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Complex network dynamics 
of the topological structure 
in a geochemical field 
from the Nanling area in South 
China
Nian Peng1, Xiaoyan Zhu1, Yongshun Liu1*, Baofeng Nie1, Ying Cui1, Qianqian Geng1 & 
Chongwen Yu2

The topological classification of geochemical elements is widely used as a reference for regional 
prospecting prediction. In this study, we analyze the topological correlation structures of 39 
representative geochemical elements from the Nanling area of South China by implementing the 
complex networks theory. The topological correlation structures of geochemical elements have a 
high clustering coefficient (0.8120–0.8880), but the magnitude of the shortest path (1.2950–2.3600) 
is small. In combination with the analysis of complex networks characteristics, we report that 
the topological correlation structures of the geochemical elements in this area have small-world 
characteristics, which reveals the self-organized criticality. As shown in the topological network, 
two random elements have some level of associations, which present a specific community feature. 
Our preliminary result shows that with changing the control parameter (k) of “coarse-graining”, the 
topological correlation structures undergo two critical phase transitions. As the control parameter 
(k) reaches 0.44, the entire element system evolves into two parts. When the control parameter (k) 
reaches 0.63, the system forms three “communities”. It is worth noting that the three “communities” 
are basically consistent with the Goldschmidt’s geochemical classification of the elements, which are 
lithophile, siderophile, and chalcophile groups, respectively. In these “communities”, we also found 
that a small level of component units is nested.

Complex networks are defined as large-scale systems with some or all the properties of self-organization, self-
similarity, presence of attractors, small-world, and free-scale. They are characterized by nodes, edges, and topo-
logical  matrices1. Due to the advancement in small-world  effect2 and scale-free  theory3 in the last 20 years, 
complex networks theory has been proactively exploited as a descriptive and empirical research tool for various 
network types, such as river  systems4,5, food chain  networks6, logistics  networks7,8, financial  markets9, natural 
 resources10, etc.

Nowadays, the investigation of complex networks in many diverse fields has become the latest research hot-
spot and a challenging topic at the frontiers of  science11,12. This method has a strong significance to the study of 
the specific interactive relationship of complex  systems11,13,14.

The Nanling area of South China is an open complex giant system with abundant reserves of non-ferrous 
metal mineral resources. This area witnesses frequent magmatic activity. Chinese research groups have carried 
out numerous investigative studies on the mineral resources of the Nanling area in recent  years15–20. These stud-
ies focused primarily on the mineralization potential, deposit types, metallogenic processes and characteristics, 
and prospecting prediction. Complexity science and nonlinear science theory are seldom applied in this area. 
Only Yu Chongwen21–23 used complexity theory in his works to explain the mineralization of the Nanling area. 
Yu  Chongwen24,25 pointed out that the combination of mathematics, chemistry, physics, nonlinear science, and 
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complexity theory with geological science facilitated a long-term exploration of the nature of geological phe-
nomena and addressed the basic problems of geological sciences.

In the paper, we present a case study of geochemical elements from 1:200,000 stream sediment samples in the 
Nanling area in South China. We have constructed the complex network topological correlation structure charts 
of 39 main geochemical elements. Moreover, we also discuss the dynamic evolution process of the complex net-
works structure of the geochemical field using complexity science theory and reveal the symbiotic combination 
rule under the geochemical element topology in the area. This provides a practical reference for comprehensive 
prospecting and effective resource utilization.

Materials and methods
Regional overview and geochemical characteristics. Overview of the study area. The Nanling area 
is in the south-central part of South China. It has a total area of about 200,000  km2 that encompasses central-
southern Hunan, northern Guangxi, southern Jiangxi, and northern Guangdong. There are abundant early Mes-
ozoic granites and rift basins with mainly east–west and north-east distribution direction of the structural belt. 
The mountain system is arranged in nearly east–west, which is different from the basins and mountains in the 
south-east coastal area. The strata in this area are characterized as Devonian, followed by Cambrian, while as 
Sinian and lower Carboniferous in Hunan, Jiangxi, and Guangdong Province. The rock bodies comprise mostly 
the Yanshanian granite and subordinate Caledonian granite. This region has experienced multiple tectonic–
magmatic-metallogenic events that resulted in several large and super-large mineral deposits, e.g., the middle 
Jurassic Baoshan porphyry Cu–Mo deposits, the late Jurassic Shizhuyuan skarn W–Sn deposit, and Huangshap-
ing skarn Pb–Zn deposit. In addition to South China being the metallogenic prospect zone of the non-ferrous 
metals, rare earth elements (REE), and radioactive  minerals26, this area is also rich in W, Sn, Nb, Ta, U, and other 
metal mineral resources, which has long been a focus of geological research.

Regional geochemical characteristics. The Nangling area in South China is located at the juncture between 
the Yangtze Block and the Cathaysian block (Fig. 1). This region possesses many enrichment layers and ample 
deposits of W, Sn, Sb, As, U, Pb, Zn, and  REE27. The high geochemical backgrounds of W, Sn, and Bi content are 
mainly distributed in the central and eastern parts of the Nanling area, showing a distinct northeastward belt 
distribution, which is consistent with its essential geotectonic belt distribution. The high content in the geo-
chemical background shows the potential resource advantages of these elements in this region. The geochemical 
backgrounds of Pb and Zn are quite different. Pb is primarily distributed on the border area between Hunan and 
Guangdong Province. In contrast, Zn is mainly distributed in the middle and west of the Nanling area. Au and 
Ag have an uneven geochemical distribution with a high degree of  dispersion28. Besides, the main ore-forming 
elements in the Nanling area have distinct geographical locations. For example, the elements including W, Sn, 
Pb, Zn, Mo, and Ag are the main ore-forming elements in the southern Hunan Province; the elements Sn, Pb, 
Zn, and Sb are the main ore-forming ones in the northern Guangxi Province; Sn, Pb, Zn, Ag, and W are the main 
ore-forming ones in the northern Guangdong Province; and W and Sn are the main ore-forming ones in the 

Figure 1.  Geological and mineral resources map of the Nanling area. This figure was created with ArcGIS 10.5 
(https ://www.esri.com/en-us/arcgi s/produ cts/index ).

https://www.esri.com/en-us/arcgis/products/index
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southern Jiangxi Province. The Nanling area has become one of the premier choice areas to solve the shortage of 
domestic mineral  resources29.

Data sources. The primary research data used in this article is derived from a sub-topic of the Geological 
and Mineral Investigation and Evaluation Project of the key metallogenic belt of the China Geological Sur-
vey (1212011121101). It is the original geochemical data used by the Nanling working group for the mineral 
resource evaluation of the China Geological Survey in preparation for the Geophysical and Geochemical Explo-
ration Remote Sensing Information Atlas (https ://geocl oud.cgs.gov.cn/). Based on the 1:200,000 stream sedi-
ment geochemical exploration of Hunan, Guangxi, Jiangxi, and Guangdong provinces with 43,584 sampling 
points in total, our research involves 39 representative elements, including Ag, As, Au, B, Ba, Be, Bi, Cd, Co, Cr, 
Cu, F, Hg, La, Li, Mn, Mo, Nb, Ni, P, Pb, Sb, Sn, Sr, Th, Ti, U, V, W, Y, Zn, Zr and  Al2O3, CaO,  Fe2O3,  K2O, MgO, 
 Na2O, and  SiO2, with a total of 1,656,230 data. After preprocessing the data and eliminating some problematic 
sampling points, 40,029 valid sampling points are selected. The total valid data is 1,561,131. Data collected were 
processed and calculated using IBM SPSS Statistics, while the Gephi Social Network Analysis software was used 
for visualization.

Theory and methodology. Topological characteristics based on complex networks. The complex network 
has small-world and scale-free properties. However, with continuing research, the community structure has 
become an essential new feature that reveals the complex structure of the network. Generally, the connection 
between nodes is relatively tight within the same community, while the connection between nodes is relatively 
sparse between different communities. The research on the network community structure mainly uses various 
methods of community detection to mine the topology structure of the complex networks and analyze the char-
acteristics of network community structure, to better understand its structure and function.

The topological structure is one of the main contents of our research on complex networks theory. A network 
can be classified according to the topological characteristics of complex network. A complex network is com-
posed of nodes, connected edges, and a topological matrix. It can be regarded as a set of points and lines, which 
can be expressed as G = (V ,E) , wherein, V  is a set of all nodes in the network; E is a set of all connected edges 
between pairs of nodes in the network. If the connected edges corresponding to node pair (i, j) and node pair 
(j, i) are the same edge, then this network is called an undirected network; otherwise, it is a directed network. If 
all the connected edges in the network represent equal values, the network is an unauthorized network; else, it 
is a weighted  network30.

Pearson correlation coefficient. The Pearson correlation coefficient is a statistical index that reflects the strength 
of the relationship between two variables. The advantage of calculating the Pearson correlation multiple times 
is that it corrects the system error by measuring the “distance” between one element and the other elements of 
the whole system. Its specific application steps are as follows: (1) calculate the value of the correlation coefficient 
of each element for sample data as the initial coefficient matrix (X0); (2) continue to calculate the correlation 
coefficients among the columns of the matrix (X0), and obtain the “correlation coefficient of the correlation coef-
ficient” and a new matrix (X1); (3) continue to carry out the steps above, and calculate the correlation coefficient 
between the columns, and obtain another new matrix (X2) and (4) the final matrix is formed by the “correla-
tion coefficient of the correlation coefficient” after recursively repeating the above steps. The iterative process is 
shown in Eq. (1) as follows:

where M denotes a matrix consisting of 39 elements as columns and 40,029 sample spots of each element as rows 
(Supplementary Appendix Table I). R is the Pearson correlation, and X0 is an initial 39 × 39 coefficient matrix. 
The formula (2) showing the calculation of the correlation coefficient (R) is as follows:

where in N represents the number of sample points, a and b represent the elements. Additionally, ai and bi repre-
sent the content of the element a and b at the ith sampling point, respectively. Through the formula mentioned in 
Eq. (2), we can get the correlation coefficient X0 of the element content matrix A39 * 40029 in the Nanling area and 
then obtain the stronger correlation coefficient matrix X1 by recalculating the Pearson correlation coefficient.

Performing multiple rounds of “calculating the correlation coefficient of the correlation coefficient” on the 
39 chemical elements gradually reduces the systematic errors of large-area, multi-sample sampling, and the 
“noise” interference during the test. Doing so ensures that the elements with a positive correlation converge. 
In contrast, those with a negative correlation are separated. This effectively separates “communities” based on 
“closeness” and “sparseness”.

Fast‑unfolding algorithm. The Fast-Unfolding algorithm is a community detection algorithm commonly used 
by Gephi. Additionally, it provides a method to visualize complex networks communities. Based on the commu-
nity detection algorithm of hierarchical aggregation of modularity  optimization31, we can divide social networks 
into multiple small communities. In this method of maximizing the modularity, the relationships between com-
munities are restricted by each other. The modularity function is defined in the following Eq. (3).

(1)
Xi+1 = R(Xi)

X0 = R(M)

(2)Rab =

∑N
i=1 (ai − a)(bi − b)

√

∑N
i=1 (ai − a)2

√

∑N
i=1 (bi − b)2

https://geocloud.cgs.gov.cn/
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Here, A denotes the adjacency matrix and Ai,j is the weight of the edge between the nodes i and j. ki and kj 
denote the sum of the weights of all the edges connected to node i and j, respectively. m is the sum of the weights 
of all the edges, and ci is the community of node i. δ (ci,cj) indicates whether ci and cj are the judgment functions 
of the same community or not.

Information entropy of the topological correlation structure. Topological correlation structure features are 
divided into two levels: global and local features, which signify the two different network scales. On the global 
level, the degree of correlation between elements is mainly explained by the clustering of  elements32. On the 
other hand, at the local level, the role of the elements in the whole system is primarily defined using the con-
nectivity and neighborhood integrity of the element nodes. The meanings of the representatives at the two levels 
are detailed in Table 1.

We quantify the level of order or disorder in the state of the topological correlation structure of complex 
networks by clustering information entropy (CIE), connectivity information entropy (AIE), and neighborhood 
integrity information entropy (NIE). Entropy was originally a physical quantity used in thermodynamics to 
express the degree of disorder in the molecular state. In 1948, Claude Elwood Shannon developed the concept 
of “information entropy” to describe the quantification of information uncertainty or the value of describing 
 things33,34, as shown in Eq. (4):

Here, pi is the probability of the occurrence of the ith random event, and 
∑n

i=1 pi = 1.

(1) CIE : This index directly depicts the closeness or aggregation of each node with all other nodes in a global 
sense. The smaller the CIE of the node i is, the stronger its clustering ability becomes in the entire network 
compared with other nodes. The CIE of a node i is formulized in Eq. (5) as follows:

  In the above Equation, l means the shortest path length; l  is the average of the shortest path between all 
pairs of nodes in the network (available through the Gephi software).

(2) AIE : The degree value of the node, ki, is the number of direct links that the node i forms with the other 
nodes in the network. This index quantifies the degree of connectivity of the nodes in the network. It reflects 
the closeness of the connection between the node and the surrounding nodes, which shows the importance 
of the node to a certain  extent35. The AIE of node i is calculated, as shown in Eq. (6).

(3) NIE : The clustering coefficient, c ( −c  means the average clustering coefficient), refers to the interconnection 
between the neighbor nodes of a node. This is numerically equal to the ratio of the number of edges exist-
ing between nodes directly connected to a node (called neighbors of a node) to the maximum number of 
edges. c can vary between 0 and 1. The c value of 1 (0) means all nodes directly connected to a node are also 
connected to each other (not connected to each other). The node of the clustering coefficient is obtained 
by the following Eq. (7):

In the above Equation, ei represents the actual number of edges between neighbor nodes of node i and ki is 
the degree value of the node i. The NIE of the node i is defined as per the following Eq. (8):

(3)Q =
1

2m

∑

i,j

[

Ai,j −
kikj

2m

]

δ
(

ci , cj
)

, δ
(

ci , cj
)

=

{

1 when ci = cj
0 else

(4)H(p) = −

n
∑

i=1

pi log(pi)

(5)Hli = −
li

∑n
i=1 li

log

(

li
∑n

i=1 li

)

(6)Hki = −
ki

∑n
i=1 ki

log

(

ki
∑n

i=1 ki

)

(7)ci =
2ei

ki(ki − 1)

Table 1.  Elemental topology information, hierarchical metrics, and their meanings.

Degree Aspects Descriptive index Meaning of network characteristics

Whole Clustering The smallest path Average of the shortest path required from a node to all other nodes

Local
Connectivity Degree The total number of nodes directly connected to a node

Neighborhood integrity Clustering coefficient The degree of direct neighborhood structural integrity of a node
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Specific steps to create complex networks. Step 1. Getting the data : The source of the original data was the 
stream sediment dispersion flow data, including 43,584 sampling points of 39 geochemical elements. We elimi-
nated some problematic sampling points through data preprocessing, and 40,029 valid sampling points were 
retained for further analysis. The total valid data is 1,561,131. Only a part of the data has been shown in Sup-
plementary Appendix Table I.

Step 2. Calculating the correlation coefficient: We use SPSS software to calculate the Person correlation coef-
ficient. We obtain the correlation coefficient matrix [39 × 39 matrix (Supplementary Appendix  X0, Table  II)] 
between 39 elements. To overcome random interference in large-scale data, the “correlation coefficient of 
the correlation coefficient” was calculated in our second iteration, and we got X1 (Supplementary Appendix 
Table III), X2 (Supplementary Appendix Table IV). In this paper, the X2 matrix already meets the requirements 
of our third step work.

Step 3. Visual representation of complex networks: We use the Fast unfolding algorithm in Gephi software to 
visualize the X2 matrix. To better display the “principal structure” of the 39 geochemical elements, we filter out 
the unimportant information from the weight matrix (X2) by eliminating all values below k to achieve “coarse-
training” and obtain a 0-n matrix X2* = (xij*).

Step 4. Carry out analysis of complex networks feature. They mainly include average shortest path, degree 
value, clustering coefficient, CIE, AIE, and NIE.

Results and discussion
Establishment of the topological correlation structure of geochemical complex net-
works. Each chemical element is denoted as a node and the element relationship as an edge. The 39 element 
correlation coefficient matrix is defined as an undirected, weighted, symmetric 39 × 39 adjacency matrix. The 
Fast-Unfolding community detection algorithm is used to build the initial complex networks topology of geo-
chemical elements in the Nanling area in the Gephi software.

From the topological correlation structure diagram of Fig. 2a, we deduce the following:

(1) Each line indicates a positive correlation between the connected elements, and the thickness of the lines 
indicates the strength of positive correlation.

(2) The size of each element node shows the number of edges connected to it (generally referred to as degrees).
(3) There are more or less connections between any two elements. A few elements occupy the center of the 

topological correlation structure, while some are at the edge of the structure. Several elements act as bridges 
between the elements present in the middle and the elements at the edges, which present a particular 
community feature. The three communities are represented in the colours green  (Na2O,  K2O, Be, Y, Nb, 
U, La, Zr, Th,  Al2O3, and Li), purple (Cu, Ag, Zn, Sn, Pb, As, Bi, B, W, Au, Mo, F, Cd, Sb, and  SiO2), and 
orange  (Fe2O3, Co, Ni, CaO, Mn, Hg, Ti, P, Sr, MgO, V, Cr, and Ba). The above elements are sorted by the 
topological space distance (the relationship between points and points on the network scale) from small 
to a large value.

(4) This topological classification is consistent with the traditional elemental geochemical classification pro-
posed by Goldschmidt. The three communities are respectively the “lithophile group” (i.e., green of Fig. 2), 
“chalcophile group” (i.e., purple of Fig. 2), and “siderophile group” (i.e., orange of Fig. 2). In the three 
communities, the green elements community was enriched mainly in acidic rocks, the purple elements 
community higher in hydrothermal geofluids, and the orange elements community enriched in basic rocks.

(5) There are, however, some differences between them the traditional and topological classification. For exam-
ple, in the conventional geochemical classification of elements, Ti, Sr, MgO, V, Mn, Cr, Ba, CaO, B, W, and 
 SiO2 are lithophiles, Mo, F, Au, and Sn are siderophiles, while in the complex networks diagram, Ti, Sr, MgO, 
V, Mn, Cr, Ba, and CaO are siderophiles, and B, W,  SiO2, Mo, F, Au, and Sn are chalcophiles. We explore 
the reasons for the discrepancy and come up with two possible answers. Firstly, the sample is derived from 
the stream sediments, which is quite different from the original rock. Secondly, some elements are known 
to exhibit duality. A transitional element can be in a symbiotic combination relationship; for instance, Mo 
displays the dual nature of a siderophile and chalcophile. Likewise, Mn shows the duality of belonging to 
both lithophile and chalcophile groups.

The classification of elements proposed by Goldschmidt is based on geochemical theory and is characterized 
by a strong universality. On the other hand, this work in this paper is a topological classification of actual geologi-
cal bodies, which is based on the internal relationships of the geochemical element content. This classification has 
certain stability and is generally consistent with the Goldschmidt classification. At the same time, it also changes 
with the change of the research area and research object. It highlights the features arising from regionality and 
flexibility, which may have significance to guide prospecting. Besides, in comparison with Goldschmidt classifica-
tion, the topological structure of complex networks in this paper has a smaller level of component units nested 
within the same type and provides a more refined internal structure. Therefore, in contrast to the Goldschmidt 

(8)Hci = −
ci

∑n
i=1 ci

log

(

ci
∑n

i=1 ci

)
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Figure 2.  Evolution of the topological correlation structures in complex networks (control parameter, k = 0, 0.3, 
0.5, and 0.7 from (a–d)). This figure was created with Gephi 0.9.2 (https ://gephi .org).

https://gephi.org
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classification, the complex networks topological correlation structure of the geochemical field in the Nanling 
area may have more practical significance.

In order to demonstrate the dynamic evolution process of the topological correlation structure of complex 
networks, we propose a non-negative control variable k (element correlation coefficient). We filter out the unim-
portant information from the weight matrix (X2) by eliminating all values below k to achieve “coarse-graining” 
and obtain a 0-n matrix X2

* = (xij
*), as shown in Eq. (9):

“Coarse-graining” belongs to the idea of renormalization groups, which aims to explore the dynamic behav-
ior of the complex system at a critical phase transition. After the “coarse-graining” of the complex networks 
topological correlation structure of the elements, the structure undergoes two critical phase transitions, which 
further resolves the community phenomena. When the control parameter (k) reaches 0.44, the entire element 
system evolves into two “communities”; when the control parameter (k) reaches 0.63, the system forms three 
stable “communities”. These “communities” are also nested inside a smaller community. Take Fig. 2d, for example: 
as the control parameter (k) becomes larger, the whole complex network structure presents smaller communi-
ties, such as W-Sn-Bi (Fig. 2d). The control parameters from a to d in Fig. 2 are 0, 0.3, 0.5, and 0.7, respectively.

Self-organized criticality of the topological correlation structure of chemical elements. With 
the dynamic evolution of the complex networks’ topological correlation structure (a–d in Fig. 2), Table 2 pre-
sents trends observed in the network eigenvalues and information entropy of the topological correlation struc-
ture of geochemical elements in the Nanling area. The three sets of information entropy show an increasing 
trend of entropy, which reveals that the system evolves towards a dynamic equilibrium in a topological sense.

From a global perspective, the complex networks structure chart of the geochemical field in the Nanling area 
has a higher clustering coefficient (0.8120–0.8880) and smaller shortest path (1.2950–2.3600), which shows the 
small-world characteristics and reveals the self-organized criticality. From a local perspective (taking Fig. 2b as 
an example), there are subtle differences in the network eigenvalues and information entropy of the topological 
correlation structures of the geochemical elements (Table 3). Among them, the average clustering coefficient of 
the “lithophile group” is the highest (0.9488), while the average shortest path length of the “chalcophile group” 
is the lowest (1.9807). AIE, NIE, and CIE have small differences within the range of 0.05 in the three “communi-
ties”. All three indicators obey the trend of increasing entropy.

Topological classification of geochemical elements and prospecting prediction. In this paper, 
the geochemical elements in the Nanling area are classified into three categories based on the complex networks’ 
topology. The three classifications are “lithophile group”  (Na2O,  K2O, Be, Y, Nb, U, La, Zr, Th,  Al2O3, and Li), 
“chalcophile group” (Cu, Ag, Zn, Sn, Pb, As, Bi, B, W, Au, Mo, F, Cd, Sb, and  SiO2) and “siderophile group” 
 (Fe2O3, Co, Ni, CaO, Mn, Hg, Ti, P, Sr, MgO, V, Cr, and Ba), respectively. The topological classification of geo-
chemical elements is a preliminary attempt at the practical application of complexity science in geoscience to 
enhance the exploration value.

Among the chalcophile elements, the group Cu–Pb–Zn–Ag exhibits a strong topological correlation structure 
whose enrichment is related to the mineralization of medium-acid magmatic rocks in the medium-to-low tem-
perature environment. The topological correlation structure of W-Sn-Bi indicates that the ore-forming process 
is dependent on the environment. These three hydrothermal mineralization elements are related to the acidic 
rock  mass36. They are abundant in the Nanling area, and the distribution direction of these elements is related 
to that of the Yanshan early granite. They are basically in the same extension direction of the Nanling geotec-
tonic belt. The combination of Cu, Pb, Zn, Ag, Mo, etc., is generally associated with medium-temperature and 
medium–high temperature hydrothermal mineralization, which is a sign for searching hydrothermal bismuth 
metal mineralization. The paragenesis of Ti, Mn, and V generally signals the presence of sedimentary deposits. 
The elements of Cu, Mo, Au, Pb, Zn, Ag, W, etc., together with Pb, Zn, Ag, Ti, and W, are the indicators for the 
exploration of porphyry copper-molybdenum deposits. W, Sn, Mo, F, and Nb are often associated with alkali 
granites containing Na–Ta and Sn–W mineralization, sometimes with Zr, P, Ti, and Zn, which is an indication 
of searching for Sn, W and Nb–Ta deposits.

Among the siderophile elements, the elements of Fe, Co, and Ni are compatible. Their oxides and sulfides 
have low free energy, which is beneficial for enrichment under high pressure. During the historical multi-stage 
tectonic or magmatic activity in the Nanling area, the Yanshanian tectonic magmatism dominated and led to 

(9)X∗

2 =

{

xij when xij > k
0 else

Table 2.  Comparison of the dynamical state of topological correlation structures in complex networks in 
terms of entropy.

Nodes Edges c l CIE AIE NIE

Figure 2a 39 365 0.8120 1.5990 0.1353 0.1345 0.1352

Figure 2b 39 265 0.8460 2.3600 0.1348 0.1336 0.1351

Figure 2c 38 192 0.8430 1.7830 0.1364 0.1356 0.1373

Figure 2d 33 131 0.8880 1.2950 0.1506 0.1489 0.1554
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massive metal accumulation and  mineralization37. Mg, Fe, Ni, Cr, Co, and B are symbiotic, closely related to 
ultramafic rocks, and are an important indicator for exploring iron and copper-nickel ore.

Among the lithophile elements, the properties of the elements of Be, Sr, and Ba such as an oxidation state of  
(+2), quick reaction with oxygen and water vapor in the air to form oxides and carbonates on the surface, and 
strong alkaline water-soluble oxides, are identical to alkaline earth metals. The elements of Zr, Nb, U, La, Y, and 
K are incompatible, so they often appear together. The affinity of U, Y, K, Zr, Na, Nb, and La is strong, indicat-
ing high-potassium alkaline rock and K-feldspar granite with radioactive elements and local mineralization 
characteristics.

The Nanling area is an important non-ferrous polymetallic metallogenic area in China, and its metallogenic 
background and mineral prediction are the key issues that invite great attention from the geological community. 
In this paper, we reveal the topological structure of the regional geochemical field through the application of 
complex networks theory. In the future, it would be possible to make more accurate scientific judgments on the 
complex geological characteristics of mineralization in Nanling area of China by combining the tectonic theory 
of mantle plume or by using the comparison method of Th/U, Nb/Ta, Zr/Hf, and other elements. The results of 

Table 3.  Network eigenvalues and standardized information entropy of the topological correlation structures 
of chemical elements in the Nanling area.

Nodes Degree AIE c NIE l CIE

Ag 20 0.1422 0.5033 0.0949 1.5263 0.1310

As 22 0.1523 0.7899 0.1328 1.5000 0.1293

Au 22 0.1523 0.8009 0.1341 1.4737 0.1277

B 26 0.1714 0.7415 0.1268 1.3421 0.1192

Ba 18 0.1317 0.7582 0.1289 1.5263 0.1310

Be 14 0.1094 0.7415 0.1268 1.3421 0.1192

Bi 19 0.1370 0.7802 0.1316 1.8684 0.1516

Cd 25 0.1667 0.7567 0.1287 1.3947 0.1226

Co 20 0.1422 0.8529 0.1404 1.5526 0.1326

Cr 21 0.1473 0.5584 0.1027 1.4211 0.1243

Cu 25 0.1667 0.7802 0.1316 1.8684 0.1516

F 18 0.1317 0.8103 0.1353 1.5000 0.1293

Hg 23 0.1572 0.5762 0.1051 1.4474 0.1260

La 11 0.0912 0.6491 0.1149 1.5000 0.1293

Li 14 0.1094 0.8009 0.1341 1.4737 0.1277

Mn 22 0.1523 0.9412 0.1507 1.6316 0.1375

Mo 26 0.1714 0.7415 0.1268 1.3421 0.1192

Nb 13 0.1035 0.7567 0.1287 1.3947 0.1226

Ni 20 0.1422 0.8897 0.1448 1.6053 0.1359

P 18 0.1317 0.8316 0.1379 1.5263 0.1310

Pb 17 0.1263 0.8590 0.1411 1.7105 0.1423

Sb 24 0.1620 0.9412 0.1507 1.6316 0.1375

Sn 22 0.1523 0.8442 0.1394 1.5263 0.1310

Sr 17 0.1263 0.9273 0.1491 2.0263 0.1606

Th 13 0.1035 0.8939 0.1453 1.7368 0.1439

Ti 18 0.1317 0.8590 0.1411 1.7105 0.1423

U 13 0.1035 0.8762 0.1432 1.5526 0.1326

V 21 0.1473 0.9000 0.1460 1.5789 0.1343

W 21 0.1473 0.8590 0.1411 1.9474 0.1562

Y 12 0.0974 0.8590 0.1411 1.7105 0.1423

Zn 26 0.1714 0.8762 0.1432 1.5526 0.1326

Zr 13 0.1035 0.9000 0.1460 1.5789 0.1343

Al2O3 12 0.0974 0.8022 0.1343 1.6579 0.1391

CaO 22 0.1523 0.9412 0.1507 1.6316 0.1375

Fe2O3 18 0.1317 0.8398 0.1388 1.4737 0.1277

K2O 14 0.1094 0.8590 0.1411 1.9474 0.1562

MgO 22 0.1523 0.7879 0.1326 1.8684 0.1516

Na2O 13 0.1035 0.8485 0.1399 1.6316 0.1375

SiO2 15 0.1152 0.9429 0.1509 1.6579 0.1391
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the topological correlation structures in complex networks are valuable for regional prospecting prediction. This 
study can be further extended to process other scientifically relevant geochemical data.

Conclusions
Based on the complex networks’ topology analysis of 39 chemical elements in the Nanling area, we have drawn 
the following conclusions:

(1) The average clustering coefficient of the topological correlation structures for the geochemical elements 
in the Nanling area is between 0.8120 and 0.8880, and the average shortest path length is between 1.2950 
and 2.3600. High clustering coefficients and small shortest paths indicate small-world characteristics and 
reveal the self-organized criticality of the geochemical field in the Nanling area.

(2) Any two elements in the topological correlation structures of the geochemical elements are related to 
each other, but the clustering coefficient is quite different, showing certain community characteristics. On 
changing the control coefficient (k) of “coarse-graining”, the topological correlation structures display two 
critical phases. When the coarsening parameter (k) reaches 0.44, the system evolves into two parts; and 
when the coarsening parameter (k) reaches 0.63, the system forms three stable “communities”.

(3) The three elemental “communities” in the sense of topology are respectively (sorted by the topological 
space distance from small to large): (1)  Na2O,  K2O, Be, Y, Nb, U, La, Zr, Th,  Al2O3, and Li; (2)  Fe2O3, Co, 
Ni, CaO, Mn, Hg, Ti, P, Sr, MgO, V, Cr, and Ba; (3) Cu, Ag, Zn, Sn, Pb, As, Bi, B, W, Au, Mo, F, Cd, Sb, and 
 SiO2, which is consistent with the geochemical classification of traditional elements proposed by Gold-
schmidt (“lithophile group,” “siderophile group” and “chalcophile group”). In the three communities, the 
green elements community was enriched mainly in acidic rocks, the purple elements community higher 
in hydrothermal geofluids, and the orange elements community enriched in basic rocks. As the control 
parameter (k) becomes larger, the whole complex networks structure will present smaller communities. 
By contrast with the traditional Goldschmidt classification, complex networks topology classification may 
be a more practical reference.

(4) The complex networks method provides a new perspective for studying the features of chemical elements 
and the constraints of chemical processes. Since the results obtained from this method are consistent with 
the ones from traditional geochemical theory, it paves the way for the future development of the mechanism 
of geochemical evolution. Additionally, the complex networks theory can be applied to the study of the 
element migration and enrichment in time and space and the prediction of mineralization in the geological 
body.

Perspectives for future works
In this paper, we take the geochemical elements in the Nanling area as the research object and demonstrate 
the use of the complex networks theory, a sparsely utilized method in geology. Here, we construct the complex 
network topology correlation structures diagram of 39 major geochemical elements. This work is based on the 
topological classification of actual geological bodies. It is established based on the intrinsic relationship of the 
content of geochemical elements. It has a certain degree of stability and is generally consistent with the Gold-
schmidt classification. The complex network topology structure in this paper has a certain level of the hierarchy, 
that is, smaller levels of constituent units are nested within the same type, which has a more refined internal 
structure. In the future, we introduce and apply network analysis to topics in mineralogy and petrology-fields 
that are especially amenable to this approach as they consider systems of numerous mineral species that coexist 
in myriad combinations in varied deposits. The network analysis can help to reveal the regularity and simplicity 
of mineralogy and petrology.
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