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Machine learning predicts live‑birth 
occurrence before in‑vitro 
fertilization treatment
Ashish Goyal, Maheshwar Kuchana & Kameswari Prasada Rao Ayyagari*

In‑vitro fertilization (IVF) is a popular method of resolving complications such as endometriosis, 
poor egg quality, a genetic disease of mother or father, problems with ovulation, antibody problems 
that harm sperm or eggs, the inability of sperm to penetrate or survive in the cervical mucus and 
low sperm counts, resulting human infertility. Nevertheless, IVF does not guarantee success in the 
fertilization. Choosing IVF is burdensome for the reason of high cost and uncertainty in the result. As 
the complications and fertilization factors are numerous in the IVF process, it is a cumbersome task for 
fertility doctors to give an accurate prediction of a successful birth. Artificial Intelligence (AI) has been 
employed in this study for predicting the live‑birth occurrence. This work mainly focuses on making 
predictions of live‑birth occurrence when an embryo forms from a couple and not a donor. Here, we 
compare various AI algorithms, including both classical Machine Learning, deep learning architecture, 
and an ensemble of algorithms on the publicly available dataset provided by Human Fertilisation and 
Embryology Authority (HFEA). Insights on data and metrics such as confusion matrices, F1‑score, 
precision, recall, receiver operating characteristic (ROC) curves are demonstrated in the subsequent 
sections. The training process has two settings Without feature selection and With feature selection to 
train classifier models. Machine Learning, Deep learning, ensemble models classification paradigms 
have been trained in both settings. The Random Forest model achieves the highest F1‑score of 76.49% 
in without feature selection setting. For the same model, the precision, recall, and area under the 
ROC Curve (ROC AUC) scores are 77%, 76%, and 84.60%, respectively. The success of the pregnancy 
depends on both male and female traits and living conditions. This study predicts a successful 
pregnancy through the clinically relevant parameters in In‑vitro fertilization. Thus artificial intelligence 
plays a promising role in decision making process to support the diagnosis, prognosis, treatment etc.

More than 80 million couples are affected by infertility. An ’unsuccessful conception’ after almost 12 months of 
having unprotected intercourse can be caused due to  infertility1. To reduce the number of unsuccessful concep-
tion, ovum from the female ovary and sperm from the male are fused outside the body, i.e., in the laboratory 
resulting in an embryo, which is then placed in the female’s ovary for development is In-Vitro Fertilization 
(IVF). In some cases, artificial insemination results in conception by injecting sperm into the uterus directly. It 
has been reported that more than 5 million babies have been born from IVF around the world. IVF is used to 
overcome the male and female infertility caused due to various problems related to both the sexs’ reproductive 
characteristics. IVF works by combining various medical and surgical procedures to help in fertilization. The 
whole process has more than one round and can take several months to get a pregnancy. Easy accessibility of IVF 
treatments rose the usage of IVF but not due to infertility  couples2. Opting for IVF treatment is also considered a 
very challenging task due to its high cost, no guarantee of the success, and the stress of the  treatment3,4. Patients 
generally discontinue IVF treatment due to the physical and psychological burden of the  treatment5,6.

Several medical practitioners have been predicting the possibility of pregnancy by a trial and error method 
through their expertise. Therefore, conventional prediction methods are dependent on the level of experience 
of an individual medical practitioner, which does not employ any systematic statistical approach. Hence, they 
are more subjective. Medical practitioners and patients are eagerly looking for a measurement to guide them 
for decision making about IVF treatment. Recent advancements in technologies such as Artificial Intelligence 
(AI), Machine Learning (ML), Deep learning (DL) promises in solving some of the endemic problems with 
statistical data-driven approaches. Highly accurate analysis driven by AI can lead to radically solve most of the 
challenges with vast amounts of data by interpreting them in a meaningful way. The statistical approach has 
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attracted researchers’ attention to develop prediction models for fertility by which a medical practitioner can 
get an accurate prediction if a successful birth happens in the IVF setup.

Machine Learning is a field of study that teaches computers/systems to think in a similar way and outputs 
predictions by learning/training upon past  experiences7. It explores data in a meaningful, pattern-oriented 
manner that gives the systems’ robustness to mimic a human decision-making capability. Deep learning is a 
subset of ML that works on the principles of human neural  networks8. Analyzing huge data records with lots of 
parameters can make humans miss some crucial patterns in the data. ML and DL get you covered in this aspect 
and can identify these patterns easily, which then helps a human in decision-making.

With continued improvements in ML, several healthcare domains have already adopted it to improve deci-
sion-making, including enabling personalized care, surgery simulations, drug discovery, and accelerating disease 
 diagnosis9–12. In reproductive science, ML was applied for predicting implantation after blastocyst transfer in 
 IVF13. ML has also been applied to build a prediction model for embryo selection to evaluate the live-birth live-
birth predictors and predict  twins14–16. Contemporary use of DL techniques to predict fatal heart pregnancy and 
human blastocyst selection have also been  witnessed17,18. Hence, ML can be applied to the clinical datasets to 
develop risk assessment, diagnostic, prognostic models, and improve patient healthcare.

Machine Learning Some studies in the past use ML techniques to predict the live-birth chances of women 
undergoing IVF treatment. One of the earlier and most accepted prediction models is the McLernon  Model19,20, 
which utilizes only discrete logistic regression to predict the chances of live-birth for a couple having up to six 
complete IVF cycles. Two prediction models, a pre-treatment model (predicts before the IVF treatment starts) 
and a post-treatment model (predicts the chances of live-birth after the first attempt at embryo transfer), are 
developed. Data was collected from The Human Fertilisation and Embryology Authority (HFEA) of 253,417 
women who started IVF treatment in the United Kingdom from 1999 to 2008 using their own eggs and partner 
sperms. C-index was used to assess the performance of both models. The C-index for pre-treatment model was 
0.69 (0.68–0.69) and C-index for post-treatment model was 0.76 (0.75–0.77).

Rafiul Hassan et al.21 proposes a hill-climbing feature selection algorithm with five different ML models to 
analyze and predict IVF pregnancy in greater accuracy. Data for this study were collected from an infertility clinic 
in Istanbul, Turkey, for about three years from March 2005 to January 2008 and consists of infertility treatment 
of 1048 patients. This study used 27 attributes like age, diagnosis, Antral Follicle Counts (AFC), sperm quality, 
etc. It is found that age is the most influential IVF attribute that affects pregnancy outcome. Performance of all 
classifiers improved when hill climbing feature selection techniques (electing only important features by the clas-
sifiers) was employed. Overall, Support Vector Machine (SVM) attains the highest accuracy of 98.38%, F1-score 
of 98.4%, and AUC score of 99.5% considering 19 IVF attributes.

A survey done by Guvenir et al.22 on the ML models, namely SVM, Decision trees, Naïve Bayes, K near-
est neighbor (KNN), etc. showed that different models require a various number of features to perform well. 
Patient attributes such as age, Body Mass Index (BMI), sperm count, etc. were used to train these models. SVM 
in this survey considers up to 64 features to resulting in an accuracy of 84%, while others considered as low as 
5–6 features like artificial neural networks (ANN) by Kaufmann et al.23 that resulted in 59%  accuracy24. focuses 
on developing a model that helps the couple decide whether to take IVF treatment or not. In this survey, two 
problems are addressed: one to check the probability of having pregnancy in the IVF treatment and another in 
helping doctors choose the most viable embryos.

Jiahui Qiu et al.25 predicts live birth before the IVF using four models: logistic regression, Random forest, 
Extreme gradient boosting (XGBoost), and SVM. Data is collected from 7188 women who underwent their first 
IVF treatment from the Medical Center of Shengjing Hospital of China Medical University during 2014–2018. 
Attributes like age, AMH, BMI, duration of infertility, previous live birth, previous miscarriage, etc. and type 
of infertility (tubal, male factor, anovulatory, unexplained, and others) are considered. Calibration and receiver 
operating characteristic (ROC) curves are employed as performance metrics. XGBoost achieved the highest 
area under ROC curve (ROC AUC) score of 0.73 on the validation dataset and exhibited the best calibration 
model among all models.

Predicting the live-birth occurrence belongs to the binary classification problem determining whether a 
female gives birth or not is predicted based on the given IVF parameters. The present work aims to compare 
various models on predicting live-birth occurrence after the complete IVF cycle. The work mainly focuses on 
making predictions of live-birth occurrence when an embryo forms from a couple and not a donor. A complete 
IVF cycle refers to the fresh cycle and the following freeze–thaw cycles from one round of ovarian stimulation. 
There are several reproductive characteristics related to both males and females that cause infertility. It has been 
found that factors related to female-like age (decrease in quantity and quality of the eggs), menstrual disorder, 
uterine factor, cervical factor, previous pregnancies, duration of infertility, female primary (if the patient is unable 
to get pregnant after at least one year), female secondary (if the patient able to get pregnant at least once but now 
unable to) and unexplained factors have a significant impact on causing  infertility26–30. Factors related to males, 
such as semen concentration, semen motility, semen morphology, sperm volume, and semen count, are essential 
for testing infertility in  males31,32. All the above-said important reproductive characteristics of males and females 
have been considered in this study. A public  dataset33 that contains all the above-said parameters, provided by 
Human Fertilisation and Embryology Authority, is the longest-running fertility treatment database in the world. 
Data of 495,630 records with 94 clinical features are considered in this study acquired from 2010 to 2016 from 
IVF centers across the UK. After performing data cleaning 141,160 records with 25 essential clinical features 
are considered for training and testing in which both positive and negative classes contain 70,580 records each.

ML, DL, Ensemble learning are employed in this study. Models such as Logistic  Regression34, K nearest 
 neighbor35, Multi-Layer  Perceptron36, Decision  Tree37, 1-D Deep learning  model38 are used for training purpose. 
Ensemble  learning39 is used to make a collective decision on predictions from the above-said models. Random 
 forest40,  AdaBoost41, voting  classifiers42 are employed in this strategy. Predominantly, two settings are followed 
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in this study: one training model without feature selection and the other using two feature selection techniques. 
Feature selection techniques such as Linear support vector classifier (Linear SVC) based selection from  model43, 
Tree-based feature  selection44 are considered. The performance of models in both these settings was measured 
based on metrics such as F1-score, precision, recall, and ROC-AUC curve.

The remainder of this article is organized as follows: in the Methodology section describes the dataset, pre-
processing techniques used to make train-ready data and models trained. A comprehensive comparison between 
the performance metrics of various models is demonstrated in Results & Discussion. The conclusion section 
explains about the insights that can be drawn and future work from this study.

Methodology
Dataset description. The dataset used in this study is anonymized register data collected from the year 
2010–2016 obtained from the Human Fertilisation & Embryology  Authority33. It holds the longest-running 
database register of fertility treatments globally to improve patient care while ensuring reliable protection of 
patient, donor, and offspring confidentiality. This dataset contains 495,630 patient records with 94 features on 
treatment cycles collected from various patient studies between 2010 and 2016. Focusing on the aim of this 
study, the dataset after filtration contains 141,160 patient records. It includes three types of data that are numeri-
cal, categorical, and text. There was no medical intervention in the couples’ behavioral and biomedical routine for 
this work. Furthermore, this work involves only analyzing the couples’ data; hence no permission was taken from the 
Institutional Review Board (IRB). All relevant guidelines were followed for the study.

Many factors influence the live-birth occurrence (target variable) after IVF treatment. In this study, the 
original dataset contains 94 features, but not all features significantly affect the outcome. So, only 30 features 
are considered. Hence, feature engineering has been performed based on the subject knowledge, recommended 
by Dr. Bharti Bansal and NICE clinical guideline (The National Institute of Health and Care Excellence, UK). 
In this study, features such as fresh cycles and the following freeze–thaw cycles from the same stimulation for a 
woman undergoing IVF (including ICSI) are considered. Donor oocytes/sperm cycles and PGD/PCS cycles are 
excluded. Features selected in this study are age, the total number of previous cycles, the total number of previous 
IVF pregnancies, number of eggs mixed with partner sperm, number of embryos transferred in this cycle, type 
and cause of infertility that includes male factor, female factors, ovulatory, endometriosis, tubal, cervical, etc. 
Table 1 summarizes a detailed description of the dataset features considered in the approach.

Pre‑processing of dataset. The raw dataset contains 94 attributes, out of which few do not significantly 
affect predicting live-birth occurrence. The filtration of the dataset depends on the stimulation used, sperm 
source, egg source features. If the source of sperm and egg is from the same couple, i.e., Partner and Patient, 
then those patient records are considered, the rest are eliminated. In IVF, injectable medication containing both 
follicle-stimulating hormone (FSH) and luteinizing hormone (LH) is injected into females to stimulate more 
than one egg developing at a  time45. It is described as "Stimulation Used" in the dataset; this study considers only 
patient records where stimulation is done.

In the field "Patient Age at Treatment," few patient records contain value 999 that are eliminated. Text and age 
ranges are converted into categorical data. For instance, in the field "Patient Age at Treatment."

1. 18–34 is converted to 0
2. 35–37 is converted to 1
3. 38–39 is converted to 2
4. 40–42 is converted to 3
5. 43–44 is converted to 4
6. 45–50 is converted to 5

The field "Live-birth Occurrence" is the target variable, which is numerical and contains values ranging from 
0 to 5 where 0 represents no birth (negative class) and greater than 1 represents birth occurrence (positive class). 
To make the classification binary, all the patient records whose Live-birth Occurrence are more significant than 
1 are set to 1 and remaining to 0.

After the above filtration, the negative samples are 5 × more than positive samples that make data imbalance. 
Few patient records from negative samples are removed to encounter the problem of imbalance in the dataset. 
Now the dataset contains 141,160 patient records and 25 features, which distributes 70,580 samples in each class. 
It is found that few fields such as sperm source, egg source, cause of infertility partner sperm immunological 
factors, stimulation used, cause of female infertility factors is homogenous (contains same value) in both positive 
and negative cases, which adds up no significance in classification hence these fields are removed. The samples 
or patient records are then split by 34% in the validation and 66% in training sets.

• The training set contains 93,165 samples
• The validation set contains 47,995 samples

Data is normalized as it contains values which are distributed in an extensive range of integers. Features with 
very similar trends are also likely to carry very similar information. In this case, only one of them will suffice 
to feed the Machine Learning model. A correlation matrix constructed is shown in Fig. 1 contains 25 features 
that reveal the importance of each of the parameters on the model developed. Here we calculate the correlation 



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20925  | https://doi.org/10.1038/s41598-020-76928-z

www.nature.com/scientificreports/

coefficient between numerical and nominal columns as the Coefficient and the Pearson’s chi-square46 value. Pairs 
of columns with a correlation coefficient higher than a threshold are reduced to only one.

Model training. Overview. In this study, Machine Learning , Deep learning, and ensemble models are 
trained for the purpose. Machine Learning ML models such as Logistic Regression (LR), K nearest neighbor 
(KNN), Multi-Layer Perceptron (MLP), Decision Tree are used for training. A Deep learning model, especially a 
1-D Neural Network with a sigmoid activation neuron at the output layer, is proposed. Ensemble learning is also 
employed to get a concrete decision from a list of Machine Learning models. Random Forest, AdaBoost, Voting 
classifier hard/soft are considered in ensemble learning techniques.

Table 1.  IVF attributes of our dataset.

Field Type Description

Patient age at treatment Categorical Patient age at treatment, banded as follows: 18–34, 35–37, 
38–39, 40–42, 43–44, 45–50

Total number of previous cycles Numerical How many treatment cycles of IVF the patient has previously 
had

Total number of IVF pregnancies Numerical How many patients have been pregnant through IVF

Total number of live births- conceived through IVF Numerical How many live births the patients have had through IVF

Type of infertility—female primary Categorical 1 if the patient unable to get pregnant after at least 1 year, 0 
otherwise

Type of Infertility—female secondary Categorical 1 if the patient able to get pregnant at least once but now unable 
to, 0 otherwise

Type of infertility—male primary Categorical 1 if the leading cause of the infertility is patient, 0 otherwise

Type of infertility—male secondary Categorical 1 if the secondary cause of infertility is due to the patient, 0 
otherwise

Type of infertility—couple primary Categorical 1 if the leading cause of the infertility is patient/partner, 0 
otherwise

Type of infertility—couple secondary Categorical 1 if the secondary cause of infertility is due to the patient/part-
ner, 0 otherwise

Cause of infertility—tubal disease Categorical 1 if there is damage in the fallopian tubes that prevents sperm 
from reaching the ovary, 0 otherwise

Cause of infertility—ovulatory disorder Categorical 1 if the primary cause of this infertility is due to ovulation 
disorder, 0 otherwise

Cause of infertility—male factor Categorical 1 if the primary cause of this infertility is due to male patients, 
0 otherwise

Cause of infertility—patient unexplained Categorical 1 if the primary cause of infertility in the patient is unknown, 
0 otherwise

Cause of infertility—endometriosis Categorical 1 if the primary cause of this infertility is due to endometriosis, 
0 otherwise

Cause of infertility—cervical factors Categorical 1 if the primary cause of this infertility is due to the Cervical 
factor, 0 otherwise

Cause of infertility—female factors Categorical 1 if the primary cause of this infertility is due to female factors, 
0 otherwise

Cause of infertility—partner sperm concentration Categorical 1 if the primary cause of this infertility is due to low sperm 
count, 0 otherwise

Cause of infertility—partner sperm morphology Categorical 1 if the primary cause of this infertility is an abnormality in 
sperm morphology, 0 otherwise

Cause of infertility—partner sperm motility Categorical 1 if the primary cause of this infertility is poor sperm motility, 
0 otherwise

Cause of infertility—partner sperm immunological factors Categorical 1 if the primary cause of this infertility is due to sperm immu-
nological factors, 0 otherwise

Stimulation used Categorical 1 if the stimulation medication is used, 0 otherwise

Egg source Text Indicates whether the eggs used in this cycle came from Patient 
(P) or a Donor (D)

Sperm source Text Indicates whether the eggs used in this cycle came from Patient 
(P) or a Donor (D)

Fresh cycle Categorical 1 if this cycle using fresh embryos, 0 otherwise

Frozen cycle Categorical 1 if the cycle used from frozen embryos, 0 otherwise

Eggs thawed Numerical If this cycle frozen eggs, the number of eggs thawed

Fresh eggs collected Numerical The number of eggs collected in this cycle

Eggs mixed with partner sperm Numerical The number of eggs mixed with sperm from the partner

Embryos transferred Numerical The number of embryos transferred into the patient in this 
cycle
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Two settings. Training models in this study takes place in two settings, one With Feature Selection and the 
other Without Feature Selection. Feature selection techniques are applied to get the essential features from the 
dataset. In the Without Feature Selection setting, all the features (25 in total) are used in the training process. In 
the With Feature Selection setting, only certain features (important ones) are used in the training process based 
on the technique. This approach gives a comprehensive analysis of results where models have been trained on 
data with and without feature selection. A flowchart of the training protocols employed in this study is detailed 
in Fig. 2. The models trained under With feature selection & Without feature selection setting remain the same as 
explained in Fig. 2.

After taking suggestions from domain expert Dr. Bharti Bansal we selected the essential features, but statisti-
cal feature importance is employed later. Hence exploring different feature selection algorithms may help a lot 
in improving overall performance factors. Feature selection techniques selected are

1. Linear support vector classifier (Linear SVC) + Select From Model
2. Tree-based feature selection

Linear SVC + Select From Model. Linear models penalized with the L1 norm have sparse solutions: many of 
their estimated coefficients are zero. If the goal is to reduce the dimensionality of data and use another classifier, 
they can be used along with feature_selection.SelectFromModel in the scikit-learn to select the non-zero coef-
ficients. Sparse estimators useful for this purpose are the Lasso for regression, Logistic Regression, and Linear 
 SVC43. The sparse estimators used in this method are Logistic Regression, Decision Tree, Random Forest, K 
Nearest Neighbours classifier. The feature space reduces from 25 to 20 using this technique.

Figure 1.  Correlation matrix of 25 features.
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Linear SVC + Tree‑based feature selection. Tree-based estimators such as Random Forests, once trained, the 
importance of each feature is computed with which we can filter and reduce the feature space. Every feature in 
random forests, while training is given with a Gini impurity or information gain/entropy using this measure, 
we calculate the feature  importance44. After reducing the feature space, we can then train different estimators 
or classifiers on this new set. This study’s sparse estimators are Logistic Regression, Decision Tree, Linear Dis-
criminant Analysis, Random Forest, K Nearest Neighbours. The feature space reduces from 25 to 5 using this 
technique.

Deep learning: custom deep neural network. Along with the ML models, a Deep learning classifier (DL) archi-
tecture was trained on the same data. The neural network takes numerical values (array of size 25) as the input; 
hence it is 1-dimensional in the architectural perspective (1-D Model). The output layer contains one neuron 
with a sigmoid activation function to give a binary output (Birth occurrence or Not). The architecture contains a 
total of 9 dense layers, each neuron (in all dense layers) output values are passed through a Rectified Linear Unit 
(ReLU)47 activation function. In the first half of the DL classifier, neurons in each layer get increased precisely 
two times the previous layer; this is maintained uniform because of performance on this dataset. The second 
half follows a decreasing rate of two neurons per layer, making the last layer one. Adam  optimizer48 is used for 
optimizing loss values while training the deep neural network. Due to its broader adoption in Deep learning 
applications and combining the AdaGrad and RMSProp algorithms’ best properties to provide an optimization 
algorithm that can handle sparse gradients on noisy problems, Adam optimizer is chosen. Not just on the theory 
intuitions of Adam optimizer’s performance, but also the performance on this dataset is checked across differ-
ent optimizer algorithms such as Stochastic gradient descent, RMSProp, AdaGrad, and it is noticed that Adam 
optimizer performance is better than others.

The total number of epochs to train the DL classifier is 50. The model can overfit this dataset to prevent 
overfitting regularization techniques such as Dropouts and Batch  Normalization49, Early stopping has been 
employed while training. As the number of neurons increases, the probability of noise generation will be higher 
among dense middle layers of the DL classifier, so 20% of dropouts are introduced after the middle-dense layer 
(512 units). Binary cross-entropy loss fits best for binary classification set up when trained on Deep learning 
techniques. Computing the gradient over the entire dataset is expensive, and hence batch size of 128 samples has 
been trained per epoch to get a reasonable approximation of the gradient. A glimpse of custom deep learning 
architecture is depicted in Fig. 3.

Figure 2.  Flowchart of the training process.

Table 2.  Comparison between classification metrics for without feature selection models.

Model Precision (%) Recall (%) F1-score (%) ROC AUC score (%)

Machine learning models

Multi-layer Perceptron 74 72 72.98 77.90

K Nearest Neighbours 71 71 71.00 77.60

Decision Tree 76 76 76.00 83.30

Deep learning model DL Classifier 73 72 72.49 78.00

Ensemble Learning models

Voting—hard classifier 75 73 73.98 73.10

Voting—soft classifier 77 75 75.98 83.20

Random forest 77 76 76.49 84.60

AdaBoost 74 72 72.98 77.40
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Figure 3.  Deep learning architecture, along with the training parameters explained.
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Ensemble learning. Ensemble methods are the most famous learning algorithms in the ML domain because of 
its excellent performance. The whole crux of these methods is that it combines many ML algorithms to make an 
accurate decision. In this study, the following algorithms are trained.

1. Random Forest
2. AdaBoost
3. Voting classifier—soft/hard

Voting classifier. It is a wrapper of many classification models where the final decision is made by voting from 
individual models’ predictions. For instance, if five binary classification models are trained and queried with an 
unseen sample, then the individual model’s predictions are input for the voting system, declaring final predic-
tion. Supplemental Fig. 1. illustrates a voting classifier.

The voting system works on two different strategies: Hard Voting, Soft Voting. Hard voting is also called 
the Majority voting in which the class that gets the highest number of votes from a set of individual models is 
 selected42. If Nc is the number of votes for a class and y1, y2, y3, …., yn, are predictions of n different classifiers, 
then the hard-voting formula is given by Eq. (1).

Soft voting takes input as probability scores vector from individual class and sums it with all other classifiers 
later averages  it42. The final output class will be the one that gets the maximum probability score. If p1, p2, …, pn 
are the probability scores of n different classifiers, then the formula for soft voting is given by Eq. (2).

The classifiers used for this voting classifier are Logistic Regression, Decision Tree, Linear Discriminant 
Analysis, Random Forest, and K Nearest Neighbours. In the next section, the model has been validated with 
experimental datasets.

Results and discussion
In this study, the TensorFlow library with Keras backend to train deep learning classifier and scikit-learn for the 
ML classifiers are utilized. The metrics compared in this study are F1-score, precision, recall, ROC AUC scores, 
and curves between various models. In this section, we demonstrate the results of trained models With and 
Without feature selection. In comparison tables, broader categories are displayed, such as ML-based, DL-based, 
Ensemble-based. Table 2 details the comparison between trained models Without feature selection.

Results for without feature selection setting. Table  2 explains that the ensemble learning models 
category results in better classification performance in the recall, F1-score, and ROC AUC scores. Random For-
est scores the highest F1-score of 76.49%. The recall value achieved by random forest is noticeable among other 
trained models, i.e., 76%. Figure 4a Illustrates the ROC AUC curves of models trained without feature selection. 
The Random Forest has the highest AUC score of 84.6%.

Results for with feature selection setting. Method: linear SVC + SelectFromModel. Table 3 describes 
that the ensemble learning models category has a better classification. The multi-layer perceptron and AdaBoost 
has the highest F1-score of 72.98%. AdaBoost, i.e., 77.60%, achieve the maximum ROC AUC score.

Figure 4b exhibits the ROC AUC curves of models trained in With Feature Selection setting, i.e., Linear 
SVC + Select From Model. In this method, AdaBoost has the highest AUC score of 77.60%. When these results are 
compared with previous results in Table 2, there is an impact of the Feature selection method, which decreased 
the overall performance in metrics such as ROC AUC scores, F1-scores, and recall.

Method: linear SVC + Tree‑based feature selection. This method has used a Tree-Based feature extractor as Extra 
Trees Classifier, which is slightly different from random forests. Extra Trees classifier is different because it selects 
the random split to divide a parent node into two random child nodes.

Table 4 represents that again the Machine Learning based classification is better. 73.46% is the highest F1 
score achieved by this feature selection method, which is less than the previous method. The maximum recall 
value achieved here is 72%, which is the same as the previous method. However, ROC AUC scores have been 
increased from the previous method except for deep learning classifiers and AdaBoost. Figure 4c. Portrays the 
ROC AUC curves of models trained in With Feature Selection setting, i.e., Linear SVC + Extra Tree classifier. 
AdaBoost, MLP, DL classifiers have the highest AUC score.

When results from the above three methods are compared, it is clear and advisable that regular features 
without using any feature selection method, i.e., especially Random Forests (Ensemble Learning method), have 
better accuracy of 76.49% and an AUC score of 84.6%. Therefore, it is preferable to use this model in production 
for real-time results.
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Conclusion
In clinics, medical practitioners can provide counseling about live-birth based on their experience or their suc-
cess rate of the fertility center, which can be inappropriate in some cases. This study will help both patients and 
medical practitioners make a concrete decision that depends on the tool predicting successful or unsuccessful IVF 
treatment based on a patient’s natural measurable predictors. This tool will provide counseling to couples about 
their chances of getting live-birth to emotionally get prepared before going through costly and cumbersome IVF 

Figure 4.  (a) ROC Curve Analysis of models trained without feature selection. (b) ROC Curve Analysis of 
different models in With Feature Selection setting, i.e., Linear SVC + Select From Model method. (c) ROC Curve 
Analysis of models trained with feature selection method, i.e., Linear SVC + Extra Trees classifier.

Table 3.  Comparison between classification metrics of different models in With Feature Selection setting, i.e., 
Linear SVC + Select From Model.

Model Precision (%) Recall (%) F1-score (%) ROC AUC score (%)

Machine Learning models

Multi-layer Perceptron 74 72 72.98 77.50

K Nearest Neighbours 67 66 66.49 72.20

Decision Tree 67 67 67.00 70.10

Deep learning model DL Classifier 74 72 72.98 77.40

Ensemble Learning models

Voting—Hard classifier 73 71 71.98 71.70

Voting—Soft classifier 71 70 70.49 75.70

Random Forest 69 68 68.49 74.00

AdaBoost 74 72 72.98 77.60
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treatment. The Random Forest model without feature selection has shown the best result that achieved an AUC 
score of 84.60% and 76.49% F1-score compared with other models. However, it is not suggested to depend solely 
on this tool currently for decision making, as the data is received from a single source, so it is not generalized to 
all populations. The models were trained on limited factors, while several important factors, such as consump-
tion of alcohol, smoking, caffeine consumption, hypertension, and other lifestyle factors that have a significant 
impact on predicting pregnancy, have not been considered due to the dataset’s limitation.

The scope of the future works are that the data can be collected from various IVF clinics in different geo-
graphical locations to contain information on many races across the globe. Few parameters on individuals’ 
lifestyle should be taken into consideration as these details indirectly affect fertility. AI performances can be 
improved if diverse data from various races and age groups is collected. A study can also be made regarding suc-
cessful fertility that emphasizes each feature’s importance in IVF. Different feature selection and dimensionality 
reduction methods can be used to improve model performances.
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