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The value of MR‑based radiomics 
in identifying residual disease 
in patients with carcinoma in situ 
after cervical conization
Mengfan Song1,4,5, Jing Lin1,4,5, Fuzhen Song2, Dan Wu3,4* & Zhaoxia Qian2

Carcinoma in situ (CIS) of the uterine cervix is a precursor to cervical carcinoma. However, 
hysterectomy can be avoided in patients who can be treated by cone biopsy. Previous studies have 
shown that imaging‑based approaches allow for the noninvasive visualization of cervical cancer, and 
radiomics has high accuracy in classifying cancer and predicting treatment outcome for different 
cancer types. To develop a magnetic resonance (MR)‑based radiomics model for identifying residual 
disease in patients with CIS after cervical conization. Patients who had CIS after conization and finally 
underwent hysterectomy were collected to comprise a database to establish an imaging model for 
predicting the residual status after conization. Then, patients who opted for uterine preservation 
were classified as high‑risk or low‑risk patients according to the model. The disease‑free survival 
was compared between the different risk groups using the Kaplan–Meier curve. The model built with 
the Boruta features outperformed the random forest model. Further validation with patients with 
uterine preservation showed that the patients classified as high risk were more likely to have tumor 
recurrence/residual disease in the follow‑up period. In conclusion, radiomics can be used to identify 
residual disease in patients with CIS after cervical conization and could have the potential to predict 
recurrence in patients who opt for uterine preservation.

Abbreviations
MR  Magnetic resonance
CIS  Carcinoma-in-situ
DFS  Disease-free survival
VOI  Volumes of interest
GLCM  Gray level co-occurrence matrix
GLRLM  Gray level run length matrix
GLSZM  Gray level size zone matrix
NGTDM  Neighborhood gray-tone difference matrix
ICC  Intraclass correlation coefficient
mRMRe  Minimum redundancy maximum relevance ensemble

Carcinoma in situ (CIS) of the uterine cervix is a precursor to cervical  carcinoma1. A cone biopsy procedure, 
including cold knife cone (CKC) biopsy or a loop electrosurgical excision procedure (LEEP), is mandatory to 
exclude invasive disease, and in some cases, patients can even be treated by cone  biopsy2. This fact shows that 
hysterectomy can be avoided in some patients. However, compared to patients without residual disease, patients 
with residual disease have a significantly higher risk of recurrence, and recurrence occurs  earlier3–6. Residual 
disease can be identified with repeat colposcopy and biopsy through endocervical curettage (ECC) or excisional 
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procedures. However, these procedures are invasive, and patients who undergo a repeat surgery can experience 
difficulties with fertility, both in becoming pregnant or maintaining their pregnancy, if  desired7.

Previous studies have shown that imaging-based approaches allow for the noninvasive visualization of cervical 
cancer, and magnetic resonance imaging (MRI)-based approaches have shown potential in detecting the residual 
status of many other  diseases8–10. Although promising, the conventional MR approach based on morphological 
evaluations to predict residual status has not been well recognized since the summarized morphological features 
and consistency of this model would be a challenge for using this approach on a large scale. Recently, radiomics 
has been recognized as an emerging technique that converts medical images into high-dimensional mineable 
data by means of feature engineering and machine learning  techniques11–13. Recent advances in medical imag-
ing (including radiomics) allow for high-throughput extraction of information imaging features. These features 
help us quantify the temporal heterogeneity at different levels of genes, proteins, cells, micro-environments, 
tissues and organs. Although it limits the use of molecular analysis for invasive biopsies, radiomics provides 
significant room for medical imaging, which non-invasively acquires intratumoural heterogeneity. Some of the 
previous  studies14,15 have demonstrated that radiomics features offer information about the cancer phenotype 
and the tumor microenvironment. Radiomics has been reported to have high accuracy in classifying cancer and 
predicting treatment outcomes for different cancer  types16. However, until now, no study has assessed radiomics 
features to evaluate the residual status of CIS after cervical conization.

Thus, the purpose of this study was to investigate the performance of an MR-based radiomics model in 
evaluating the residual status of CIS after conization.

Results
Patient characteristics. The mean (SD, range) age of the patients was 47.9 (14.3, 21–76) years old for 
the training group and 49.3 years old (12.9, 25–72) for the test group. The mean (SD, range) interval between 
the 2 operations was 6 (3.3) weeks for the training group and 6 (3.5) weeks for the test group. The mean time 
from conization to MRI was 2.6 weeks (ranging from 16 to 43 days) for the training group and 2.4 weeks for the 
test group (ranging from 14 to 35 days ). In the training group and test group, 24 and 22 patients had positive 
lesions at the margins of all quadrants, while residual disease was identified in 18 and 17 patients, respectively. 
The groups with or without residual disease were similar with respect to age and the interval between the train-
ing and test procedures (all p values > 0.5). For the validation group, which included patients who chose uterine 
preservation, the mean (SD, range) age of the patients was 39.9 (19.3, 19–53) years old, none of the patients had 
a positive margin, and 3 patients had residual invasive carcinoma.

Establishment of the imaging model. Based on the MR images, 156 features could be extracted for a 
single sequence. After the intra- and interobserver repeatability tests, 42 T2WI features and 59 DWI features 
remained, and 13 all-relevant features were selected by the Boruta method. The feature selection results are sum-
marized in Table 1, and a heatmap showing the value distribution of the features selected by the Boruta method 
between the residual and nonresidual groups is shown in Fig. 1. The ROC curves of the radiomics model with 
or without the Boruta method for differentiating residual disease from nonresidual disease in the test cohort are 
shown in Fig. 2. The performance is summarized in Table 2. The model built with the Boruta features achieved 
an AUC of 0.889 and accuracy of 87.3% in the test cohort and outperformed the random forest model, which had 
an AUC of 0.701 and accuracy of 72.1%. The DeLong analysis found a significant difference between the AUCs of 
these two models (p = 0.039). Moreover, the radiomics models had better performance than the positive margins 
for differentiating between residual and nonresidual disease (p = 0.004).   

Validation of the imaging model. The imaging model was further validated in patients who did not 
undergo hysterectomy. Among 28 patients, 11 were classified as high risk, and 17 were classified as low risk, 
according to the imaging model. One patient in the low-risk group was pregnant in the follow-up period. Four 
patients were found to have recurrence/residual disease in the follow-up period, and all of these patients were 
in the high-risk group. The Kaplan–Meier curve is shown in Fig. 3, and DFS between the high-risk and low-risk 
groups was significantly different (p = 0.007).

Discussion
Since using traditional MRI to evaluate residual status is insufficient, very little MR research has reported reliable 
evaluations of residual disease after conization, which could be because the level of information captured by 
human vision is inadequate to characterize disease, or the information captured is not sufficient for a diagnosis. 
Thus, a high-throughput data mining method to extract features from images might improve the diagnostic 
performance of MRI. In our study, we extracted 156 features derived from 3D tumur regions in MR images 
with the goal of enhancing the reproducibility and usefulness of radiomics  models17. Preprocessing, including 
image normalization and intra- and interobserver reproducibility tests, was performed before modelling. We 
used feature selection processes to screen the radiomics metrics and form the model. Finally, we developed a 
radiomics model that can be used to predict residual disease after conization in patients with CIS with relatively 
high accuracy. The model can be used to identify patients at high risk for residual disease, while patients with 
low risk might not need a radical treatment plan in the follow-up period. The results of our study showed that, 
although it might not be easily detected by radiologists, residual disease did exist on MR images, which could be 
evaluated by the radiomics imaging features. Although the radiomics features are often linked with heterogenicity, 
complexity, and entropy inside the  tumur14–18, we believe that residual disease could also be considered a variant 
of normal tissue or inflammation and could certainly be reflected by the radiomics features.
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In addition to feature extraction, using accurate methods is also important for the performance of the final 
radiomics model. Recently, the Boruta method and minimum redundancy maximum relevance ensemble 
(mRMRe) have been successfully used as feature selection tools in  radiomics19,20. A previous study demon-
strated that all-relevant features are not necessarily features with maximum relevance; maximizing the mutual 
information relevance might not always maximize the classification  accuracy21. Compared with mRMRe, the 
all-relevant features selected by Boruta had better predictive performance. Thus, we chose the Boruta method 
to select the features for our imaging model; compared with the conventional random forest method, using the 
Boruta method to select all-relevant features led to a better performance in our study.

Thus far, the management of patients with positive surgical margins after conization has been  controversial22,23. 
The persistence and recurrence rates among these patients in follow-up are higher than those among patients 
with negative  margins24. Positive margins might be associated with invasive carcinoma. However, the results 
have varied between studies. Kietpeerakool et al.25 noted that the incidence of cervical cancer in patients with 
LEEP-positive margins was 0.9–9.6%. In our study, we found accuracy of 67.9% using the positive margins, 
which was significantly inferior to that of the radiomics model. We consider that an association between positive 
margins and residual disease might exist. However, the emergence and evaluation of this feature from actual 
clinical practice are unreliable and uncertain, and the imaging model might present a more robust and more 
comprehensive way of predicting residual disease after conization.

Residual disease is also an important clinical  factor26 and can be associated with the DFS of patients. How-
ever, the safety of uterine preservation in patients with CIS still must be evaluated. Thus, we also retrospectively 
validated the radiomics model in a group of patients who did not undergo hysterectomy and showed that uterine 
preservation is safe for low-risk patients. Although the patients who did not undergo hysterectomy were younger 
than the mean age of the entire cohort, which might have led to some bias in the evaluation, in our opinion, these 
results should reflect to the real-world clinical situation since younger patients are more likely to opt for uterine 
preservation. Our study showed that all of the patients who had recurrence after conization were identified as 
high-risk patients, and at the end of the follow-up period, none of the patients in the low-risk group developed 
recurrence. Thus, low-risk patients can safely avoid hysterectomy. Patients in different risk categories could con-
sider different follow-up strategies. Certainly, further studies are needed to improve on the retrospective design 
of this study and expand upon our limited number of cases. Moreover, a longer follow-up duration is needed.

In our study, we developed a semi-automated procedure before feature extraction. The volume of the uterine 
area and the conization margins must be identified by the radiologist; although we evaluated the inter- and 
intraobserver agreement to include robust features to build the radiomics model, the procedure could be further 

Table 1.  A summary of the extracted and selected radiomics features.

Extracted radiomics features All-relevant features (Boruta)

T2WI ADC T2WI ADC

First order features
“InterquartileRang”,“Skewness”,“Uniformity”,“Median”,“Ene
rgy”,“RobustMeanAbsoluteDeviation”,“MeanAbsoluteDeviat
ion”,“Maximum”,“RootMeanSquared”,“90Percentile”,“Minim
um”,“Range”,“Variance”,“10Percentile”,“Kurtosis”,“Mean”

Range, Uniformity MeanAbsoluteDeviation, Kurtosis

Shape features
“Maximum3DDiameter”,“Maximum2DDiameterSlice”,“Sphe
ricity”,“MinorAxis”,“VolumeRatio”,“Volume”,“MajorAxis”,“Su
rfaceArea”,“Flatness”,“LeastAxis”,“Maximum2DDiameterCol
umn”,“Maximum2DDiameterRow”

GLCM/GLDM features

“GrayLevelVariance”,“HighGrayLevelEmphasis”,“Dependenc
eEntropy”,“DependenceNonUniformity”,“GrayLevelNonUni
formity”,“SmallDependenceEmphasis”,“SmallDependence”,“
HighGrayLevelEmphasis”,“LargeDependenceEmphasis”,“Lar
geDependenceLowGrayLevelEmphasis”,“DependenceVarian
ce”,“DependenceHighGrayLevelEmphasis”,“LowGrayLevelE
mphasis”,“JointAverage”,“SumAverage”,“ClusterShade”,“Idmn
”,“JointEnergy”,“Contrast”,“DifferenceEntropy”,“InverseVaria
nce”,“DifferenceVariance”,“Idn”,“Idm”,“Correlation”,“Autocor
relation”,“SumSquares”,“ClusterProminence”,“DifferenceAver
age”,“ClusterTendency”

ClusterShade, DependenceVariance DifferenceEntropy

GLRLM features

“ShortRunLowGrayLevelEmphasis”,“GrayLevelVariance”,“L
owGrayLevelRunEmphasis”,“GrayLevelNonUniformityNor
malized”,“RunVariance”,“GrayLevelNonUniformity”,“LongR
unEmphasis”,“ShortRunHighGrayLevelEmphasis”,“RunLen
gthNonUniformity”,“ShortRunEmphasis”,“LongRunHighGr
ayLevelEmphasis”,“RunPercentage”,“LongRunLowGrayLev-
elEmphasis”,“HighGrayLevelRunEmphasis”,“RunLengthNon
UniformityNormalized”

RunLengthNonUniformityNormalized RunVariance

GLSZM features

“GrayLevelVariance”,“ZoneVariance”,“GrayLevelNonUnifor
mityNormalized”,“SizeZoneNonUniformityNormalized”,“Si
zeZoneNonUniformity”,“GrayLevelNonUniformity”,“Small
AreaHighGrayLevelEmphasis”,“ZonePercentage”,“LargeAre
aLowGrayLevelEmphasis”,“LargeAreaHighGrayLevelEmpha
sis”,“HighGrayLevelZoneEmphasis”,“SmallAreaEmphasis”,“-
LowGrayLevelZoneEmphasis”,“ZoneEntropy”,“SmallAreaLo
wGrayLevelEmphasis”

SmallAreaHighGrayLevelEmphasis, LargeAreaL-
owGrayLevelEmphasis SizeZoneNonUniformityNormalized

NGTDM features “Coarseness, Complexity”,“Strength”,“Contrast”,“Busyness” Contrast
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improved if all of the segmentation steps for the VOI could be performed automatically, which is an area that 
has already been explored in other  organs27–29. Moreover, we used 5 mm as the radius of outward corrosion from 
the LEEP margin since we assumed that most of the remaining lesions are within this range, and we appeared 
to be successful in the application.

The main limitations of our study are the limited number of patients with uterine preservation and the ret-
rospective design. The criteria for uterine preservation in patients with CIS remain controversial, and uterine 
preservation is not the first choice in routine clinical practice. The true value of the radiomics model for patients 
with CIS and uterine preservation must be further validated. Moreover, the robustness of the model could be 
improved if the segmentation procedure could be fully automated. Finally, according to international community 
radiomics standardization, phantom reference for MR is not well established, so test–retest variability should be 
applied on phantom images to complete stability analysis in the future.

Conclusion
In conclusion, the present results showed that the radiomics model could be used to predict residual disease 
after conization and could have the potential to predict recurrence in patients who opt for uterine preservation. 
However, as mentioned above, more investigations with better designs are needed to further validate the present 
findings.

Figure 1.  Heatmap of the normalized feature value distribution of the 13 all-relevant features to differentiate 
between residual and nonresidual disease.
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Methods and materials
The records of patients with a diagnosis of CIS proven by conization and who underwent an MR scan between 
March 2013 and March 2016 in our hospital were retrospectively reviewed. A total of 110 patients were included 
to form the database in the present study. Clinical and pathological variables, including age, parity, menopausal 
status, conization method, cone base area and depth, endocervical margin and glandular involvement, endocer-
vical involvement based on ECC, and the number of quadrants with positive margins, were collected. The study 
was approved by Institutional Review Board of International Peace Maternity and Child Health Hospital, and 
written consent was obtained from all of the patients. All experiments were performed in accordance with rel-
evant guidelines and regulations.

The study was retrospectively designed and performed in two stages. First, from the database, we collected 
patients who ultimately underwent hysterectomy to form a cohort and established an imaging model to predict 
the residual status after conization. Patients were randomly assigned to training and testing groups at a ratio of 
1:1, and the performance of the imaging model was compared with the pathological positive margins in this 
stage. In the second stage, patients who opted for uterine preservation were included, and all of the patients 
were classified as high-risk or low-risk patients according to the imaging results. In this stage, the imaging 
model established in the first stage was used to classify the risk categories in patients with uterus preservation, 
and the performance of the model was evaluated. Patients with abnormal colposcopy or high-grade squamous 
intraepithelial lesion smear results in the follow-up procedure were subjected to repeat ECC, and the presence 
of histologically confirmed cervical intraepithelial neoplasia grade 2 or 3 (CIN2/3) or higher was considered 
residual or recurrent  disease30. All of the patients were followed up for 36 months.

MRI protocol. All scans were performed using a 1.5-T MR scanner (Aera, SIEMENS, Erlangen, Germany) 
with the patient in the supine position. The following sequences were used to acquire images, from which 
features were extracted for the radiomics model: axial T2-weighted imaging (T2WI) (repetition time/echo 
time = 4500 ms/80 ms, slice thickness = 6 mm, gap = 1 mm, field of view (FOV) = 320 * 240, flip angle = 160°, 
number of excitation = 2, with fat saturation), and axial diffusion-weighted imaging (DWI) (repetition time/
echo time = 5200 ms/80 ms, field of view = 250 * 200, slice thickness = 6 mm, gap = 1 mm, flip angle = 90°, number 

Figure 2.  ROC curves of the random forest and all-relevant models for identifying residual disease in the 
training (a) and test (b) cohort.

Table 2.  Internal validation of the performances of RandomForest model, Boruta model for differentiating 
residual and nonresidual disease. RF RandomForest, PM positive margin.

Training group Test group

RF Boruta PM RF Boruta PM

AUC 0.899 0.959 0.630 0.701 0.889 0.679

Accuracy 0.891 0.963 0.636 0.721 0.873 0.691

Sensitive 0.722 0.944 0.611 0.706 0.824 0.647

Specificity 0.973 0.973 0.649 0.749 0.895 0.711

PPV 0.929 0.944 0.572 0.667 0.778 0.591

NPV 0.878 0.973 0.734 0.805 0.919 0.758
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of excitation = 6, b-value = 0, 800). The apparent diffusion coefficient (ADC) value was derived according to the 
following equation:

where S(b) and S(b0) represent the signal intensity of a certain voxel in the presence and absence of diffusion 
sensitization, respectively.

Area segmentation and radiomics feature extraction. This normalization approach was used 
according to a previous  study31, Three-dimensional volumes of interest (VOIs) of tumour contours were manu-
ally delineated slice-by-slice by the radiologist (D.W., with more than 10 years of experience in pelvic imaging) 
using the ITK-SNAP software(version 3.2, http://www.itksn ap.org), and VOIs were first drawn to segment the 
uterus on the T2W images to ensure the following segmentation area was within the uterus; then, based on the 
segmented uterine area, the cornization margin was delineated. Image erosion was applied to the binary seg-
mentation mask for each cornization margin using a disk with a defined pixel radius, which was then eroded 
(disk radius of 3 pixels) to generate the VOI under the cornization margin for further feature extraction. The 
VOI delineated on the T2W image was also applied to the ADC maps. The segmentation procedure is shown 
in Fig. 4. For each segmented 3D volume, we extracted quantitative texture features from each phase using a 
program developed in house. The texture features describe the high-order spatial distributions of intensities 
within the VOIs. Fifty-two texture features were extracted from each sequence using several different methods, 
including the grey level co-occurrence matrix (GLCM), grey level run length matrix (GLRLM), grey level size 
zone matrix (GLSZM), and neighbourhood grey-tone difference matrix (NGTDM). A detailed calculation of 
the texture features can be found  in15,17,31. For each VOI, 156 features were extracted from the MR image. To 
find robust features against the intra- and interobserver delineation variations, the delineation was repeated on 
40 patients by the same radiologist (D.W.) to assess intraobserver reliability and by another clinician (M.S. with 
4 years of experience in pelvic imaging) to assess interobserver reliability. Parameters were included only when 
the agreement was good.

Statistical analysis. Intra- and interobserver agreement was analysed based on the intraclass correlation 
coefficient (ICC), and a parameter with an ICC greater than 0.75 was considered to have good  agreement32. 
All of the classification models were trained on the training cohort and tested on the independent test cohort. 
Both feature subsets selected with or without the Boruta method were analysed. Multiple hypothesis correction 
was performed through a false discovery rate (FDR) adjustment using the Benjamini–Hochberg  method33. The 
AUCs were statistically compared between different classifiers using the DeLong method. All of the indices were 
calculated for both the training and test cohorts. For the validation cohort, the high-risk and low-risk patients 

S(b) = S0 exp(−bADC)

Figure 3.  The Kaplan–Meier curve of the radiomics model for identifying high- and low-risk patients in the 
validation group.

http://www.itksnap.org
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classified according to the imaging model were compared and evaluated using disease-free survival (DFS) with 
the Kaplan–Meier curve. The statistical analyses were performed with R software (version 2.9.1, http://www.r-
proje ct.org).

Ethical approval and consent to participate. The study was approved by Institutional Review Board of 
International Peace Maternity and Child Health Hospital. Signed written informed consent was obtained from 
all participants.

Received: 1 March 2020; Accepted: 28 October 2020
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