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The cochlear ear horn: geometric 
origin of tonotopic variations 
in auditory signal processing
Alessandro Altoè1* & Christopher A. Shera1,2

While separating sounds into frequency components and subsequently converting them into patterns 
of neural firing, the mammalian cochlea processes signal components in ways that depend strongly 
on frequency. Indeed, both the temporal structure of the response to transient stimuli and the 
sharpness of frequency tuning differ dramatically between the apical and basal (i.e., the low- and 
high-frequency) regions of the cochlea. Although the mechanisms that give rise to these pronounced 
differences remain incompletely understood, they are generally attributed to tonotopic variations 
in the constituent hair cells or cytoarchitecture of the organ of Corti. As counterpoint to this view, 
we present a general acoustic treatment of the horn-like geometry of the cochlea, accompanied 
by a simple 3-D model to elucidate the theoretical predictions. We show that the main apical/basal 
functional differences can be accounted for by the known spatial gradients of cochlear dimensions, 
without the need to invoke mechanical specializations of the sensory tissue. Furthermore, our analysis 
demonstrates that through its functional resemblance to an ear horn (aka ear trumpet), the geometry 
of the cochlear duct manifests tapering symmetry, a felicitous design principle that may have evolved 
not only to aid the analysis of natural sounds but to enhance the sensitivity of hearing.

To facilitate the detection and analysis of sound, the mammalian cochlea acts as an acoustic prism, mapping 
sound frequency onto position and thereby onto different populations of sensory cells. Mechanical and neural 
responses reveal that the characteristics of the inner ear’s nonlinear signal processing vary systematically with 
tonotopic location along the cochlear spiral. Indeed, differences between the apical and basal halves of the 
cochlea—where responses are tuned to low and high frequencies, respectively—are striking. Whereas frequency 
responses are sharply tuned and nearly scaling symmetric in the base, they become substantially broader and 
more complex in the  apex1–3. Temporal features of the response to transient stimuli, such as acoustic clicks, also 
differ qualitatively. In the base, the instantaneous frequency of the initial ringing portion of the click response 
waveform starts low and increases towards the characteristic frequency (CF) over time (upward frequency 
glide). In the most apical regions, by contrast, instantaneous frequencies start above CF and decrease with time 
(downward glide)4,5. Mirroring the variation in frequency tuning, response latencies—whether assessed using 
the wave-front delay of the traveling wave, the mechanical group delay at the wave peak, or the acoustic delay of 
sounds evoked from the ear—decrease from base to apex when measured in periods of the local  CF5–7.

Although the frequency dependence of cochlear responses appears well adapted to the analysis and coding 
of natural  sounds8, the physical mechanisms responsible for the strategic tonotopic variation in auditory signal 
processing remain unclear. Until recently, well-controlled measurements of intracochlear motion have been 
restricted to a handful of locations in the base of the cochlea, and models have therefore focused almost entirely 
on this region. When combined with the appeal of functionally dissecting the intricate cytoarchitecture of the 
organ of Corti, the basal bias in the measurements has led to an emphasis on exploring local cochlear microme-
chanics at the expense of elucidating the role of global variations in cochlear macromechanics and geometry. 
For example, the width of the basilar membrane and the cross-sectional areas of the cochlear scalae are known 
to vary in opposite  directions9–13, but the full functional significance of these opposing tapers has yet to be 
explained (but  see14,15). Expanding beyond a narrow focus on the base, a smattering of previous studies have 
invoked  micromechanical16 or a mix of micro- and macromechanical  processes17 to model apical-basal differ-
ences in frequency selectivity. However, both the relative contributions of cochlear micro- and macromechanics 
and whether the same mechanisms can also account for the broad spectrum of apical-basal differences—or for 
their evident variation across species—remain unknown.
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In this paper we apply basic principles of horn acoustics to the tapered geometry of the cochlea. Our analy-
sis explains the observed spatial variation in physiological response properties, including the emergence of 
a reasonably abrupt apical-basal transition, located midway along the cochlear spiral, across which response 
characteristics change qualitatively. By design, our account relies entirely on measured anatomical gradients in 
cochlear macromechanics. Aside from the requisite longitudinal variation in resonant frequency that gives rise 
to the tonotopic map, the micromechanics of our model organ of Corti are everywhere identical (i.e., the effective 
admittance of the cochlear partition is assumed almost scaling-symmetric). Furthermore, we demonstrate that 
the shape of the cochlear duct, in its apt resemblance to an ear horn, enables traveling pressure waves to propagate 
to their best places with negligible geometric attenuation. The tapered, horn-like geometry of the mammalian 
cochlea thus plays an essential role both in establishing the apical-basal gradient in cochlear response properties 
important for auditory signal processing and in enhancing the overall sensitivity of hearing.

Acoustics of the 3D Cochlea
Theoretical framework. We assume harmonic time dependence and employ a linearized model of the 
cochlea. Following linearization, the driving pressure ( P0 ) across the cochlear partition (CP) and the resulting 
partition velocity ( VCP ) are related by an effective admittance:

where x is the distance from the basal end (stapes) and ω is the angular frequency of the applied stimulus tone.
In many mammals, the cochlear frequency-position map is well approximated by the so-called Greenwood 

 function18,

where the species-dependent parameters include the constant A, which controls the CF at the base; the length, L, 
of the basilar membrane (BM); and the constant γ , which determines the location of the low-frequency “bend” 
where the map transitions from exponential to more linear behavior (Fig. 1A). In multiple species, empirical 
values of γ lie in the range [0.5–1]; in others, such as mouse and guinea pig, the map appears almost exponential 
( γ ≈ 0)18–20. For convenience, we represent the Greenwood function in the form

where l = L/2.1 ln(10) and the function l/η(x) defines the “local space constant” of the map. In the base of the 
cochlea, η(x) ≈ 1 , meaning that the map is close to exponential. In species with γ > 0 , the value of η(x) increases 
as x → L ; the effective space constant therefore decreases in the apex.

The strategy outlined by  Duifhuis21 yields a tractable description of wave propagation in the 3-D cochlea 
(detailed in Supplementary Appendixes A,B). We start by introducing the average pressure, P̄(x) , defined as the 
pressure difference between scala vestibuli and scala tympani averaged over the scalae cross-section at location 
x. (For notational simplicity, we henceforth leave the dependence on frequency ω implicit in most equations.) 
Mass conservation and Newton’s second law together imply that P̄(x) satisfies a variant of the Webster horn 
equation familiar from  acoustics22:

where S(x) is the effective acoustic cross-sectional area of the scalae [ S(x) = Sv(x)St(x)/(Sv(x)+ St(x)) , with St 
and Sv the areas of scala tympani and vestibuli, respectively] and κ(x) is the complex wavenumber. For simplicity, 
we assume inviscid fluids. The wavenumber then has the value

where Z̄(x) = iωρb/S , b is the width of the BM, ρ is the fluid density, and the function α(x) = P0(x)/P̄(x) rep-
resents the complex ratio of the driving pressure to the average pressure at the same  location21,23.

Since cochlear wave scattering appears  small24, we apply the WKB approximation to obtain an expression 
for the forward-traveling pressure wave:

In the WKB approximation, α(x)  becomes23

where h(x) is the radius (or height) of the scalae.
Although elegantly compact, the solution here is only formal—the value of α depends nonlinearly on κ and 

vice-versa. Consequently, Eqs. (5) and (7) must be solved by iteration before they can be used to compute P0(x) 
(see Supplementary Appendix D)23. Nevertheless, the formal solution allows one to elucidate hydrodynamical 
contributions to the driving pressure. When the wavelengths are long (e.g., at frequencies much lower than the 
local CF, in the “tail region” of the traveling wave), |κh| ≪ 1 and α ≈ 1 , so that P0 and P̄ are nearly equivalent. 

(1)VCP(x,ω) = YCP(x,ω)P0(x,ω) ,
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Near the peak of the traveling wave, however, the wavelength decreases, becoming small compared to the height 
of the scalae ( |κh| ≫ 1 ). In this region, |α| ≫ 1 and the pressure driving the CP becomes larger than the scalae 
average. Thus, α(x) can be interpreted as the short-wave pressure gain.

Note that tapering of the cochlear duct affects all aspects of the solution for the pressure [Eq. (6)]. Most obvi-
ously, the factor 

√
S(0)/S(x) is absent in box models that ignore this tapering. But variations in scalae height and 

area also greatly affect both the short-wave pressure gain, α [through Eq. (7)], and the wavenumber, κ [through 
Eq. (5) via α and Z̄ ]. In what follows, we use anatomical and physiological data to determine realistic values for 
the geometric parameters and then explore their consequences for cochlear function.

Spatial variation of cochlear acoustic parameters
Tail-frequency approximation. In the tail region of the traveling wave, the admittance YCP appears stiff-
ness-dominated33,34, hence

where k(x) is the stiffness of the CP. In this region, the wavelength is long and α ≈ 1 ; hence

(8)YCP(x) ≈ iω/k(x) (ω ≪ 2πCF) ,

Figure 1.  (A) Example tonotopic maps for the mammalian cochlea computed using Eq. (2) for the Greenwood 
function with parameters γ = 0.8 (solid line) and γ = 0 (dashed; purely exponential). In many species, 
the tonotopic map shows a pronounced downward bend in the apex. (B) Longitudinal variation of CP 
stiffness in  human9 and  gerbil25. For comparison, the thin solid line shows the exponential map from panel 
A. (C) Estimated spatial variation of the acoustic mass, m̄(x) , of the scalae fluids in four species (solid lines) 
derived from published morphological data and arbitrarily scaled to emphasize the similarity of their spatial 
dependence. For comparison, the dotted lines show the exponential curves ex/ℓ and ex/2ℓ (i.e., the reciprocal of 
the exponential map in panel A and its square root, respectively). The open symbols indicate the approximate 
location of the apical-basal transition ( CFa|b ) in each  species7,26. (D) Effective acoustic cross-sectional areas of 
the scalae [ SvSt/(Sv + St) ] as a function of location in various species. For comparison, the dotted lines show 
the exponential curves e−x/ℓ and e−x/2ℓ (i.e., the exponential map in panel A and its square root, respectively). 
The inset shows the estimated BM widths employed to compute the acoustic mass of the scalae in panel C. 
(E) Wave-front delay in the apex of the cat cochlea, as estimated by subtracting 1 ms from the ANF first-spike 
latency of the response to acoustic clicks (Fig. 6A of Ref. 27). (Two anomalous data points with delay close to 
zero are not shown.) The gray line shows the loess trend line, while the dashed and dotted red lines are curves 
with slopes matching 1/CF(x) and 1/CF1/2(x) , respectively. (F) Variation of the radius (h) of the scalae along 
the cochlea in several species, normalized to the cochlea length. The radius was estimated by fitting a circle to 
the total area of the scalae in all species but the cat, where the radius was estimated as the average of the scala 
vestibuli and scala tympani height. The dashed line represents the equation h(x)/L = 0.0475e−x/2ℓ + 0.015 , 
which captures the overall variation of h(x) in the different species. Data in panels C,D and F were calculated 
from data in  gerbil12,28, in  chincilla29,30, in guinea  pig10,31, and in  cat11,32.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20528  | https://doi.org/10.1038/s41598-020-77042-w

www.nature.com/scientificreports/

where m̄(x) = ρb/S is the effective acoustic mass of the fluids.

Estimates from anatomical data. Figure  1B plots the normalized volumetric stiffness of the CP in 
 humans9 and  gerbils25 as a function of distance from the stapes. In each species, the variation in BM stiffness is 
well described by

where ℓ is the basal space constant of the cochlear map and the symbol ∼ indicates approximate proportionality. 
(Although ℓ depends on species, the two curves appear similar in the figure, where distance is expressed as a 
percentage of BM length.) We therefore have k(x) ∼ CF(x) in the base.

Figure 1C shows values of m̄(x) , the acoustic mass of the scalae fluids, calculated from published morphologi-
cal data in four mammalian species. For comparison, we overlay exponential curves that approximate the spatial 
variation in the base and apex, respectively. The anatomical data imply that

Thus, m̄(x) varies approximately as 1/CF(x) in the base and, ignoring possible bends in the map, as 1/
√
CF(x) 

in the apex. Because the spatial variation of BM width is generally small compared to the variation of the 
cross-sectional area S(x) (see the inset in Fig. 1D and note the linear scale), the change in acoustic mass, m̄(x) , 
arises primarily from the acoustic area of the scalae. As illustrated in Fig. 1D, which plots S(x) in the same four 
species, the effective area decreases roughly exponentially from base to apex, with slopes somewhere between 
−1/ℓ and −1/2ℓ , depending on species and location. In particular, in cat, guinea pig, and gerbil, the scalae area 
varies as S(x) ∼ e−x/ℓ in the base and S(x) ∼ e−x/2ℓ in the apex. In the chinchilla, the area is better described 
by S(x) ∼ e−x/2ℓ throughout.

Confirmation from measurements of wave-front delay. The wave-front delay of the traveling wave 
can be determined directly from the onset delay of the BM click response and/or estimated from the group delay 
of the BM transfer function at low frequencies. In the model, the wave-front delay expressed in periods of the CF 
has the value (see Supplementary Appendix B)

In the base of the cochlea, Eqs. (10,11) imply that m̄/k ∼ 1/CF2 , so that τwf ∼ constant , independent of x. Con-
sistent with this prediction derived from the anatomical data, mechanical measurements in the base confirm 
that the wave-front delay amounts to a constant number of CF periods, independent of location (see35 for a 
review). Interestingly, this same result can be deduced from measurements of the cochlear input  impedance14.

In the apex, derivation of the wave-front delay is complicated by the apical bend of the tonotopic map. Nev-
ertheless, simple arguments based on application of Eq. (12) to the anatomical estimates of m̄(x) and k(x) predict 
that in the apex, unlike the base, τwf (x) is not constant but decreases with position at least as rapidly as CF1/4(x) . 
Figure 1E shows apical wave-front delays in CF periods estimated from auditory-nerve-fiber (ANF)  recordings27 
as a function of CF. The measurements indicate that τwf (x) varies approximately as CF1/2 , corroborating this 
analysis. In guinea  pig6, ANF estimates of wave-front delay vary as CF0.51 , in excellent agreement with the trend 
in cat. A similar dependence is evident in the apex of the  chinchilla5.

Implications for Cochlear Signal Processing and Detection
Efficient wave propagation. In species such as cat, guinea pig, and gerbil the area of the scalae in the base 
decreases in parallel with the stiffness of the partition. Consequently, at tail frequencies in the base the prefactor 
in Eq. (6) for P0(x) is nearly constant, independent of position. In this regime, where the admittance of the CP is 
stiffness-dominated, the traveling pressure wave therefore has the form

Thus, despite the exponential decline in BM stiffness, pressure waves in the tail region propagate without attenu-
ation—that is, as plane waves of constant amplitude. (Because the wavenumber κ is essentially real in this region, 
the complex exponential term contributes only a phase shift but neither power gains nor losses.) Although 
the prefactor is not exactly constant in the apex (or in the base of the chinchilla), so that the driving pressure 
decreases with position, the attenuation space constant ( ∼ 8ℓ ) is larger than the length of the cochlea. Thus, even 
in the apex, tail-frequency attenuation with distance is small.

The near-constancy of |P0| at tail frequencies is a direct consequence of the tapered geometry of the cochlear 
duct. For example, were the organ of Corti housed within a duct of constant cross section—that is, within a 
rectangular box, as models often assume—the wave of driving pressure would decay with distance as e−x/2ℓ , 
assuming the model parameters were arranged to keep the wavenumbers invariant across models. As in an ear 
horn, the tapering of the duct boosts the acoustic intensity of the traveling pressure wave. Relative to its value in 
the tapered geometry, the intensity in the hypothetical box cochlea decays exponentiallly, falling off as e−x/ℓ with 

(9)κ(x) ≈ ω
√

m̄(x)/k(x) ,

(10)k(x) ∼ e−x/ℓ ,

(11)m̄(x) ∼
{

ex/ℓ in the base,

ex/2ℓ in the apex.

(12)τwf ≈ l
√

m̄(x)/k(x)CF(x) .

(13)P0(x) ≈ P̄(0) exp

(

−i

∫ x

0
κ(x′)dx′

)

[f ≪ CF(x)] .
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distance from the stapes. In other words, in the absence of horn-like tapering of the scalae, a significant portion 
of the power entering the cochlea flows out in the fluids, far from the partition, causing the transpartition driv-
ing pressure to decrease with distance as it propagates down along the gradient in BM stiffness. The cartoon in 
Fig. 2 illustrates the mechanisms behind efficient wave propagation in the tapered cochlea.

In addition to providing a geometric boost to the pressure wave near the partition, the tapered geometry of 
the scalae has other important benefits for the sensitivity of hearing. In particular, tapering both increases the 
efficiency of power transmission from the middle ear and reduces the reflection of pressure waves traveling along 
the  cochlea14. In the base, at frequencies well below CF, Eqs. (10,11) imply that the characteristic impedance of 
the wave medium remains real and nearly constant, independent of position:

With appropriate tapering of the duct, the spatial variation of acoustic mass cancels the variation in stiffness, 
ensuring reflectionless wave propagation with a constant, resistive Z0.

Tonotopic variation of tuning sharpness. As the cross-sectional area of the cochlear duct decreases 
from base to apex, the height, h(x), of the scalae tapers correspondingly (Fig. 1F). This taper affects the maxi-
mum value of the short-wave pressure gain, α(x) , defined as the ratio between the driving and average pressures 
[approximated by Eq.  (7)]. In particular, the value of α near the best place decreases from base to apex (see 
Supplementary Appendix D). Since the amplitude of the pressure wave reaching the short-wave region varies 
only slowly with frequency (see previous section), the basal-to-apical decrease in the maximum value of α(x) 
implies—assuming no strong compensatory mechanism—a corresponding reduction in near-CF BM gain and 
a concomitant broadening of frequency tuning. To see this, note that as the wave of driving pressure propagates 
along the cochlea, short-wave hydromechanical pressure gain kicks in as |κh| increases above  138; that is, near the 
transition from long-wave behavior in the tail to short-wave behavior in the tip. Although quantitative analysis is 
complicated by the nonlinear equations for α , the key result can be understood qualitatively by imaging a family 
of models with identical wavenumbers but different scalae heights, h. At any given frequency, waves traveling 
in models with relatively large values of h near the best place (such as those representing waves that peak in the 
base of the cochlea) become short-wave sooner and therefore have greater short-wave gain and sharper tuning. 
By contrast, waves in models (or regions of the cochlea) with smaller values of h (i.e., the apex) remain long-wave 
longer and so accumulate less short-wave gain at the peak (broader tuning).

We elucidate this phenomenon further using an active model of the CP admittance (see Supplementary 
Appendix C; see also Supplementary Appendix G for the effects of active amplification on cochlear hydrodynam-
ics)38,39. For purposes of illustration, and in order to highlight the role of macromechanical processes, we stipulate 
that the sharpness of “micromechanical” tuning in the model be everywhere identical. For ease of comparison 
with the experimental data, model parameters are tailored to the cat. However, because apical/basal differences in 
both anatomy and physiology are qualitatively similar across mammalian species (see7 and our Fig. 1) our general 
findings about their geometric origins also apply to other species. Inter-species differences arise through factors 
such as variations in the tonotopic map and the location of the apical/basal transition (Fig. 1C). As an example 
of model generality, Supplementary Appendix E shows results for a model tailored to the gerbil.

Figure 3A shows model BM gain functions computed at different cochlear locations, assuming a purely expo-
nential tonotopic map. In accordance with our deductions, both the gain at CF, and tuning sharpness decrease 
from base to apex. Furthermore, the slope of the high-frequency cut-off, very steep in the base ( CF > 3kHz), 
becomes shallower in the apex. This model trend resembles that seen in neural data and is a consequence of 
correlations between cut-off slope and wave-front delay predicted by simple considerations of cochlear macro-
mechanics (Supplementary Appendix B). For comparison, the dotted gray curves in Fig. 3A plot the BM gain 
functions for a model with the same parameters except that the radius (and thus the cross-sectional area) of 
the scalae is held constant (box model). Although the pressure decay inherent in box models (see previous sec-
tion) decreases the peak BM gain with distance from the stapes, the shapes of the gain functions appear nearly 
scaling-symmetric throughout the cochlea.

(14)Z0(x,ω) =
√

Z̄/YCP ≈
√

m̄(x)k(x) ∼ constant.

Figure 2.  In the tail region of the traveling wave, the horn-like tapering of the cochlear duct boosts the 
intensity of the traveling wave, compensating for the spatial decay of transpartition pressure that arises from the 
progressive decline of CP stiffness. In a hypothetical box cochlea (dotted lines), by contrast, the wave power is 
dispersed throughout the larger fluid volume.
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Cochlear frequency selectivity is controlled, in part, by the form of the tonotopic map. The apical bend evi-
dent in the maps of multiple species (Fig. 1A) has the effect of warping the frequency axis of Fig. 3A at its low-
frequency end. Figure 3B shows model BM transfer functions, computed at the same locations used in Fig. 3A, 
when the cochlear map is taken to match the non-exponential form measured in the cat [ γ = 0.8 in Eq. (2)]36. 
In this case, transfer functions at the lowest CFs resemble nonlinearly “stretched” versions of those obtained 
using the exponential map (Fig. 3A). This frequency-warping effect produces apical transfer functions that 
appear “flipped” relative to their basal cousins: in the extreme apex, low-frequency slopes are steeper than high-
frequency flanks (Fig.3C). This asymmetry between apical and basal frequency responses is found in ANF tuning 
curves from cat and  chinchilla1,3,40. Figure 3D shows the quality factor of the model’s transfer function, measured 
as the equivalent rectangular bandwidth ( QERB ), along with the QERB estimated from cat ANF tuning  curves37.

Downward glides in the apex. The qualitative differences in the shapes of apical and basal BM transfer 
functions (Fig. 3B) have significant effects on their respective time-domain responses to acoustic clicks. Fig-
ure 3E shows model BM click responses at different cochlear locations. In the basal and middle turns of the 
cochlea, response onsets are dominated by low-frequency components; the result is an upward glide in which 
the instantaneous frequency of the oscillation increases over time, approaching CF from below (see Fig. 3F). At 
CFs below about 1 kHz, by contrast, response onsets are dominated by frequency components greater than CF, 
producing a downward glide. (For CFs near 1 kHz, the glide duration is very short.) The inset in Fig. 3F shows 
that the model captures the observed sign, magnitude, and CF-dependence of the dimensionless glide slope. 
Never previously accounted for by models of cochlear mechanics, the emergence of frequency glides of differ-
ent directionalities in the base and apex has been a striking, unexplained feature of ANF recordings in cat and 
 chinchilla4,5.

Otoacoustic delays and tuning ratios. Neural and otoacoustic measurements reveal strong correlations 
between the sharpness of ANF frequency tuning ( QERB ) and the latency ( NSFOAE , in periods) of stimulus-fre-
quency OAEs (SFOAEs) at frequencies near  CF7. Under the assumption that SFOAEs arise predominantly from 
a region near the peak of the traveling wave, these correlations find a natural explanation in the inverse rela-

Figure 3.  (A,B) Model BM gain functions (BM velocity vs frequency re input pressure at the base) at several 
locations for the model of the cat cochlea when the tonotopic map is assumed either purely exponential (A) or 
of the Greenwood  type36 (B, Eq. (2) with γ = 0.8 ). Whereas the colored curves in panels (A,B) represent gain 
functions calculated in a tapered cochlear model, the grey curves in (A) show results for a box model where 
the cross-sectional area of the duct is assumed constant along the cochlea. (C) Gain functions from panel B 
normalized and plotted versus frequency re CF to emphasize the variation of cochlear tuning along the cochlea. 
(D) Comparison between the model variation in the sharpness of mechanical frequency tuning along the 
cochlea (measured in QERB ) and estimates obtained from cat ANF  recordings37. (E) Model BM click responses 
at multiple CF locations. (F) Instantaneous frequencies (normalized to CF) of the click responses from panel 
E. The inset compares the dimensionless glide slope, defined as the time rate of change of the instantaneous 
frequency near the peak of the click-response envelope, normalized by the square of the local CF, to values 
obtained from the cat auditory  nerve4,35.
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tionship between bandwidth and delay expected in resonant systems. Defined as the ratio of the trend lines for 
each variable ( QERB/NSFOAE ), the tuning ratio remains fairly constant in the base of the cochlea, but gradually 
increases severalfold below the apical-basal transition ( CF < CFa|b)7. This curious, apical increase in the tuning 
ratio appears to be a near-universal feature of the mammalian cochlea; it implies that low-frequency SFOAE 
delays are substantially shorter than expected based on the change in sharpness of tuning along the cochlea.

Our simple model reproduces this result and provides an explanation. Conceptually, the delay NSFOAE can be 
decomposed into two components: (i) a delay, fairly independent of QERB , associated with round-trip propagation 
of the pressure wave between the middle ear and the peak region and (ii) a delay, roughly proportional to QERB , 
associated with the build-up of pressure within the peak region. In this simplified view, our analysis indicates 
that although component (ii) decreases in parallel with QERB from base to apex, component (i) decreases faster 
in the apex than the base, independent of QERB (see Fig. 1E). Figure 4A compares model values of NSFOAE and 
QERB , showing that NSFOAE decreases faster than QERB at low frequencies. Figure 4B compares the resulting tun-
ing ratios with those estimated in the  cat7; the agreement is compelling, especially considering the simplicity of 
the model and its assumptions.

Discussion
We demonstrate that a simple model incorporating realistic tapering of the cochlear duct and basilar membrane 
can account for many of the most salient differences between responses, both mechanical and neural, measured 
in the apical and basal regions of the cochlea. By purposefully eliminating possible deviations from scaling in 
cochlear micromechanics, our analysis shows that gradients in hair-cell properties or organ-of-Corti cytoarchi-
tecture, although surely present, appear unnecessary to explain the observed responses. Furthermore, the rela-
tive simplicity of the model clearly exposes the underlying physical mechanisms, emphasizing their analogy to 
basic principles of horn acoustics. Importantly, our analysis demonstrates that the tapered, horn-like geometry 
of the cochlea not only subserves important apical-basal variations in cochlear signal processing, but also helps 
boost the sensitivity of hearing, especially at low frequencies. Tapering not only ensures efficient transmission of 
sound energy through the middle ear to the  cochlea14, it allows the wave of driving pressure to propagate at tail 
frequencies as a plane wave of constant amplitude—despite the rapid spatial variation of BM stiffness, the wave 
travels without significant reflection or attenuation. Realizing these multiple benefits for cochlear signal process-
ing requires an apparent coordination among diverse geometric and functional parameters. At tail frequencies, 
the coordination results in the elimination of significant spatial variations in both the magnitude of the driving 
pressure [i.e., the prefactor in Eq. (6) for P0(x) ] and in the characteristic impedance of the wave medium. We 
refer to the design principle that underlies this remarkable coordination as “tapering symmetry”14.

By preventing the spatial decay of traveling pressure waves in the long-wave region, tapering reduces the 
demand for their subsequent amplification by active mechanisms in the short-wave region near the wave peak. 
Note that by shortening the height of the scalae in the apex, tapering decreases the potential boost provided by 
the short-wave pressure-gain factor ( α ) in that region (see Eq. (7) and Fig. 3A,B). One can therefore imagine 
an alternative cochlear design: a box model of constant height constructed to yield apical peak wave amplitudes 
similar to those obtained in the more realistic geometry. After necessarily attenuating pressure waves as they pass 
through the base, the box cochlea—with its relatively larger values of |α| in the apex, supplemented as necessary 
with stronger outer hair cell-based amplification—could provide these attenuated waves a compensatory boost 
close to their best place. This strategy of reamplifying the signal after initially allowing it to decay suffers from 
the problem that the reamplification process boosts not only the signal but also the internal noise, rendering 
signal detection more difficult. The issue is especially acute at low frequencies, where the amplitudes of biological 
and thermal noise typically increase. Evolution appears to have stumbled upon the principle that, rather than 
trying to compensate for past mistakes—here, by first attenuating and then reamplifying—it often proves better 
to avoid those mistakes at the outset.

The apical reduction in short-wave gain caused by tapering naturally results in reduced frequency selectiv-
ity in the apex. Although our basal biases associate broader tuning with impairment, the maintenance of sharp 
tuning at low frequencies may provide little functional advantage for hearing. Indeed, if cochlear responses 
themselves are any guide, sharp low-frequency tuning may well be detrimental for auditory signal processing. 

Figure 4.  (A) Model SFOAE delays NSFOAE . Dots indicate individual simulations and the gray line represents 
their median at each frequency. For comparison, the red line plots QERB from Fig. 3D at the corresponding 
CFs. SFOAEs were simulated in 128 different “ears” by introducing small random irregularities in the partition 
admittance [methods detailed  in23]. (B) Comparison between the model tuning ratio ( QERB/NSFOAE ) and that 
obtained from otoacoustic and neural data in cat (Fig. 9 of Ref. 7).
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Because the inner hair cells and auditory nerve can resolve and phase-lock to the temporal fine structure of 
sound components reaching the  apex41, the broad tuning and shallow high-frequency slopes found in the apex 
(see Fig. 2C) imply that low-frequency stimuli excite relatively large portions of the cochlea and consequently 
recruit a large number of auditory-nerve fibers. The notion that the auditory system benefits from broader tuning 
and reduced local cochlear gain in the apex appears consistent with studies that report significant advantages 
for the coding of natural  sounds8.

Sasmal and  Grosh17 recently presented a finite-element model of the guinea-pig cochlea, concluding that 
three principal factors underlie the apical-basal variation of tuning in the model: (i) the tapering of cochlear 
dimensions, whose physical effects we elucidate here; (ii) fluid viscosity; and (iii) a micromechanical change 
in the orientation of the outer hair cells (OHCs) within the organ of Corti such that they provide reduced BM 
amplification in the apex compared to the base. In their model, the principal effect of viscosity is to eliminate 
spurious peaks and notches caused by wave reflection from the helicotrema [see  also15]. Although the simplified 
treatment presented here ignores the helicotrema boundary, numerical calculations that include viscosity agree 
well with their finding. A key difference between the responses predicted by our model and that of Sasmal and 
Grosh is that the mix of micro- and macromechanical processes in their model produces very broad mechanical 
tuning in the apex, necessitating the inclusion of a 6-dB/octave highpass filter—hypothesized to represent the 
putative effects of adaptation of the IHC mechanoelectric-transduction (MET) current—between mechanical 
and neural tuning. Although the role of MET adaptation in mammalian hair cells remains  controversial42,43, it 
appears unlikely that IHC MET adaptation in vivo manifests as a large current  decay43,44 capable of introducing 
significant frequency dependencies in IHC responses (see  also45).

Although classic measurements indicate that mechanical and neural tuning are similar in the apex of the 
guinea pig and  chinchilla2,46, more recent measurements from the guinea  pig47 suggest that mechanical tuning in 
the apex is fundamentally low-pass in character. If so, accounting for the tuning of low-frequency ANFs would 
therefore require the interposition of a so-called “second filter,” such as the adaptation mechanism discussed 
 above17. However, these recent mechanical measurements were obtained not from the BM, but from structures 
located close to the reticular lamina, near the top of the OHCs—that is, from a region within the organ of Corti 
whose mechanical responses are more broadly tuned than those of the BM and auditory nerve, at least in mouse 
and  gerbil48,49. In this regard, the present model predicts that the tuning of OHC forces relative to BM motion is 
broader in the apex than in the base (Supplementary Appendix F). Insofar as the internal motion of the organ of 
Corti is dominated by deformations due to OHC somatic  motility50, the model thus accounts for the discrepancy 
between the classic data and more recent measurements. Although mechanical and neural tuning are surely not 
everywhere identical, our results support the idea that ANF tuning largely reflects the overall transverse motion 
of the CP throughout the cochlea, implying that no special second filter is needed to explain the data.

Our simplified model does not, of course, preclude the existence of important, local micromechanical spe-
cializations that vary along the cochlear spiral. Furthermore, although the motion of the BM appears to closely 
mirror the slow-traveling pressure wave in the base of the  cochlea34, important deviations may arise in the apical 
turn, where the BM is much more compliant (Fig. 1B) and its motion may be influenced by deformations of the 
organ of Corti that are not strongly coupled with the transpartition pressure  wave51. Nevertheless, our analysis 
highlights the key role played by the global, macromechanical geometry and hydrodynamics of the cochlea. By 
shaping the wave of driving pressure, the cochlea’s horn-like acoustics gives rise to many of its most puzzling, 
and functionally significant, response characteristics. These include systematic spatial variations in the sharpness 
of tuning, the frequency-dependent delay of otoacoustic emissions, and the peculiar patterns of dispersion (i.e., 
glides) observed in the responses of the auditory nerve.

Code availability
The code generated in this study is available at https ://www.mecha nicso fhear ing.org/apg.
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