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Evaluation of the external validity 
of a joint structure–function 
model for monitoring glaucoma 
progression
Sampson Listowell Abu1, Mahmoud Tawfik KhalafAllah2 & Lyne Racette1*

The dynamic structure–function (DSF) model was previously shown to have better prediction accuracy 
than ordinary least square linear regression (OLSLR) for short series of visits. The current study 
assessed the external validity of the DSF model by testing its performance in an independent dataset 
(Ocular Hypertension Treatment Study–Confocal Scanning Laser Ophthalmoscopy [OHTS–CSLO] 
ancillary study; N = 178 eyes), and also on different test parameters in a sample selected from the 
Diagnostic Innovations in Glaucoma Study or the African Descent and Glaucoma Evaluation Study 
(DIGS/ADAGES). Each model was used to predict structure–function paired data at visits 4–7. The 
resulting prediction errors for both models were compared using the Wilcoxon signed-rank test. In the 
independent dataset, the DSF model predicted rim area and mean sensitivity paired measurements 
more accurately than OLSLR by 1.8–5.5% (p ≤ 0.004) from visits 4–6. Using the DIGS/ADAGES dataset, 
the DSF model predicted retinal nerve fiber layer thickness and mean deviation paired measurements 
more accurately than OLSLR by 1.2–2.5% (p ≤ 0. 007). These results demonstrate the external validity 
of the DSF model and provide a strong basis to develop it into a useful clinical tool.

Early detection of glaucoma progression is crucial to preserve  vision1,2 yet it remains a challenging multi-factorial 
 issue3. Without diligent assessment and proper interpretation of clinical data, the presence of glaucoma progres-
sion can be elusive. The tests and strategies for monitoring progression are becoming increasingly objective and 
 reliable4,5. Additionally, several mathematical models have been developed to aid with the interpretation of clini-
cal data and decision making. These models include fundamental regression  analysis6,7 and complex statistical 
computations such as Bayesian  approaches8–10 and machine learning  strategies11–13. Although very promising, 
most of these novel models have yet to be integrated into routine clinical practice.

To be clinically relevant, models must be generalizable to different populations, conditions, tests and 
 parameters14–16. This makes external validation, the process of assessing a model’s performance in an independ-
ent  dataset17–20, a crucial step in the development of models in clinical research. The problem, however, is that the 
majority of these models are not externally  validated17,19 and a handful may have undergone this step but with 
some limitations. For instance, among the few validated models in glaucoma  research20–24, two were validated 
with a sample size smaller than that recommended for external  validation21,22 and three resampled the original 
dataset instead of using an independent  dataset20,21,23. The use of a smaller sample and/or a subset of the original 
dataset may result in an overestimation of the model’s  performance19,20. Collin et al. recommended a minimum 
sample size of 100 for external validations, and preferably 200  events17. Similarly, Vergouwe and colleagues 
suggested a minimum of 100 events and 100 non-events as a reasonable sample size for external  validation25.

We previously developed the dynamic structure–function (DSF) model to identify glaucoma  progression26. 
Instead of combining structural and functional information into a univariate metric of  progression8,10, the DSF 
model assesses structural and functional change jointly in a two-dimensional space. The predictive performance 
of the DSF model has been assessed in 220 eyes with either ocular hypertension or primary open-angle glaucoma 
(POAG) selected from the Diagnostic Innovations in Glaucoma Study (DIGS) or the African Descent and Glau-
coma Evaluation Study (ADAGES)27. In comparison with the ordinary least square linear regression (OLSLR) 
model, the DSF model made significantly more accurate prediction of rim area (RA) and mean sensitivity (MS) 
paired measurements for short series of up to 7  visits26.
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This encouraging finding prompted the need to determine whether the DSF model could yield similar results 
when tested in different populations, and with different tests and parameters. The present study was designed 
to evaluate the external validity of the DSF model. Using an independent dataset from the Ocular Hypertension 
Treatment Study–Confocal Scanning Laser Ophthalmoscopy (OHTS–CSLO) ancillary  study28, the prediction 
error (PE) resulting from the prediction of global and sectoral RA–MS paired measurements was compared 
between the DSF model and OLSLR. We paired RA and MS in order to be consistent with the structure–function 
pairs used in the study that we seek to  validate26. To determine the applicability of the DSF model to different 
parameters, we compared PE obtained for the joint prediction of retinal nerve fiber layer thickness (RNFLT) 
and mean deviation (MD) from a resampled cohort of POAG eyes enrolled in the DIGS and ADAGES studies. 
RNFLT and MD were considered for this analysis because they are the most common and sensitive  structural29,30 
and  functional31,32 parameters used by clinicians to monitor glaucoma progression. The objective here was to 
ascertain whether the DSF model will perform well with new tests and parameters that will emerge as clinically 
useful in the future.

Results
Validation of the DSF model in an independent (OHTS–CSLO) dataset: prediction of RA and 
MS paired measurements. Figure 1 shows the median PE obtained for the DSF and OLSLR models for 
the prediction of global RA and MS paired measurements. When RA was predicted jointly with MS derived from 
the 30–2 static automated perimetry (SAP) test pattern, the median PE obtained for the DSF model was signifi-
cantly lower (1.8–5.5%, p ≤ 0.004) than for OLSLR at the 4th–6th visits (Fig. 1a). For the joint prediction of RA 
with MS computed from the 24–2 SAP test pattern (Fig. 1b), the median PE for the DSF model was significantly 
lower (3.2–4.8%, p ≤ 0.001) than for OLSLR at the 4th–6th visits. For both types of RA–MS pair, the difference 
in median PE between the two models was not significant at the 7th visit. On average, the DSF model had lower 
PE than the OLSLR model in 72% of the eyes at visit 4, in 67% at visit 5, in 62% at visit 6 and in 53% at visit 7.

Figure 2 shows comparisons of median PE between the two models for the prediction of sectoral RA and MS 
paired measurements. Except for predictions at the 7th visit, the median PE obtained for the DSF model was 
significantly lower (2.1–6.4%, p ≤ 0.002) than for OLSLR in all sectors considered.

Validation of the DSF model with different parameters in the DIGS/ADAGES: prediction of 
RNFLT and MD paired measurements. Figure 3 shows comparisons of median PE between the DSF and 
OLSLR models for the prediction of RNFLT and MD paired measurements. From the 4th to 7th visit, the median 
PE obtained for the DSF model was significantly lower than for OLSLR by 1.2–2.5% (p ≤ 0. 007). The DIGS/

Figure 1.  Median PE and 95% confidence intervals obtained for the DSF model (red circles) and the OLSLR 
model (blue circles) for the prediction of RA–MS paired measurements from the 4th to 7th visit. Panels a and 
b represent predictions made with MS computed from the 30–2 SAP test pattern and from the 24–2 SAP test 
pattern, respectively. Asterisks denote visits where the DSF model had significantly lower PE than OLSLR.
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Figure 2.  Median PE and 95% confidence intervals obtained for the DSF model (red circles) and the OLSLR 
model (blue circles) for the prediction of sectoral RA–MS paired measurements from the 4th to 7th visit. Panels 
a, b and c represent predictions for the infero-temporal (IT) sector, supero-temporal (ST) sector, and Central 
region, respectively. Asterisks denote visits where the DSF model had significantly lower PE than OLSLR.

Figure 3.  Median PE and 95% confidence interval obtained for the DSF model (red circles) and the OLSLR 
model (blue circles) for the prediction of RNFLT–MD paired measurements from the 4th to 7th visit. Asterisks 
denote visits where the DSF model had significantly lower PE than OLSLR.
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ADAGES dataset included 393 POAG eyes which were previously subclassified at baseline into glaucomatous 
optic neuropathy only (GON-alone; 121 eyes), glaucomatous visual field only (GVF-alone; 97 eyes) and those 
with both GON and GVF (175 eyes)27. Table 1 presents the comparison of median PE between both models for 
the three baseline classifications of POAG eyes. In eyes with GON only, the DSF model had significantly lower 
PE than OLSLR across all visits. Similar results were obtained in eyes with both GON and GVF, except at the 7th 
visit where there was no significant difference in PE between both models. In eyes with GVF only, while the PE 
was always lower than that of OLSLR, statistical significance was reached only at visit 5. The DSF model made 
more accurate prediction in a greater proportion of eyes than OLSLR (19 – 39% more for GON-alone eyes, 13 – 
32% more for GVF-alone and 14 – 36% more for eyes with both GON and GVF).

Discussion
Several mathematical models have been developed with the goal of improving the understanding of disease tra-
jectories and also to aid clinical decision  making19. The majority of such models, however, do not make inroads 
into clinical practice partly due to their lack of external  validity18,19. In this study, we assessed the generalizability 
of the DSF model which has been reported to have better predictive accuracy than the OLSLR model for series 
of 4–7  visits26. We assessed the performance of the DSF model in an independent  dataset28, and on different test 
indices (RNFLT and MD), and found that it predicted subsequent structure–function paired measurements 
more accurately than OLSLR for short series of up to 7 visits.

Our results show that the DSF model can be generalized to different populations and test indices. This 
provides the basis to further develop the DSF model into a useful clinical tool for detecting and/or predicting 
glaucoma progression. The DSF model’s superior predictive ability over short follow-up series also alludes to the 
possibility of applying it to assess progression when limited data is available. This may lead to earlier detection of 
progression and inform clinical decisions to stop or slow vision loss. However, at present, the DSF model lacks 
the ability to make a determination of the progression of status of an eye. Developing it into a clinical tool, will 
involve two crucial steps. The first step is to incorporate a robust statistical test into the DSF model to evaluate 
change in predicted measurements. The next step is to establish how the model’s sensitivity compares to that of 
conventional methods used for assessing progression. The present study expanded the analysis beyond predicting 
global structure–function paired measurements by comparing the performance of both models in estimating 
sectoral measurements. The DSF model predicted sectoral RA and MS paired measurements more accurately 
than OLSLR (Fig. 2).

Recent advances in ocular imaging, such as optical coherence tomography (OCT), have enhanced our ability 
to assess the optic nerve head and different retinal layers. The OCT-derived RNFLT has better sensitivity to detect 
early glaucomatous changes than the Heidelberg Retinal Tomograph (HRT)-derived  RA33–35; hence it has been 
widely adopted in both clinical and research settings. To ascertain whether the DSF maintains its performance 
for different structure–function parameters, RNFLT was predicted jointly with MD for 393 POAG eyes selected 
from the DIGS/ADAGES dataset. We found that the median PE obtained for the DSF model was significantly 
lower than that for OLSLR (Fig. 3). This finding is consistent with the results obtained with RA and MS, either 
in the present study or the previous  one26. Furthermore, this finding suggests that the DSF model can be applied 
to other structure–function parameters that will eventually emerge as promising to identify change in glaucoma. 
Additional analyses also showed that the DSF model obtained lower median PE than the OLSLR for each POAG 
subclassification (Table 1) and had better prediction accuracy in a larger percentage of eyes. This finding supports 
the DSF model’s potential as a valuable clinical tool.

Given that the detection of glaucoma progression is partly limited by measurement  variability3, it is crucial to 
assess its impact on the performance of the DSF model. This impact was determined by comparing the median PE 
resulting from the joint predictions of RA with 30–2 MS (Fig. 1a) and with 24–2 MS (Fig. 1b). Heijl and colleagues 
found that, within the central 30° of the visual field, the threshold sensitivities in the periphery were significantly 
more variable than those in the  midperiphery36. This suggests that the 30–2 test pattern may have more variable 
test indices (e.g. MS and MD) because it includes 22 additional test locations outside the area of the 24–2 test 
pattern. We found no statistically significant difference in the prediction accuracy of the DSF model when RA 
was predicted jointly with MS from either 30–2 and 24–2 test pattern (median PE difference = 0.08–1.1%, all 
p > 0.06). This observation is further illustrated with mean difference plots in Fig. 4. The closeness of the mean 
difference lines to zero suggests that the prediction accuracy of the DSF model was not adversely impacted by 
differences in measurement variability between the two tests. Ramezani et al. reported that the use of MS from 
contrast sensitivity perimetry, a test with lower test–retest variability than SAP, did not improve the prediction 

Table 1.  Comparison of median PE between the DSF model and OLSLR for three baseline classifications of 
POAG eyes.

GON-alone eyes
N = 121

GVF-alone eyes
N = 97

Both GON and GVF
N = 175

DSF OLSLR p value DSF OLSLR p value DSF OLSLR p value

4th visit 11.19 13.37  < 0.01 10.67 12.99 0.070 10.67 13.02  < 0.01

5th visit 8.44 11.17  < 0.01 8.22 10.96 0.001 8.29 11.14  < 0.01

6th visit 10.59 12.29 0.002 10.62 11.98 0.269 10.53 12.23 0.005

7th visit 11.18 11.89 0.015 10.46 11.65 0.644 11.08 11.65 0.079
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accuracy of the DSF  model37. These observations suggest that measurement variability may have little or no 
impact on the performance of the DSF model.

This study has limitations. The first limitation is the potential misestimation of parameters in percent of 
mean normal given interindividual variations in structural measurements in healthy  population27 coupled with 
the presence of floor  effect38,39. Rescaling of parameters in percent of mean normal was, however, necessary in 
this study. The DSF, being a two-dimensional model, was applied to structural and functional components ini-
tially measured in different scales. In order to assess these different parameters jointly, we expressed them in a 
comparable scale. Another limitation is that RA measurements were rescaled based on normative data obtained 
from a different cohort of 91 healthy eyes described  elsewhere40. This was necessitated by the unavailability of 
RA measurements taken at baseline in the OHTS study. Measurement of RA with HRT was later included in the 
OHTS protocol as an ancillary  study28. The mean normal RA (1.44 mm2), computed from this separate  dataset40, 
was within the range of average RA values (1.37–1.76 mm2) reported for healthy  cohorts41–44. Of note, rescaling 
of the parameters was systematically applied to all participants and used to assess prediction accuracy in both 
models; hence any potential impact of the data source used to achieve this rescaling would have affected both 
models equally. Therefore, the quantification of parameters in percent of mean normal and the use of different 
normative datasets did not selectively influence the performance of one model over the other.

In conclusion, we assessed the external validity of the DSF model by determining its performance in an 
independent dataset and also with different parameters. Consistent with the previous  study26, the DSF model 
had better prediction accuracy than OLSLR over short series of visits. The current study also showed that the 
performance of the DSF model is generalizable to different structure–function parameters. These results suggest 
that the DSF model has good external validity, is generalizable and has the potential to eventually be used as a 
clinical tool for early detection of glaucoma progression.

Methods
Study design. The present study was a retrospective analysis of two datasets to evaluate the external valid-
ity of the DSF model. An independent dataset, selected from the OHTS–CSLO ancillary  study28, was used to 
assess the performance of the DSF model. The OHTS–CSLO data were released through a data access agreement 

Figure 4.  Bland–Altman plots showing the level of agreement between PEs resulting from the joint prediction 
of RA with 30–2 MS and with 24–2 MS using the DSF model. The horizontal axes represent mean PE and 
the vertical axes represent the difference in PE. The mean difference lines and corresponding 95% limits of 
agreement are shown as the dashed and solid lines, respectively.
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signed on 01/23/2014. A resampled DIGS/ADAGES dataset was used to evaluate the performance of the DSF 
model with different parameters.

OHTS–CSLO dataset. We selected 178 eyes of 105 patients (mean age: 53 ± 7 years) from the OHTS–CSLO 
ancillary (mean follow-up was 6.5 ± 0.6 years). The OHTS–CSLO study prospectively followed a cohort of ocular 
hypertensive patients with HRT (Heidelberg Engineering, GmbH, Dossenheim, Germany), disc photography 
and SAP 30–2 full-threshold test (Humphrey Field Analyzer, Zeiss, Dublin, CA, USA)28. The baseline paper 
details the eligibility and exclusion criteria used in the  OHTS45.

RA and MS data for the current study. For the current study, we required each patient to have a minimum of 7 
visits with at least 3 months between consecutive visits. We also required each patient to have reliable HRT and 
SAP tests at each visit. Unreliable HRT images, defined as a mean pixel height standard deviation > 50 μm, as 
well as unreliable visual fields, defined as false positives, false negatives, or fixation losses greater than 33%, were 
excluded. We used RA as the structural parameter and MS as the functional parameter. Each SAP test results 
in the OHTS–CSLO dataset had 76 sensitivity values in decibels (dB) which were converted into a linear unit 
(1/Lambert). After removing the test points above and below the blind spot, the remaining 74 test sensitivity 
values were averaged to obtain the 30–2 MS as described in Garway-Heath et al.46. To derive MS values for the 
central region, infero-temporal (IT) and supero-temporal (ST) sectors, we used the Garway-Heath  map46. This 
map relates the 24–2 SAP pattern of test locations to the six HRT defined sectors of the optic disc. The central 
52 test points of the 30–2 test pattern, which are consistent with the 24–2 SAP test pattern were extracted and 
then averaged accordingly to obtain 24–2 MS values for global, central region, IT and ST sectors. The MS for the 
central region, which corresponds to the temporal half RA of the optic disc, was computed as the mean of the 
sensitivity values of the central 16 test  points46.

DIGS/ADAGES dataset. We included 393 eyes of 254 POAG patients (mean age: 64 ± 10 years) selected 
from the DIGS or ADAGES cohort. Described in detail  elsewhere27, the DIGS and ADAGES are multicenter 
longitudinal studies that enrolled and prospectively monitored retinal structure and function among healthy, 
glaucoma suspects and glaucoma patients. Eligibility criteria included one good quality stereoscopic photograph 
and a 24–2 SAP test at baseline, open angles, best-corrected acuity of 20/40 or better, spherical refraction within 
5.0 diopters, and cylinder correction within 3.0 diopters, no history of intraocular surgery (except for uncompli-
cated cataract or glaucoma surgery), absence of comorbidities and use of medications that affect the visual field.

RNFLT and MD data for the current study. For the current study, we selected only patients with a POAG 
diagnosis at the DIGS/ADAGES baseline. Out of the 393 POAG eligible eyes, 121 had GON-alone, 97 had GVF-
alone, and the remaining 175 had both GON and  GVF27. In addition, we required each patient had a minimum 
of 7 visits, with RNFLT measurement taken with the Spectralis OCT (software version 5.2.0.3, Heidelberg Engi-
neering, Heidelberg, Germany) and MD obtained with the 24–2 SITA Standard SAP test (HFA II, Carl Zeiss 
Meditec Inc., Dublin, CA). Visits had to be separated by a minimum of 3 months. The Imaging Data Analysis 
and Evaluation Reading Center, and the Visual Field Assessment Center at the Department of Ophthalmology, 
University of California, San Diego reviewed the quality and reliability of the OCT images and all visual  fields47, 
respectively. Only OCT scans with signal strength greater than 15 dB and visual fields with less than 33% fixa-
tion losses, false negative and false positive were considered usable in the present study. The MD values were 
converted to linear units using the equation that Hood et al. previously applied to convert total deviation values 
to linear units (linear unit = 10MD/10)38.

Rescaling structural and functional data to percent of mean normal. All measurements were 
rescaled to percent of the mean normal  values48,49 to ensure that structural and functional data were quantified 
in a comparable scale. For the OHTS–CSLO dataset, the mean normal MS value was obtained from the normal 
OHTS baseline SAP tests. For the mean normal RA value, we used a separate dataset of 91 healthy  eyes40. For 
the DIGS/ADAGES dataset, the mean normal values for both RNFLT and MD were derived from 395 healthy 
eyes selected from the DIGS/ADAGES using the selection criteria explained above. The mean normal value 
for each parameter is presented in Table 2. For healthy individuals with normal optic disc and intact vision, 
approximately 100% of mean normal is expected for RA and MS values. To exemplify the conversion to percent 
of mean normal values, we provide this example for a patient with POAG; with an RA of 1.05 mm2 and MS of 
28 dB (630.96 1/L), the converted values will be 72.9% and 64.9%, respectively.

Table 2.  Mean normal values used for rescaling of parameters.

Parameters Mean normal value

RA  (mm2) 1.44

RNFLT (µm) 98.47

MD (1/L) 1.06 (0.27 dB)

MS (1/L) 972.60 (29.90 dB)
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Prediction of structure–function pairs. In the current study, the DSF and OLSLR models were indepen-
dently applied to predict future RA–MS paired measurements from the OHTS–CSLO dataset. The two models 
were also used to predict future RNFLT–MD paired measurements from the resampled DIGS/ADAGES dataset. 
The section below provides a description of how each model was used to predict future structure–function 
measurements. A detailed description of the DSF model is available in Hu et al.26. In Fig. 5, we briefly describe 
how the DSF model and OLSLR were applied to predict RA–MS paired measurements at the 5th visit.

Predictions by DSF model. The DSF model employs two vectors: a centroid and a velocity vector, to predict 
future structure–function paired measurements from preceding data. Whereas the centroid is an estimate of the 
current stage of the disease (the central location of the series of observed structure–function paired measure-
ments), the velocity vector is a measure of the direction and speed at which the structure–function pairs are 
changing over time. Consider RA–MS paired values (X1, X2, X3 and X4) measured over four visits with time (t) 
intervals points: t1, t2, t3 and t4. To predict the RA–MS pair at the 5th visit (at time t5) by the DSF model, first, 
the arithmetic mean for the first four observed data pairs is calculated as the centroid(C); C =

(X1+X2+X3+X4)
4

 . 
The model then determines the velocity vector(V), which is computed as an average of all rates of change from 
visit to visit. Thus, V =

(X2−X1)
(t2−t1)

+
(X3−X2)
(t3−t2)

+
(X4−X3)
(t4−t3)

 . The expected paired values at the 5th visit (P) are derived 
by adding the paired values at the current state of the disease (centroid) and the average change in paired meas-
urements. This is mathematically represented as P = C +

(

V

t5−t4

)

 . As, shown in the left panel of Fig. 5, the 
predicted measurements are then compared to the observed values for the RA–MS pair at the 5th visit to esti-
mate the error in prediction.

Predictions by OLSLR model. OLSLR predictions were derived by fitting the model separately to the available 
series of structural and functional measurements. For example, to predict RA and MS measurements at the 5th 
visit, OLSLR was fitted separately to the first four RA measurements and to the first four MS measurements. The 
expected measurements at the 5th visit were estimated from the best fit lines for the RA and MS series, as shown 
in the right panel of Fig. 5.

Statistical analysis. The prediction accuracy for each model was assessed by determining the magnitude 
of the resulting PE in percent of mean normal. The magnitude of the PE was computed as the square root of 
the sum of the squared differences between the predicted value and the observed value for each component of 
the structure–function pair. Predictions were from the 4th to 7th visit for global and sectoral RA–MS pairs, and 
for RNFLT–MD pairs. For each category of prediction, the Wilcoxon signed rank test was used to determine 
whether the difference in median PE between the DSF model and OLSLR was statistically significant. Signifi-
cance level was set at 0.05. All analyses were carried out in  R50 and SPSS (version 26.0; IBM, Armonk, NY, USA).

Figure 5.  Illustration of the prediction of structure–function pairs by the DSF model (left panel) and by OLSLR 
(right panel). In the left panel, the DSF model is depicted in two–dimensional space with MS on the x–axis and 
RA on the y–axis (both expressed as % of mean normal). Numbers 1–5 (in gray text) represent the observed RA 
and MS measurements at the 1st to 5th visit. To predict the values of RA and MS at the 5th visit with the DSF, 
the first 4 observed RA–MS pairs are used to estimate the centroid (C, solid red circle) and velocity vector (V, 
red arrow), which are in turn used to predict the paired measurement at the 5th visit (number 5 in red text). In 
the right panel, the first four series of observed RA and MS data are plotted separately over time. For OLSLR 
prediction of RA and MS values at the 5th visit (number 5 in blue text), the expected value is estimated from the 
best fit line for each series, as shown with the blue arrow. For both models, the error in prediction is estimated 
by comparing the predicted measurements (colored “5 s”) to the observed measurement (gray “5 s”).
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Data availability
The datasets analyzed in the current study are not publicly available due to data sharing agreement issued by the 
primary sources of the two datasets. Information for submitting requests to access datasets from these studies 
is available from the corresponding author.
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