokonts (especially 
fungi), followed by Ciliophora, Cercozoa and Stramenopiles. In contrast, in freshwater samples the majority of 
shared OTUs was affiliated with Chlorophyta, Cryptophyceae, Katablepharidaceae and Ciliophora.

Beyond this general pattern we also observed a systematic difference between rare and abundant OTUs: 
Shared OTUs with high abundances were predominantly affiliated with taxonomic groups considered to be 
dominant in the respective habitat, e.g. fungi and gliding taxa in soil, while shared OTUs with low abundances 
were affiliated to a wider (and more stochastic) selection of taxa (Fig. S4). For instance, in soils the relative 
contribution of opisthokonts (in particular fungi) to the fraction of shared OTUs was high within the abundant 
OTUs while the relative contribution of Chlorophyta and Chrysophyceae but also of Apicomplexa and Perono-
sporomycetes was higher within the rare OTUs (i.e. OTUs with low abundances). The contribution of Cercozoa 
and Ciliophora was similar for abundant and rare OTUs (Fig. S4).

In contrast, in freshwater the share of opisthokonts was high in the fraction of OTUs with low abundances 
but low within the abundant OTU. In contrast, Ciliophora, Oomycota and Chrysophyceae are more important 
in the fraction of OTUs with high read abundances. It is noteworthy that Apicomplexa and Cercozoa seem to 
play a minor role of the taxonomic overlap in freshwater (Fig. S4).

Figure 2.  (A) Distribution of OTUs across soil (dark) and fresh water (light). The red frame marks overlapping 
OTUs. (B) Is an enlarged view of (A), namely OTUs that occur in soil and freshwater (red frame). The green 
frame indicates OTUs that have their origin rather in soil and the yellow frame indicates OTUs that have their 
origin rather in freshwater. (C) Abundance distribution pattern of 663 shared OTUs across soil (brown) and 
fresh water (blue) sites. X-Axis represents the average proportion of the shared OTUs in the complete soil and 
freshwater community and Y-axis represents the affiliation to soil and freshwater. A cutoff at 0.00025% is chosen 
as shared OTUs that represent more are spurious. Curve fitting was done with a generalized additive model 
(y ~ s(log(x))).
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Discussion
Differential pattern of diversity between soil and freshwater. It is well known that morphological 
and molecular community analyses systematically deviate regarding the relative importance of distinct taxa. 
For instance, a higher relative abundance has been demonstrated for ciliates in molecular surveys which is due 
to different factors including copy number variation of the ribosomal  genes79. Nevertheless, morphological as 
well as molecular surveys reveal corresponding trends in richness as long as the methodology within one study 
is consistent. For instance, community composition of soil clearly differed from that of freshwater in our study 
(Fig. 1). This is consistent with  molecular28,29,38,46,80 and morphological  surveys24,81,82.

Irrespective of a generally high community dissimilarities both for soil and for freshwater (which was more 
pronounced in soils), we found a higher richness in soils which is consistent with the literature (e.g.14–17,24). 
Interestingly, evenness of protists was generally higher in soil as compared to freshwater while it was the other 
way round for fungi. In other words the dominance of few protist taxa is more pronounced in freshwater lakes 
while dominance of few fungi is more pronounced in soils. This finding is noteworthy as it supports a differential 
role for community and ecosystem stability in soils and freshwater for protists and fungi with respect to the local 
extinction of distinct species (cf.83–85).

Community overlap between aquatic and terrestrial habitats. It is well documented that 
soils and lakes host different protist communities as their environmental characteristics are fundamentally 
 different24,29,47,86. However, as boundaries between habitats are diffuse, exchange of taxa and shared taxa between 
both compartments are  proven38,49,50. For instance, Crump et al.50 showed that an arctic freshwater lake harbors 
18% of the microbial eukaryotic upslope community and Graupner et al.38 demonstrated the non-permanent 
exchange of taxa between the compartments as a result of flooding. Here we show for a set comprising 30 sites 
that the number of shared microbial eukaryotic OTUs between soil and freshwater lakes is, however, very low 
(6.31%).

The small fraction of taxa occurring in both habitats indicate that communities presumably largely consists 
of taxa which are typical for either soil or freshwater and for which probably only few cells were dispersed to the 
other habitat type by chance. This view is supported by a strongly uneven share of most of these taxa to soil and 
freshwater communities (Fig. 2C). Among those OTUs which were found in both habitats in particular the most 
abundant ones were strongly unevenly distributed indicating that they are characteristic for one habitat type and 
just few cells may have been dispersed by chance. Only a few taxa (and interestingly predominantly taxa with low 
overall relative abundances) seem to be of similar importance in both habitat types and can thus presumably be 
considered as habitat generalists (Tables S2 and S3). For instance, within the taxa shared between both habitats we 
found sequences affiliated with taxa known to occur in soil and freshwater such as the ciliate Microdiaphanosoma 
arcuatum87, the ascomycete Tetracladium maxilliforme88,89 and the diatom Fistulifera pelliculosa90,91. In contrast, 
some other OTUs found within the shared fraction were previously known from only one habitat type, e.g. the 
OTUs related to the ascomycete Podosphaera fusca92 and the ciliate Phialina salinarum93. This is not necessarily 
contradictory to our results as sequence similarities of our OTUs to these latter species were often rather low 
and may not sufficiently resolve closely related species varying in their environmental  demands94. Further, the 
resolution of the V9 region may be not appropriate for separating individual fungal  taxa95 and therefore inferring 
information from the assigned taxa may be misleading.

Our data indicate that in particular taxa affiliated with Opisthokonta, Cercozoa and Apicomplexa may rather 
be specific for soils and their presence in freshwater samples is presumably largely due to random  dispersal96–98. 
This is consistent with the study of Graupner et al.38 which demonstrated that despite an exchange of these taxa 
between soil and water, most of the exchanged taxa fail to establish in the new environment. As Opisthokonta 
(especially fungi), Apicomplexa and Cercozoa are highly abundant in terrestrial  habitats29,99–101 the chance of 
random dispersal to freshwaters is high for these taxa.

In contrast, taxa assigned to Chlorophyta, Peronosporomycetes and Chrysophytceae may rather disperse 
from freshwater to soil habitats. This seems also conclusive as in particular Chlorophyta and Chrysophyceae are 
more abundant in freshwater than in  soil29,99. This is possibly also true for Chytridiomycetes as their abundance 
and diversity in freshwater is slightly higher—again dispersal from freshwater to soil has been  demonstrated38. 
Our results also indicate a predominant exchange of Peronosporomycetes from water to soil. For this taxon, 
however, published data indicate an exchange from soil to  water38,102. Possibly, this hints to differential routes 
of dispersal for different  taxa94 but data so far are inconclusive. Peronosporomycetes may nevertheless be an 
interesting taxon for further studies on habitat specificity and dispersal.

For Ciliophora the dominant direction of dispersal between the two habitat types is even less clear. Numer-
ous ciliate OTUs occurred in both habitat types and these taxa made up for a similar share in freshwater and in 
soil  communities38,46,47,99,103,104.

Overall, our data indicate that the direction of dispersal is predominantly from soil to freshwater (Fig. 2B): A 
majority of the shared OTUs occurred predominantly in soils with only low read numbers in freshwater. At first 
sight, this may seem to confirm the idea of soil protists as aqueous  organisms33, with an aquatic origin which 
may therefore be able to cope with aquatic environments while freshwater protists lack an adaption to terrestrial 
 habitats105. However, our data demonstrate that the vast majority of OTUs is habitat specific with only a very 
minor fraction capable of maintaining in both habitat types. Even for the fraction of shared OTUs our data indi-
cate that the majority of taxa presumably is not established in both habitat types and that the presence of taxa in 
both habitats may largely be due to random dispersal rather than a broad niche  adaptation96,106.

Nevertheless, despite the small number of shared OTUs they account for an integral part (up to ~ 68%) of 
the read abundances. This does not necessarily indicate a high abundance of generalistic taxa but may be rather 
due to a higher chance of random dispersal and subsequent random detectability of these taxa in both habitats. 
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This view is supported by the high fraction of shared taxa with a strongly biased distribution towards either 
soil or freshwater and by the fact that particularly OTUs with high read abundances show such strongly biased 
distributions (Fig. 2C). Further, these latter taxa mostly belong to taxonomic groups considered either typical 
for soils (such as fungi) or freshwater (such as distinct algae).

Only some taxa with low to moderate read abundances show a rather uniform pattern across soil and fresh 
water, indicating that these may be true generalists without a distinct habitat preference (Table S3). For some of 
these taxa the presence in aquatic and terrestrial habiats was already shown as e.g. for Cladosporium cladospori-
oides107, Gomphonema parvulum108 and Pythium capillosum109,110, while other presumably generalistic taxa so far 
were known only from one habitat type (e.g. Boeremia exigua (terrestrial) and Articulospora proliferata (aquatic)).

As we cannot exclude the possibility that some of the OTUs in our data set represent inactive cells (e.g. resting 
stages, dead organisms) the number of shared OTUs may in fact be even smaller. Our results provide evidence 
that either the exchange of organisms is very low, the survival of these organisms in the other habitat type is low 
or both. However, we have to admit that the sampling depth of our study (as any such study) is restricted to the 
sampling volume. According to the sampling volume of several hundred milliliters of water and several grams 
of soil in our study we most likely have missed taxa which are very rare in a compartment (few individuals per 
liter of water / per gram of soil). That may explain why the overlap between corresponding soil and freshwater 
sites is very low and commends the general investigation of all freshwater sites and all soil sites. Thus, several of 
the taxa found to be habitat-specific may occur in the other habitat types at low abundance which may reflect, 
however, most likely random drift of some cells rather than true occurrence as an active member of the respective 
community. We also cannot exclude the possibility that some taxa were missing in either habitat due to spatial 
or seasonal variability in particular as soil communities differ over scales ranging from hectares to square mil-
limeters, even when topography and texture are relatively  uniform20,84,111–113 and samples were taken a few years 
apart. We are aware that soil and freshwater campaigns did not take place in the same year. Still, Gilbert et al. 
and Bock et al. showed that microbial communities show repeatable seasonal patterns and Shade et al. showed 
that microbial communities can stay relatively stable over time and as we sampled during mid summer we expect 
that the abundances may changed, but the mere presence of OTUs should be  stable9,114,115. The intention of our 
study was not to link active interacting communities but rather to reflect differences and commonalities between 
soil and aquatic communities on a comparable spatial (geographic) scale. We therefore consider the temporal 
difference to be neutral (if not advantageous) as the temporal and logistic separation decreases the chance of 
(natural and artificial) cross contamination between aquatic and terrestrial samples while taxon coverage may 
be rather stable due to resting stages in the seedbank of  soils9,41,42.

However, in future studies the inclusion of freshwater sediments seems reasonable as conditions between soil 
and aquatic sediments may be more similar and soil organisms may deposit to and dwell in freshwater sediments 
even if they cannot compete in the pelagial. Further, sampling over a long time period could provide valuable 
information about the long-time establishment of exchanged species.

Conclusions
Our study showed that the community in soil and freshwater is fundamentally different and that co-occurring 
OTUs are rare. In addition, abundant shared OTUs are rather affiliated with one habitat type and most likely 
dispersed to the other habitat by chance. Only few rare shared OTUs may represent true habitat generalists. This 
gives evidence , that soil and freshwater communities are rather closed communities and that an establishment 
of taxa from the respective other habitat type is unlikely even though inoculation occurs and, in particular 
freshwater habitats seem regularly to be inoculated by individual OTUs originating from soil.

Further, soil habitats show a significant higher OTU richness and higher diversity compared to freshwater 
habitats, which is also reflected by a higher community dissimilarity compared to freshwater habitats. However, 
true diversity was similar for fungi as richness was higher in soils but evenness was higher in freshwater.
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