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Interaction of liming and long‑term 
fertilization increased crop yield 
and phosphorus use efficiency 
(PUE) through mediating 
exchangeable cations in acidic 
soil under wheat–maize cropping 
system
Muhammad Qaswar1,2,9, Li Dongchu1,3,9, Huang Jing1,3, Han Tianfu1, Waqas Ahmed4,5, 
Muhammad Abbas1, Zhang Lu1, Du Jiangxue1, Zulqarnain Haider Khan6,7, Sami Ullah1, 
Zhang Huimin1,8* & Wang Boren1,3*

Low phosphorus use efficiency (PUE) is one of the main problems of acidic soil that limit the crop 
growth. Therefore, in the present study, we investigated the response of crop yield and PUE to the 
long‑term application of fertilizers and quicklime (CaO) in the acidic soil under wheat–maize rotation 
system. Treatments included, CK (no fertilization), NP (inorganic nitrogen and P fertilization), NPK 
(inorganic N, P and potassium fertilization), NPKS (NPK + straw return), NPCa (NP + lime), NPKCa 
(NPK + lime) and NPKSCa (NPKS + lime). Results showed that, fertilizer without lime treatments, 
significantly (p ≤ 0.05) decreased soil pH and crop yield, compared to the fertilizer with lime treatments 
during the period of 2012–2018. Average among years, compared to the CK treatment, wheat grain 
yield increased by 138%, 213%, 198%, 547%, 688% and 626%, respectively and maize yield increased 
by 687%, 1887%, 1651%, 2605%, 5047% and 5077%, respectively, under the NP, NPK, NPKS, NPCa, 
NPKCa and NPKSCa treatments. Lime application significantly increased soil exchangeable base 
cations  (Ca2+ and  Mg2+) and decreased  Al3+ cation. Compared to the NP treatment, phosphorus use 
efficiency (PUE) increased by 220%, 212%, 409%, 807% and 795%, respectively, under the NPK, 
NPKS, NPCa, NPKCa and NPKSCa treatments. Soil pH showed significant negative relationship with 
exchangeable  Al3+ and soil total N. While, soil pH showed significant (p ≤ 0.05) positive relationship 
with exchangeable  Ca2+, PUE and annual crop yield. PUE was highly negatively correlated with soil 
exchangeable  Al3+. In addition, soil exchangeable  Ca2+, pH, exchangeable  Al3+ and available N were 
the most influencing factors of crop yield. Therefore, we concluded that lime application is an effective 
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strategy to mitigate soil acidification and to increase PUE through increasing exchangeable base 
cations and reducing the acidic cations for high crop yield in acidic soil.

Inorganic fertilizers are widely used worldwide to achieve high crop  yield1,2. Urea is the most commonly used N 
fertilizer, which have caused significant acidification in many parts of the  world3,4. Application of urea fertilizer 
has been extended throughout the cultivated area in the China and the world due to its high N (46% N)  content5 
and low  cost6. However, except urea other N-fertilizers such as ammonia sulfate also cause soil acidification, 
through generating protons during process of nitrification. Soil pH directly or indirectly influences the soil 
biochemical properties and influence the plant  growth7,8.

Changes in soil acidity through fertilization can strongly influence the soil nutrient availability, plant growth 
and functionality of  ecosystem9,10. The acidification of soil reflects the relative distributions of acidic cations 
 (H+ and  Al3+) and base  (Ca2+,  Mg2+,  K+, and  Na+)  cations11,12, with the capacity to neutralize the acidic cations 
that mostly depend on exchangeable calcium  (Ca2+) and magnesium  (Mg2+)  ions13. As the amount of  H+ ion 
increases, the concentration of base cations decreases during ecosystem  development14. Due to soil acidification, 
some negative effects may appear in soil such as depletion of base nutrients, high solubility of Al, Fe and Mn, 
which may cause toxicity in  plant15–17.

Soil phosphorus is highly sensitive to soil  pH18. In acidic soil, lower P use efficiency (PUE) is major problem in 
Chinese  cropland19,20, which adversely affects the crop yield. In acidic soil P availability for plant uptake decreases 
due to P fixation with acidic cations such as Al and  Fe21, which reduces the plant P uptake. Use of different organic 
and inorganic amendments has been reported in previous studies to enhance soil pH and  PUE22,23. In a previ-
ous study, we observed that application of wheat straw or pig manure in combination with inorganic fertilizer 
increased the phosphatase activities and  PUE24. Addition of manure can increase the soil pH due to alkalinity 
of  manure25. However, liming is considered one of the most effective strategies to mitigate soil acidification, 
which can increase P availability in acidic  soil26,27. In the several laboratory experiments, lower P solubility was 
observed in neutral and slightly acidic  soils28–30. While, under field conditions, positive relationship between 
soil pH and P availability was  observed24. In the field experiments that receive high P input, Al phosphate can 
also  precipitate31. The theory of P adsorption on surface of oxides predicts that P solubility decreases when soil 
acidity  increased32,33, and maximum adsorption (minimum solubility) of P occurs at around pH 4 for Al or Fe 
 oxides33. Therefore, addition of lime to the acidic soil can reduce the oxides of Al and  Fe27 and it can increase 
the P uptake for better crop production.

Over last several years, Chinese croplands have been subjected to significant acidification due to long-term 
inorganic fertilization. The southern subtropical area of China is dominant with arable land, playing a significant 
role in national grain  production34. However acidification of soil is a major problem which limit the high crop 
production and nutrient use  efficiency35,36. In addition, atmospheric deposition of N and sulfur (S) have further 
aggravated the problem of soil acidification in subtropical regions in southern China receiving the highest 
 concentration37–39. Therefore, the main objectives of this study were to investigate relationships between soil pH, 
PUE and crop yield under long-term liming and fertilization in acidic soil. Quantitative assessment of the factors 
limiting the PUE and crop yield was performed in acidic soil under long-term wheat–maize rotation system.

Materials and methods
Experimental site description. A long-term field trial was initiated in 1990 at the National observation 
and research station of farmland ecosystem, Qiyang county (26° 45′ 42″ N, 111° 52′ 32″ E) in southern region of 
China (Fig. 1). The climate at experimental site is subtropical monsoon that receives mean annual temperature 
of 17.8 °C and mean annual rainfall of 1290 mm. The duration of rainfall is from April to end of June every 
year. The climatic information during the experimental period is shown in Fig. S1, that were collected from the 
regional weather station following the National Standard of Specifications for Surface Meteorological Observa-
tions (1979). The soil type is Eutric Cambisol according to World Reference Base for soil resources (WRB)40, 
USDA classified this type of soil as Inceptisol with light loam soil texture and also classified as red soil based on 
Chinese soil classification  system41. This soil contained 43.86% of clay content, 31.86% of silt and 24.28% of sand. 
The initial (1990) characteristics of topsoil (0–20 cm) included, soil pH 5.7, soil organic carbon (SOC) 7.9 g kg−1, 
total N (TN) 1.07 g kg−1, available N (AN) 79 mg kg−1, total P (TP) 0.45 g kg−1, available P (AP) 14.0 mg kg−1, 
total potassium (TK) 13.7 g kg−1 and available K (AK) was 104 mg kg−1.

Experimental design and crop management. This experiment was designed under winter wheat-
summer maize rotation system and the treatments were arranged in split plot design with two replicates. Each 
plot (20 m × 5 m) was separated from adjacent plot by 20 cm cemented baffle plates to avoid the water and treat-
ment contamination from nearby plot. The third replication was pseudo-replication for which samples were 
collected from specific area in one of the original replication of each treatment according to  Hurlbert42. The 
pseudo-replication in this study can increase the type 1 error in the  results43, although there is high spatial and 
temporal homogeneity in the production in this  field44. For the present study, we selected seven treatments, 
including (1) CK (no fertilization, control); (2) NP (inorganic N and P fertilization); (3) NPK (inorganic N, P 
and K fertilization); (4) NPKS (inorganic N, P and K fertilization + straw); (5) NPCa (inorganic N and P ferti-
lization + lime); (6) NPKCa (inorganic N, P and K fertilization + lime); (7) NPKSCa (inorganic N, P, K fertiliza-
tion + straw + lime). Annually, fertilizer urea was applied at the rate of 150 kg N ha−1, calcium superphosphate 
was applied at the rate of 120 kg  P2O5  ha−1 and potassium chloride was also applied at the rate of 120 kg  K2O  ha−1. 
All fertilizers were applied before sowing, 30% and 70% of the annual inputs assigned to the wheat and maize 
crop, respectively. Every year, crop yield and straw were removed, while crop residues were remained in the field. 
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In the NPKS and NPKSCa treatments, 50% of the aboveground wheat and maize straw were incorporated to 
the field, without considering the excess nutrients of N, P and K input through straw. In the NPCa, NPKCa and 
NPKSCa treatments, quick lime (CaO) was applied at the rate of 2550 kg ha−1 in 2010 and 1500 kg ha−1 in 2014 
only during middle of October to mitigate soil acidification.

The experimental field was disposed of for three years before conducting experiment to ensure the same soil 
physical and chemical properties. Two crops were sown each year with winter wheat (Xiangmai cultivar) culti-
vated at the rate of 63 kg ha−1 (160 seeds  m−2) followed by summer maize (Yedan-13 cultivar) at the seed rate of 

Figure 1.  Soil pH and nutrient contents under long-term fertilization and liming in acidic soil under wheat–
maize cropping system. Values are means (n = 3).
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60,000 seeds  ha−1. No irrigation was applied to winter wheat and summer maize due to annual high precipitation. 
Pesticides Omethoate and Carbofuran were applied to control the wheat aphid during the postulation period and 
maize borers. Herbicide such as Glyphosate was applied to control the weeds after maize harvest. The crop was 
manually harvested and stubbles (about 6 cm height) and roots were remained in the soil. The collected grains 
and straw were air-dried and weighed separately for each crop.

Sampling and laboratory analysis. Air-dried, grain and straw samples of crop were oven-dried at 105 °C 
for half hour then heated at 70 °C to a constant weight for dry matter and P content determination. Oven-dried 
grain and straw samples of wheat and maize crop were ground and digested with  H2SO4–H2O2 at 270 °C. Phos-
phorus concentration in grain and straw was measured following the vanadomolybdate yellow  method45.

Topsoil (0–20 cm) samples were collected during 2012–2018 every year after maize crop harvest from ran-
domly selected five points in each plot using a stainless steel sampler. Composite samples were mixed thoroughly 
and transferred to laboratory in the clean polythene bags for chemical analysis. To measure the soil chemical 
characteristics, a part from composite samples was ground and sieved through 0.25-mm sieve. SOC was estimated 
according to oxidation method using vitriol acid potassium dichromate  oxidation46. Concentrations of total N, 
P and K were analyzed in accordance with  Black47, Murphy and  Riley48 and Knudsen et al.49, respectively. Soil 
available N, P and K concentrations were determined according to procedures described by Lu et al.50 Olsen 
(1954) and Page et al. (1982), respectively. Exchangeable  Ca2+ and  Mg2+ were extracted by 1 M ammonium 
acetate (pH 7) and determined by atomic absorption spectroscopy. Exchangeable  Al3+ was determined by NaOH 
neutralization titration after  BaCl2 (0.1 mol  L−1) extraction. Soil pH was determined with a glass electrode using 
a 2.5:1 water-soil suspension.

Calculation. Based on amount of P fertilizer applied and P uptake by crop from 2012 to 2018, P use effi-
ciency (PUE) in the term of P agronomic efficiency was determined for each plot using following  equation51:

Figure 2.  Soil exchangeable calcium (a), magnesium (b) and aluminum (c) cations under long-term 
fertilization and liming in acidic soil under wheat–maize cropping system. Values are means (n = 3).
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where the PUE is phosphorus use efficiency (kg  kg−1), YF is the annual crop yield (above-ground biomass) (kg 
 ha−1) under the fertilization treatment and Y0 is annual crop yield (kg  ha−1) under the control treatment. F is 
annual P input (kg  ha−1).

Statistical analysis. Significant differences among treatments were tested by one-way ANOVA and inter-
action between treatments and fertilization year were test by two-way ANOVA followed by Tukey’s HSD test at 
P = 0.05 level of significance by using statistix 8.1 (window version). Relationships between soil characteristics, 
PUE and crop yield were quantified by linear regression equation. Boosted Regression Tree (BRT) analysis was 
performed using gbm  package52 in R version 3.3.3 to determine the relative influence of difference indexes on 
annual crop  yield36. Since BRT models can incorporate both continuous and discrete explanatory variables, 
there is no need for prior data transformation or elimination of outliers, and they can fit complex nonlinear 
 relationships52. The BRT fit was analyzed using a tenfold cross validation. BRT model was performed using tree 
complexity of 5 and learning rate of 0.005.

Results
Soil chemical properties. Long-term fertilization and liming treatments significantly (p ≤ 0.05) affected 
soil chemical properties, such as pH, nutrient contents (Fig. 1) and exchangeable cations (Fig. 2). Long-term 
inorganic fertilization significantly decreased soil pH over the years, while, fertilizers with lime application 
increased the soil pH. However, soil pH was highest under the CK (control) treatment. Average across the years, 
soil pH under the CK treatment was 5.77. Compared to the CK treatment, soil pH under the NP, NPK, NPKS, 
NPCa, NPKCa and NPKSCa treatments decreased by 25.4%, 26%, 24.2%, 14.8%, 12.1% and 14.7%, respectively. 
Changes in SOC, total N and available N were not consistent over the years. However, in all the fertilization 
treatments with and without liming SOC, total N and available N contents were significantly higher than the 
CK treatment. On average across the years, compared to the CK treatment, the increase in SOC content was by 
24.0%, 38.8%, 35.7%, 33.2%, 39.3% and 29.8%, respectively, the increase in total N was by 18.3%, 25.7%, 26.0%, 
20.3%, 20.8%, and 23.6%, respectively and the increase in AN was by 38.1%, 49.7%, 32.0%,40.7%, 25.2% and 
32.3%, respectively, under the NP, NPK, NPKS, NPCa, NPKCa and NPKSCa treatments. Over the years, soil 
total and available P content was increased in all fertilization treatments. On average, compared to the CK treat-
ment, soil total P content increased by 107%, 130%, 128%, 118%, 113% and 95.0%, respectively, and available P 

PUE =

(YF − Y0)

F

Figure 3.  Wheat and maize yield (kg  ha−1) under long-term fertilization and liming in acidic soil under wheat–
maize cropping system. Values are means (n = 3).
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increased by 1668%, 1709%, 1954%, 1699%, 1315% and 1325%, respectively, under the NP, NPK, NPKS, NPCa, 
NPKCa and NPKSCa treatments.

Liming with fertilization significantly increased exchangeable calcium and magnesium and decreased 
exchangeable aluminum compared to the fertilizer treatments without liming (Fig. 2). However, over the year, 
the increase in exchangeable cations were not consistent in all fertilization treatments. On average, exchangeable 
 Ca2+ content was (6.8 cmol  kg−1) highest under the CK treatment. Compared to the CK treatment, soil exchange-
able  Ca2+ content under the NP, NPK, NPKS, NPCa, NPKCa and NPKSCa treatments decreased by 39%, 37%, 
48%, 11%, 10% and 15%, respectively. Averaged among years, compared to the CK treatment, exchangeable 
 Mg2+ increased under the NP treatment by 16.4%, but under the NPK, NPKS, NPCa, NPKCa and NPKSCa 
treatments,  Mg2+ decreased by 38%, 53%, 18.7%, 42.3% and 21.2%, respectively. Compared to the CK treatment, 
soil exchangeable  Al3+ under the NP, NPK, NPKS, NPCa, NPKCa and NPKSCa treatments increased by 1576%, 
1518%, 1308%, 499%, 430% and 491%, respectively.

Crop yield, phosphorus uptake and use efficiency. Long-term fertilization with lime application sig-
nificantly increased wheat and maize yield compared to the fertilization without liming (Fig. 3). Both crops 
yield was increased over the years, especially under the NPKCa and NPKSCa treatments. On average across the 
years, compared to the CK treatment, wheat grain yield increased by 138%, 213%, 198%, 547%, 688% and 626%, 
respectively, and maize yield increased by 687%, 1887%, 1651%, 2605%, 5047% and 5077%, respectively, under 
the NP, NPK, NPKS, NPCa, NPKCa and NPKSCa treatments (Fig. 4). Fertilizer with lime application signifi-
cantly increased P uptake and P use efficiency (PUE) during different fertilization years, compared to the ferti-
lizer treatments without lime application (Fig. 5). Among different fertilization treatments, P uptake and PUE 
was highest under NPKSCa treatment. On average across the years, compared to the CK treatment, P uptake 
increased by 154%, 461%, 472%, 717%, 1168% and 1236%, respectively, under NP, NPK, NPKS, NPCa, NPKCa 
and NPKSCa treatments. On average across the years (from 2012 to 2018), PUE under the NP, NPK, NPKS, 

Figure 4.  Mean grain yield of wheat (a) and maize (b) crop in each experimental plot from 2012 to 2018. 
Values are means of yield data from 2012 to 2018. Error bars represent the standard deviation based on data 
from 2012 to 2018.
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NPCa, NPKCa and NPKSCa treatments was 20.7 kg kg−1, 66.2 kg kg−1, 64.4 kg kg−1, 105.1 kg kg−1, 187.6 kg kg−1 
and 185.0 kg kg−1, respectively.

Relationships between soil pH, phosphorus use efficiency and crop yield. Linear regression 
analysis showed that soil pH was negatively correlated with soil total N and exchangeable  Al3+ concentrations 
(Fig. 6). While, significant positive relationship (p ≤ 0.001;  R2 = 0.66) was observed between soil exchangeable 
 Ca2+ and pH.

Linear regression analysis showed that PUE significantly increased by increasing the soil pH and exchangeable 
base cation  (Ca2+) in soil (Fig. 7). Soil pH and PUE showed significant positive relationships with annual crop 
yield. PUE showed significant negative relationship with exchangeable  Al3+. Furthermore, the relative contribu-
tion of predictor variables for the boosted regression tree model of crop yield showed that exchangeable  Ca2+, 
pH, exchangeable  Al3+, available N were the most influencing factors of crop yield under the long-term liming 
and fertilization (Fig. 8). Relative influence of soil exchangeable  Ca2+, pH, exchangeable  Al3+, available N and 
available P on annual crop yield was 33.5%, 23.9%, 11.6%, 7.7% and 6.6%, respectively. While, relative influence 
of  Mg2+, soil total N, total P and SOC was < 5%.

Figure 5.  Phosphorus uptake (a) and phosphorus use efficiency (b) under long-term fertilization and liming in 
acidic soil under wheat–maize cropping system. Values are means (n = 3).
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Discussion
Soil acidification is one of the most important factors, limiting the high crop yield production in southern 
 China35,53. In our study, long-term fertilization without lime application significantly decreased soil pH, 
exchangeable base cations  (Ca2+ and  Mg2+) and increased acidic cations  (Al3+), while addition of lime signifi-
cantly increased soil pH, base cations and decreased exchangeable  Al3+ (Fig. 1). It has been reported in previous 
studies that, inorganic N fertilization induced soil  acidification54,55, while, quicklime application reduced the 
soil acidification by decreasing exchangeable acidic cations  effectively27,56. During the process of nitrification 
each mol of the ammonium belongs to each N-amidic and 2 mol of protons are released, which reduce the soil 
pH under inorganic N  fertilization57. On the one hand, plants mostly release the net  H+ ions; on the other hand, 
when anions uptake exceeds that of cations, plant release net excess of  OH− or  HCO3

−58. Inorganic N fertilizer 
application reduces the base cations in soil, which decreases the soil pH. In previous study, it was found that 
inorganic N fertilization shifted the soil in to the  Al3+ buffering stage. In the acidic soil, at the soil pH below 5, 
hydrolysis of Al-hydroxides on the clay mineral surface release the  Al3+ into soil solution, which decreases the 
base saturation cations and accelerate the soil  acidification59. The positive effects of quicklime application on soil 
pH were also due to its flocculating and cementing  actions60. Increase in soil pH might be due to precipitation of 
exchangeable Al and Fe as insoluble hydroxides of Al and Fe, consequently decreasing the concentrations of Al 
and Fe in soil solution and  acidity61. In present study, among fertilization treatments, highest soil pH was under 
NPKSCa treatment that might be due to addition of lime and straw incorporation to the field. Previous studies, 
observed the positive effect of straw incorporation on soil  pH24. Positive effects of straw on soil pH might be 
due to addition of base nutrients through straw incorporation such as Ca and K which increases the soil  pH56.

Figure 6.  Relationship of soil exchangeable cations and total nitrogen with soil pH under long-term 
fertilization and liming in acidic soil under wheat–maize cropping system (n = 3).
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In present study, available P in soil was higher under the NPK and NPKS treatments compared to the NPKCa 
and NPKSCa treatment. Soil P availability is very sensitive to soil  pH18. In acidic soil, lower P availability could 
be due to P fixation with oxides of Fe and  Al62. Application of lime may reduce the exchangeable and soluble 
acidic cations in soil solution and release the P in to soil solution, through changes in cation exchange capacity 
(CEC) and shifting phosphate adsorption–desorption  equilibrium63,64. Therefore, in our study, soil pH showed 
significant negative relationship with exchangeable  Al3+ and highly positive relationship with  Ca2+ cation concen-
trations (Fig. 2). Lime application increases the microbial activities and accelerate the decomposition of organic 
matter which can release the inorganic P and can increase the P  uptake65,66. In previous studies, Holland et al.27 

Figure 7.  Relationships between soil pH, exchangeable cations, phosphorus use efficiency and crop yield under 
long-term fertilization and liming in acidic soil under wheat–maize cropping system (n = 3).

Figure 8.  The relative contribution (%) of predictor variables for the boosted regression tree model of annual 
yield (a). Observed and predicted annual crop yield by the boosted regression tree model using predictors 
shown in (b).
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observed that lime application significantly increased the soil available P in acidic soil, which was in contrast 
with our results (Fig. 1). Some other studies have also found that high lime application can have negative impact 
on soil available P due to inorganic P fixation with  Ca67.

Acidification of soil directly or indirectly affects the soil biochemical characteristics and plant  growth7,68. In 
our study, fertilization treatments with lime application significantly increased P uptake, PUE and crop yield, 
compared to the fertilization treatments without liming (Figs. 3, 4). These results were consistent with previous 
 studies27. Kostic et al.69 reported that lime application to the acidic soil increased P uptake and plant available P 
in soil through release of root exudation of citrate in P deficient soil, which in the turn increased PUE. In another 
study, Shahin et al.70 described that effective liming of acidic soil improve plant root structure and growth, which 
positively influence the nutrient uptake. Poor soil fertility, nutrient losses through leaching, lower nutrient avail-
ability and accumulation of non-essential heavy metals are common characteristics of acidic  soils71,72, which all 
negatively influence the plant growth and nutrients uptake. Therefore, in our study, wheat and maize crop yields 
under long-term fertilization without liming were very low, compared to fertilization with lime addition (Fig. 3). 
The highest increase in crop yield and PUE was observed under the NPKCa and NPKSCa treatment (Figs. 3, 
4), that could be due to addition of lime and straw incorporation. In previous study, we found that combined 
application of wheat straw and inorganic fertilization significantly increased PUE by increasing P-cycling enzyme 
activities and P  availability24. Increasing the soil pH through liming enhances the microbial  activities73, which 
can regulate the soil P content and enhancing the P uptake. Furthermore, incorporation of crop straw improves 
the soil quality by increasing soil pH, improving soil organic matter (SOM) content, soil structure, aeration and 
retention of the high moisture  content74, these all positive effects on soil of straw incorporation increase the crop 
yield. Therefore, in our study, soil pH showed significant positive relationship with PUE and crop yield (Fig. 3). 
Furthermore, Boosted Regression Tree (BRT) analysis showed that in acidic soil under long-term fertilization 
and liming, exchangeable  Ca2+, soil pH, exchangeable  Al3+ and available N were the most influencing factors 
of crop yield (Fig. 7), indicating that soil acidification highly affect the crop yield by affecting PUE. Therefore, 
mitigation of acidification through liming is a better approach to enhance the PUE for high crop production 
under long-term fertilization.

Conclusion
We concluded that long-term fertilization without liming decreased the crop yield and PUE, because of high 
acidification of soil. Quicklime application significantly increased PUE and crop yield by increasing soil pH and 
base cations  (Ca2+ and  Mg2+), and reducing the exchangeable  Al3+. Highest increase of crop yield and PUE were 
under the NPKCa and NPKSCa treatment, due to retention of SOC by straw and mitigation of acidification 
through liming. While, liming decreased soil available P in NPKCa and NPKSCa, compared to NPK and NPKS 
treatments, respectively. Moreover, exchangeable  Ca2+, soil pH, exchangeable  Al3+ and available N were the most 
influencing factors of annual crop yield in acidic soil. Therefore, combined fertilizer, straw and lime application 
could be an effective strategy to achieve high crop yield and PUE in the acidic soil under wheat–maize rotation 
system.
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