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Rotating and stacking genes can 
improve crop resistance durability 
while potentially selecting highly 
virulent pathogen strains
Rémi Crété1, Rodrigo Neto Pires1,2,3, Martin J. Barbetti1,3 & Michael Renton1,2,3*

Rotating crop cultivars with different resistance genes could slow the evolution of virulent strains of 
fungal pathogens, but could also produce highly virulent pathogen strains. We present a new model 
that links polycyclic pathogen epidemiology and population genetics in order to predict how different 
strategies of rotating cultivars with different resistances will affect the evolution of pathogen virulence 
and the breakdown of crop resistance. We modelled a situation where there were four different 
resistance genes that can be deployed within each crop cultivar, and four virulence genes that may 
be present within the pathogen. We simulated four different rotational management strategies: (i) 
no rotation; (ii) a different gene every year; (iii) a different gene every 5 years; and (iv) a different 
combination of two stacked genes each year. Results indicate that rotating cultivars can lead to longer 
periods of disease suppression but also to the selection of highly virulent strains. The efficacy and 
relative advantage of different resistant cultivar rotation strategies depended on the fitness penalties, 
initial virulence allele frequencies, and ability of non-virulent pathogen genotypes to grow and 
reproduce on resistant cultivars. By capturing the essential processes involved, our model provides a 
useful new tool for investigating the evolutionary dynamics of pathogen virulence and crop resistance 
breakdown.

In agrosystems, farm stakeholders deploy an array of crop management practices to control the spread of patho-
gen populations and the severity of disease incidence. Reliable crop protection management practices should 
ideally, achieve efficient and durable epidemic control. The efficiency of such strategies depends on pathogen  
biology and population size (i.e. epidemiology dynamics) while their durability (i.e. the persistence of their effi-
cacy in time and space) depends on adaptation dynamics in pathogen populations (i.e. evolutionary dynamics)1–4. 
Modern and more intensive agricultural production systems increasingly employ new technologies aiming to 
facilitate crop management and ultimately enhance crop  productivity5–7. Fast paced modernisation of agricul-
tural systems combined with significant resource input greatly impact evolutionary trajectories of pathogens 
and  pests8. These practices may lead to unintended outcomes, such as disease epidemics that are more severe 
and harder to  control3. Moreover, the reduction in plant genetic and physiological diversity, and the increased 
homogeneity of modern cropping systems has disrupted selective pressures and the natural co-evolution of 
plant-pathogen  systems6,9,10. Unwanted consequences arise, and the rate at which crop pathogens evolve and 
overcome host resistance is  key9,11, as the development and deployment of resistant crop varieties is time and 
resource  consuming12.

Typically, management strategies rely on disease control methods such as pesticide applications, deep tillage 
of crop residues, the use of resistant cultivars, specific sowing period, crop rotations, cultivar  mixtures9,13–17. 
Breeding and deploying resistant crop varieties is one of the most used strategies to control crop  pathogens12,18,19. 
However, crop resistance can be circumvented by adaptation of the pathogen if the same type of resistance is 
deployed over several years, as occurs with Leptosphaeria maculans populations (stem phoma canker—Blackleg 
disease)20,21. Shifts in pathogen species and virulence  diversity22,23 can also lead to resistance breakdown. This also 
includes the development of new pathogen pathotypes, such as occurs with other Brassicaceae pathogens like 
Sclerotinia sclerotiorum24, Hyaloperonospora brassicae25, Albugo candida26, Neopseudocercosporella capsellae27 and, 
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Alternaria spp.28. The same occurs for many other crop-pathogen combinations, such as pulse crop pathogens 
like Phytophthora sojae29 and legume forage pathogens like Phytophthora clandestina. Thus, crop management 
strategies targeting resistance durability and epidemiological control have to be developed and deployed to avoid 
and/or delay the evolution of virulence and the breakdown of crop  resistance2,6,20,30,31.

There is a need to consider under what conditions different management strategies will lead to the the accu-
mulation of virulent genes in certain pathogen genotypes (i.e. ‘super-virulent strains’), given the limited avail-
able area (surface) for infection and, consequently, competition between pathogen strains. The accumulation of 
virulence genes into highly virulent races could be considered as an adaptive response of pathogen populations 
to the selection exerted by successive resistant hosts and cropping  practices32. Furthermore, some localities are 
more prone to resistance breakdown events than others; for example, the mean number of virulence alleles per L. 
maculans isolate is higher in Australia (5.11 virulence alleles) than in Europe (4.33) and Canada (3.46)21. Super-
virulent pathogen strains could then overcome resistance genes and/or management strategies, highlighting the 
risk of resistance breakdown events particularly for cropping regions with higher number of virulence  genes21. 
A convenient example is the simultaneous failure of two major host resistance genes in hybrid oilseed rape 
cultivars in 2012, in South  Australia33. Therefore, while rotation and/or stacking of resistance genes are efficient 
crop management strategies, their deployment can potentially lead to the development of ‘super-virulent’ strains.

Mechanistic  models34, whether stochastic or deterministic, are invaluable tools for integrating key disease 
processes, such as epidemiological and evolutionary dynamics. The use of modelling approaches allows for the 
assessment of crop management practices before implementation and deployment in scale. Strategies to maximise 
durability of resistance genes in crop cultivars should both limit the selection of more virulent pathogen strains 
while also reducing population  sizes18,35. A number of mechanistic models have been developed and tested for 
fungal pathogens and other pests (e.g.  Blackleg36, citrus tristeza  virus37,  anthracnose38, yellow rust of  wheat39, 
forest gap generated by bark beetles  species40 and apple  scab41). Historically, models have focused on evolution 
of resistance to chemical pesticide applications, rather than evolution of  virulence42. However, recent model-
ling approaches have successfully incorporated evolutionary dynamics of plant  pathogens10,17,31,43–45 even whilst 
assuming non-sexual reproduction. Sexual recombination is likely to be important when investigating evolution-
ary  dynamics6,46. We are unaware of modelling approaches that take into account secondary fungal pathogen 
spread and infection (i.e. a policyclic disease) and successfully incorporate sexual recombination into models, the 
exception being the SIPPOM-WOSR for Blackleg disease  management35,47,48. The SIPPOM-WOSR was built by 
integrating multiple sub-models and represents many bio-physical variables at a relatively high degree of detail 
and  realism47,48. However, model complexity comes at the price of many parameters and increasing interacting 
processes culminating in high sensitivity to parameter  variations34. It seems likely that while factors such as the 
specific weather conditions and soil characteristics will be important drivers defining disease epidemic develop-
ment over a particular season, the inter- and intra-seasonal variation is likely to be less important to long-term 
dynamics which is the focus of this work.

Therefore, we concluded that no existing model was suitable for addressing our aim of investigating—at the 
long-term and general level—how strategies of rotating resistant cultivars would influence evolution of pathogen 
virulence and the durability of crop resistance. We develop a spatially implicit model that accounts for important 
processes involved in evolution of pathogen virulence over a number of seasons, focusing in details important 
to long-term dynamics. In particular, we wanted the model to represent changes in the genetic structure of 
pathogen populations over time as a result of different strategies for rotating resistant crop cultivars and resist-
ance genes, while accounting for sexual recombination and competition between pathogen strains for limited 
infection sites (for details see Figs. 1, 2). Moreover, we wanted the model to not only be capable of being applied 
to Blackleg disease, but also more generally to other diseases. We then used the model to address the following 
specific questions: 

 (i) How do initial pathogen densities and virulence allele frequencies influence the selection of ‘super-
virulent’ strains under particular resistant cultivar rotation strategies?

 (ii) Given a fixed number of resistance genes, what is the best resistant cultivar rotation strategy to delay 
evolution of virulence and breakdown of cultivar resistance?

 (iii) Is it possible, under certain conditions, to delay the breakdown of resistance indefinitely, even if the same 
crop is planted every year?

 

Methods
Overview of the model. This model simulates the population and evolutionary dynamics of different 
pathogen strains, as they interact with different crop resistant cultivars planted in a single field over successive 
years. We assume one cultivar is planted each year and we consider a field divided into a finite number m of 
spatial units (representing limited spaces for infections, or potential lesion sites), in which the spatial aspect 
is implied rather than explicitly represented. For each year during the cropping season, a number of pathogen 
spores are released from the infested crop residues, it then lands on the crop plants leading to infections (Fig. 1). 
These infections are apportioned between the different pathogen strains depending on their previous abundance 
and interactions with the crop cultivar. At the end of the year, during the non-cropping season, these strains are 
assumed to sexually recombine in the crop residue. The number of spores released and the number of infections 
are considered as random variables. We denote these both quantities with an uppercase letter (for example N) 
in general sense, while their particular realisation or draw in the simulation will be noted with a lowercase letter 
(for example n). The model was developed using the R Language and Environment for Statistical  Computing49. 
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We applied the general model described above to a specific situation with four genes of interaction where 
there are four different resistance genes that may or may not be deployed within each crop cultivar, and four 
virulence genes that may or may not be present within each pathogen strain. We assume that the presence of each 
virulence gene reduces the fitness of a strain independently. Specifically, for each strain i, we define the fitness 
of that strain δi = δ

nvir,i , where nvir,i is the number of virulence alleles present in strain i, and δ is a fixed model 
parameter with potential values between zero and one (Table 1).

Annual cycle of model events

Cropping season Non−cropping season

1

2

3

4

Nreleased_i

Ninfect

Ninfect_i

Nrecombined_i

Figure 1.  The modelled annual cycle of how the density of different pathogen strains changes over a number 
of years, as they interact with different resistant cultivars planted in a field. First, the total number of spores 
released is simulated independently for each strain i. Second, the total number of infections is calculated, with 
limitations due to space or the number of possible infection sites. Third, this total number of infections is 
apportioned between the different strains, while accounting for any fitness penalties and/or cultivar resistance. 
Fourth, sexual recombination (mating) is simulated. The symbol Ni represents the number of a given strain i, 
whereas N with the i missing means the total for all strains.
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Figure 2.  Example illustrations of the different kinds of cultivar-strain interaction for ν = 4 : on the left, no 
infection because the pathogen strain genotype does not overcome the cultivar genotype (the strain does not 
have a ‘key’ for each resistance ‘lock’ on the cultivar, and so the resistance lock stays locked); in the middle, 
infection and high pathogen growth rate, because the pathogen has the minimum number of genes needed to 
overcome the cultivar’s resistance genes (only the necessary keys for the resistance locks); on the right, infection 
and lower pathogen growth rate, because the pathogen has more than the minimum number of genes needed to 
overcome the cultivar’s resistance genes (more than just the necessary keys for the resistance locks).
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We first set the model parameter values to define a baseline situation where there is a relatively small fitness 
penalty for virulence alleles (i.e. δ is very close to 1, where the value 1 means no penalty); the pathogen has a 
relatively low ability to reproduce if it does not carry effective virulence genes (i.e. low value for ǫ , in this baseline 
situation equal to 0.05); the initial virulence allele frequency (Init.freq) is relatively low, reflecting a low historical 
selection pressure and lastly the initial quantity of pathogen (Init.path) is also low at 10% of carrying capacity 
(Table 1). We then considered and compared four different strategies for rotating resistant crop cultivars: 

 S1. No rotation, the same cultivar with only one gene of resistance is employed every year;
 S2. A cultivar with a single gene of resistance is employed each year, and the gene of resistance in the cultivar 

is changed every year, giving a 4-year rotation;
 S3. A cultivar with a single gene of resistance is employed each year, and the gene of resistance in the cultivar 

is changed every 5 years, giving a 20-year rotation; and
 S4. A cultivar with two genes of resistance (i.e. pyramided resistance) is employed each year, and the genes of 

resistance in the cultivar are changed every year, giving a 2-year rotation

We then investigated how different parameterisations of the model would interact with the selected rotation 
strategies. We develop four cases in addition to the baseline case described above: 

 Case 1. Baseline scenario (Table 1).
 Case 2. Baseline scenario, except for Init.freq which was increased from 0.05 to 0.5.
 Case 3. Baseline scenario, except for Init.freq which was increased from 0.05 to 0.5 and δ which was decreased 

from 0.9 to 0.7.
 Case 4. Baseline scenario, except for Init.freq which was increased from 0.05 to 0.5, δ which was decreased 

from 0.9 to 0.7 and ǫ which was increased from 0.05 to 0.5.
 Case 5. Baseline scenario, except for ǫ which was increased from 0.05 to 0.5.

Genetics. Cultivar and pathogen strain are both defined through their genotype being restricted to a specific 
set of interaction genes (loci) related to resistance (for the cultivar) or virulence (for the pathogen). Each gene 
has two versions (alleles): virulence or avirulence allele for the pathogen and resistance or susceptibility for the 
cultivar. Virulence and resistance are represented with a 1 and avirulence and susceptibility are represented 
with a 0 (Fig. 2). If we call I  the set of strains and if ν genes of interaction are involved, then the total number of 
strains will be |I| = 2ν . During the infection process, after pathogen spores land on the cultivar, an interaction 
factor β(i, c) defines the relative rate at which strain i can reproduce within a field of cultivar c, for each strain 
and cultivar combination (Fig. 2). We consider that a strain overcomes the cultivar genotype when the strain 
has a virulence allele for every resistance allele of the cultivar (Fig. 2), in which case β(i, c) = 1 , indicating maxi-
mum reproduction rate. Otherwise, if the strain does not have a virulence allele for every resistance allele of the 
cultivar, β(i, c) = ǫ , where ǫ is a model parameter with constant value 0 ≤ ǫ < 1 , indicating a less-than-maxi-
mum reproduction rate. As such, ǫ is the model parameter modifying the growth and reproduction of pathogen 
strains not carrying multiple virulence alleles (e.g. 0100) and/or an avirulent pathogen strain (e.g. 0000) (Fig. 2). 
Accordingly, lower (closer to 0) ǫ values represent reduced ability to grow and reproduce in pathogen strains 
with increasing number of avirulence alleles. Moreover, any strain i with one or more virulence genes is also 
assumed to suffer a fitness penalty δi depending on the number of genes involved. Together these interaction fac-
tors make a cultivar-strain interaction matrix B = (β(i, c)) . This code and method for modelling resistance and 
virulence interactions (without fitness penalty) is similar to those in previous  studies48,50.

Initial genetic structure of pathogen population. At the start of each case, we define the initial proportion of each 
pathogen genotype using the equation:

where strains.init is the initial proportion of each pathogen genotype; Init.freq is the frequency of the virulent 
genes as set by each case and nr is the number of virulent genes present in a given pathogen genotype. We then 
used a random Poisson distribution generator (rpois function from the stats package in R) to obtain the initial 
number of spores for each pathogen genotype, where the mean of the Poisson distribution is the proportion of 
a given pathogen genotype multiplied by the pre-determined pathogen load (Init.path, Table 1).

Model dynamics. The annual dynamics (Fig. 1) can be divided into two main phases: the phase of parasitic 
activity, representing events occurring through the cropping season, and the phase of dormancy, representing 
events occurring between the cropping seasons. During the phase of parasitic activity, the pathogen produces 
spores which are spread both through the air (sexual ascospores) and via water splash (asexual conidia). These 
spores may then infect leaves and stems of the cultivar, resulting in new lesions of different strains. During the 
phase of dormancy, the pathogen remains within the infected crop residue and sexual recombination occurs. 
These processes are modelled with four steps, three for the parasitic phase and one for the dormancy phase.

Total amount of spores released. First, the model generates the amount of pathogen spores of each strain that is 
released, using the equation:

(1)strains.init = Init.freqnr
(

1− Init.freq
)4−nr
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where �released,i(t) represents the expected dispersed propagule (spore) pressure in the field due to strain i ∈ I  
during the year t, the parameter α represents the normal rate of growth for the pathogen from 1 year to the next, 
and nrecombined,i(t − 1) represents the number of spatial units or locations infected by the strain i at the end of the 
previous year and after genetic recombination. The actual quantity of pathogen strain i released in the current 
year, nreleased,i(t) is then simulated as a Poisson random variable:

The infective pressure �infected,i(t) is then calculated as:

where β(i, c(t)) is the interaction factor between the strain i and the cultivar c(t) i.e. the cultivar grown in year 
t, and δi is the fitness penalty for the particular strain i.

Total number of infections. Second, the model calculates the total number of infected sites, following a binomial 
distribution:

where ρi(t) is the probability that a particular given location (among the m possible locations in the field) during 
year t, will have a given spore from strain i fall down on it and cause a lesion, and thus 1−

∏2ν

i=1
(1− ρi(t))

nreleased,i(t) 

represents the probability that at least one of the nreleased(t) =
∑2ν

i=1
nreleased,i(t) spores produces a lesion. This 

equation can be justified in more detail as follows:

We assume that a spore will fall on any of the m specific locations with the same probability independently of its 
infection capabilities. The number of locations m is assumed to be the same for all years whatever the cultivar 
grown and thus, this probability is independent of the time dimension. Next, we assume that the probability 
that a spore will induce an infection depends on the interaction factor between the crop cultivar genotype and 
the pathogen strain β(i, c(t)) together with the fitness penalty for that strain δi . These assumptions mean that:

Number of infections for each strain. Third, the number of infections of each strain is derived from the total 
number of infections depending on genetic interactions between each strain and crop cultivar being employed 
that year. Specifically, the total number of infections Ninfected(t) = ninfected(t) is distributed among the different 
strains using the multinomial distribution:

where �infected(t) =
∑2ν

i=1
�infected,i(t) . The number of infected sites due to strain i, without no loss of generali-

ties, follows then the binomial distribution B
(

ninfected(t),
�infected,i(t)

�infected(t)

)

.

Genetic recombination. The fourth step involves simulating the process of sexual recombination, where 
new quantities of each strain are generated based on the previous quantities of each strain. At the end of 
the year t, we calculate the frequencies fj(t) of each virulent version of each gene from the different geno-
types of strains in the crop stubble. We let the genotype of any new spore be represented by a random vector 
Gi(t) =

(

Gi,1(t), . . . ,Gi,ν(t)
)

 , where each Gi,j(t) is a Bernoulli random variable B(1, fj(t)) . This vector represen-

(2)�released,i(t) = α.nrecombined,i(t − 1)

(3)Nreleased,i(t) →֒ P(α.nrecombined,i(t − 1))

(4)�infected,i(t) = β(i, c(t)).δi .nreleased,i(t)

(5)Ninfected(t) →֒ B

(

m, 1−

2ν
∏

i=1

(1− ρi(t))
nreleased,i(t)

)

P(At least one of the nreleased(t) spores produces a lesion)

= 1− P(No released spores produces a lesion)

= 1−

2ν
∏

i=1

P(A single released spore of strain i doesn′t produce a lesion)nreleased,i(t)

= 1−

2ν
∏

i=1

(1− P(A single released spore of strain i produces a lesion))nreleased,i(t)

ρi(t) = P(a spore fall down on a given location during year t and causes a lesion)

= P(a spore falls on a given place where c(t) is grown)×

P(the spore causes a lesion | the spore falls on a place where c(t) is grown)

=
1

m
.β(i, c(t)).δi

(6)
(

Ninfected,1(t), . . . ,Ninfected,2ν (t)
)

→֒ M

(

�infected,1(t)

�infected(t)
, . . . ,

�infected,2ν (t)

�infected(t)
, ninfected(t)

)
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tation of genotype follows the coding illustrated in (Fig. 2). Assuming that strains recombine independently gene 
by gene, the probability that Gi(t) will be a particular genotype gi(t) =

(

gi,1(t), . . . , gi,ν(t)
)

 is given by:

We can also confirm that across all possible genotypes these probabilities sum to one:

If we shorten the notation for P(Gi(t) = gi(t)) to be pi(t) then we can define the recombined version of infected 
numbers of units of each strain with the following multinomial distribution:

Poisson, binomial and multinomial distribution. In plant pathology, it is often relevant to model 
infections by a random variable. Let’s imagine a released spore flying in the air, we can say that this spore will 
land on a specific leaf and infect it with a given probability p, then it won’t with probability 1− p because these 
are the only two possible events. We can define Y a random variable to model the situation. If we say the event 
{Y = 1} represents the success of the event (landing and infection) and {Y = 0} represents the failure, with this 
definition we say that Y follows a Bernoulli distribution. The values attributed to the variable depending on the 
events allow the following generalisation: If we consider n spores, each of them realizing an infection on a spe-
cific plant area they fell on with the same probability p, then we can associate to each spore a Bernoulli distribu-
tion Yi where i ∈ {1, . . . , n} . If we are interested in the total number of infections occurring on this leaf, assuming 
the fact that they will happen independently of each other, we can model this situation by the variable 
S =

∑n

i=1
Yi , called binomial variable. We can also denote briefly S →֒ B(n, p) , where n represents the number 

of events and p the probability of success of each event. Moreover, the Bernoulli variable Y is related to binomial 
distribution in the way that we can write Y →֒ B(1, p)51,52.

Usually it is more likely to model such events by a Poisson law rather than binomial  law53,54. When the number 
of events is so big that we can approximate it by infinity, and when the probability of success of each event is very 
small, close to zero, it is possible to link both Poisson and binomial distribution through their respective expecta-

tions. So if lim n ր +∞
p ց 0

n ∗ p = �, then if we define X →֒ P(�) , we have S distribution
−−−−−−→ X . Returning to our 

example, that means that if we have a ‘close to infinity’ number of spores that could fall onto a given plant and 
infect it with a very small probability p for each of them and still acting independently, we can model the total 
number of infections by both S or X. Even if there are millions and millions of spores released, this amount is 
still small compared to infinity, so using X is still a modelling approximation. The use of binomial or Poisson 
laws depends on the complexity of the situation. For example, if the modeller wants to simulate a model where 
he anticipates 15 infections, they can use X →֒ P(15) or S →֒ B(10000, 0.0015) or S →֒ B(1000000, 0.000015).

We consider now a situation where the plant is attacked by a big number of spores, but with different geno-
types modifying their ability to infect, some strains being more efficient than others. To model this situation, we 
can use a vector of variables, each component representing the number of successes due to a specific genotype. 
We can choose a vector of binomial number or Poisson number. If we consider the case of a threshold in terms 
of available space to be infected (a maximum number of infections for the plant), such that spores of different 
strains are competing for those places, we suggest using a vector of random numbers that follows a multinomial 
law. This distribution derives from the binomial law, although each component is a specified binomial distribu-
tion defined from the parameters of the multinomial distribution. But, it is still possible to interpret some of 
these components via a conditional Poisson distribution.

From binomial to multinomial distribution. The binomial distribution is a particular case of the multinomial 
distribution. We consider S a binomial distribution of parameters (n, p) counting the number of success of n 
independent events where the basic probability of success is p. Let U the random variable be defined by n− S 
the number of failures. In the case where S represents the number of infections, U represents the number of 
uninfected places. The probability to get k infections is given by:

As a result, the probability of having k success is the same that having n− k failures. Then the Eq. (9) shows 
that U follows a binomial distribution with parameters (n, 1− p) . We can also say that the couple (S, U) follows 
a multinomial distribution of parameter (p, 1− p, n) , that we can denote (S,U) →֒ M(p, 1− p, n) . In a more 
general way, the analogue of the binomial distribution is the multinomial distribution, where each trial results 

pi(t) = P
(

Gi(t) = gi(t)
)

=

ν
∏

j=1

P(Gi,j(t) = gi,j(t))

=

ν
∏

j=1

fj(t)
gi,j(t)

(

1− fj(t)
)

(1−gi,j(t))

(7)
2ν
∑

i=1

P
(

Gi(t) = gi(t)
)

=

2ν
∑

i=1

ν
∏

j=1

fj(t)
gi,j(t)

(

1− fj(t)
)

(1−gi,j(t))
= 1

(8)
(

Nrecombined,1(t), . . . ,Nrecombined,2ν (t)
)

→֒ M
(

p1(t), . . . , p2ν (t), ninfected(t)
)

(9)P(S = k) =

(

n

k

)

pk(1− p)n−k =

(

n

n− k

)

pk(1− p)n−k = P(U = n− k)
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in exactly one of some fixed finite number k possible successes, with probabilities p1 , ..., pk (so that pi ≥ 0 for i = 
1, ..., k and 

∑k
i=1 pi = 1 ), and there are n independent trials. Then if the random variables Xi indicate the num-

ber of times outcome number i is observed over the n trials, the vector X = (X1, . . . ,Xk) follows a multinomial 
distribution with parameters n and p, where p = (p1, . . . , pk) , that we can also write M

(

p1, . . . , pn,N = k
)

55.

From Poisson to multinomial distribution. We consider here a total number of successes (meaning in our exam-
ple a number of spores that fall on a place and infect it) X being the sum of the infections due to ω different 
strains Xi ( 1 ≤ i ≤ ω ). If we consider that each Xi follows a Poisson law of parameter �i and that they are all 
independent, then X follows a Poisson law of parameter � =

∑

ω

i=1
�i . The distribution of each Xi conditionally 

to X = n is a binomial distribution B(n, �i
�
) . We can prove it for all variable Xj , with j ∈ {1, . . . ,ω}:

that we obtain using the Bayes formula for conditioning and the use of independence between the Xi’s. Then we 
replace the probabilities by their Poisson values:

Generalizing this result to the random vector of the (Xi)1≤i≤ω for ω strains, the distribution of this vector con-
ditionally to the total number X is a multinomial distribution M

(

�1
�
, . . . ,

�n
�
,X = n

)

55.

Properties of the model. Let X1,..., X2ν independent random variables such that Xj →֒ P(�infected,j(t)) for 
all j ∈ {1, . . . , 2ν} , we have the following results:

A. When m → ∞ , Ninfected(t) →֒ P(

∑2ν

j=1
�infected,j(t)),

B. For all j ∈ {1, . . . , 2ν} , Ninfected,j(t)
distribution
−−−−−−→ Xj|

∑2ν

i=1
Xi = n,

C. With A and B when m → ∞ , it is equivalent to either simulate Ninfected(t) then the conditional multino-
mial vector 

(

Ninfected,1(t), . . . ,Ninfected,2ν (t)
)

 conditionally to the realisation ninfected(t) , or to simulate directly 
the previously defined variables X1,..., X2ν.

The number of infected sites due to strain j, without any loss of generalities, follows the binomial distribution 

B

(

ninfected(t),
�infected,j(t)

�infected(t)

)

 . It is important to notice that it is the same law as a Poisson variable with parameter 

�infected,j(t) conditionally to the realisation ninfected(t) of a Poisson variable with parameter �infected(t) . Referring 
to formula (10), we can see that when the number of sites available for infection goes towards infinity, meaning 
that Ninfected(t) behaves like a Poisson law of parameter 

∑2ν

i=1 �infected,i(t) , then the variables 
(

Ninfected,i(t)
)

1≤i≤2ν
 

behave like independent Poisson law of respective rates 
(

�infected,i(t)
)

1≤i≤2ν
.

Proof of the properties of the model. A. With the help of the reminder, we just have to prove this result:

P

�

Xj = k|

ω
�

i=1

Xi = n

�

=

P



Xj = k,
�

ω

i = 1

i �= j

Xi = n− k





P
�

�

ω

i=1
Xi = n

�

=

P
�

Xj = k
�

P





�

ω

i = 1

i �= j

Xi = n− k





P
�

�

ω

i=1
Xi = n

�

P

�

Xj = k|

ω
�

i=1

Xi = n

�

=
e−�j�j

k

k!

e

−

�

ω

i = 1

i �= j

�i




�

ω

i = 1

i �= j

�i





n−k

(n− k)!

n!

e
−

�

ω

i=1
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�

�n

i=1
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�

ω

=

�

n

k

�

�j
k





�

ω

i = 1
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�i




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�

�

ω

i=1
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�

n

k

�





�j
�

ω

i=1
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



k











�
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i = 1
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�
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








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(10)lim
m→∞

E
(

Ninfected(t)
)

=

2ν
∑

i=1

�infected,i(t),
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which could be obtained with the mean value  theorem56. It means that if the total number of places available 
for infections was unlimited, these infections could be regarded as being Poisson distributed, with infection 
pressure as defined previously.

We consider the notation of (5), and to simplify the formula we will note: ρi = 1
m .βi and because the result 

(10) does not depend on time we reduce the notation such that (10) is equivalent to:

and then we want to prove that:

Replacing m by 1x , with x  = 0 , the latest equation equals:

We define fβ ,nreleased (x) =
2ν
∏

i=1

fi,(β ,nreleased)(x) =

2ν
∏

i=1

(1− xβi)
nreleased,i . Taking into account the fact that

we apply the mean value theorem (56) to the derivable function fβ ,nreleased , we got the following result:

that finishes the proof of point A.
B. The result is immediate knowing the upper reminder concerning the Poisson–Multinomial laws relation-

ship. We just have to take the value of ω = 2ν.
C. When m is close to infinity, Ninfected(t) follows a Poisson distribution whose parameter (expectation) is 

a sum of parameters. A property of Poisson distribution is that the law of a sum equals in distribution the sum 
of independent Poisson variables with the respective terms. So that we can rewrite B: For all j ∈ {1, . . . , 2ν} , 
Ninfected,j(t)

distribution
−−−−−−→ Xj|Ninfected(t) = n.

Results
Under the baseline parameters (Case 1), crop cultivar rotations greatly reduced the total amount of pathogen, 
compared to no rotation (S1, Fig. 3). With no rotation (S1), the grown cultivar selected the strain with the 
‘matching’ gene of virulence, and this strain increased over the years until the whole field was infected. When 
rotation was made every year (S2), disease incidence was never significant, even though each virulence gene 
was quickly selected in turn (Fig. 3). At the end of the simulation, the four genes of virulence were at very high 
frequencies, indicating that a super-virulent strain with all four virulence genes had been selected for under this 
strategy. When rotation was made every 5 years (S3), disease incidence reached a peak just before the cultivar 
was changed, with the successful pathogen strain being the one that has the virulence gene required to ‘break’ 
the resistant gene (Fig. 2) of the deployed cultivar (S3, Fig. 3). Each virulence gene was selected in turn, with the 
deployment of the corresponding cultivar, and again a super-virulent strain with all four virulence genes had 
been selected for after 25 years, although the disease was hardly detectable. Selection of super-virulence was faster 
with 1-year (S2) than 5-year rotations (S3), but 1-year rotations (S2) maintained lower infection levels (Fig. 3). 
When two genes of virulence were stacked together (S4), the disease was eradicated after 5 years (S4; Fig. 3).

We then considered how model predictions for the four rotation scenarios would be affected by varying key 
model parameter values (Table 1), including the initial virulence allele frequency (Init.freq), the fitness modi-
fier associated with each virulence allele ( δ ), and the modifier of increase rate for non-virulent strains ( ǫ ). We 
conducted a wide range of simulations with different combinations of parameter values, and then selected a few 
examples that were particularly informative for presentation here.

Increasing the initial virulence allele frequency ( δ ) from 5% to 50% (Case 2) resulted in a few important dif-
ferences (Fig. 4 cf Fig. 3). Without rotation (S1), infection by the non-corresponding pathogen genotypes were 
observable at first, until the non-corresponding alleles slowly faded out of the population (S1-left panel, Fig. 4). 
Moreover, the early peaks of infection in the 5-year rotation (S3) were higher. For all rotation strategies, now 

(11)lim
m→∞

E
(

Ninfected

)

=

2ν
∑

i=1

�infected,i ,

(12)lim
m→∞

m.

(
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(

1−
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m
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)

=
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∑
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1
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.

(
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)

=
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∑
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(14)f ′
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=
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
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


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




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(
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)

x
= − lim
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(
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)

0− x

= −

(

f ′
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(0)

)

=
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∑
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including the stacked gene strategy (S4), a super-virulence pathogen strain was selected, and infection levels by 
the super-virulent strain were now observable and highly significant after the first few years (Fig. 4). Selection of 
super-virulence was again faster with 1-year (S2) than 5-year rotations (S3), and faster still for the stacked gene 
strategy (S4). The 1-year rotations (S2) and the stacked gene strategy (S4) maintained lower infection levels than 
5-year rotations (S3) at first, but reached higher levels after 25 years (Fig. 4).

Next, increasing the fitness penalty (decreasing δ from 0.9 to 0.7) generally decreased infection levels (Fig. 5 cf 
Fig. 4). In this scenario (Case 3), all rotation strategies were effective in eliminating the disease, with the eradica-
tion being fastest for the stacked gene strategy (S4), almost as fast for the 1-year rotations (S2), and slowest for 
the 5-year rotation (S3) (Fig. 5). The elimination of the disease occurred despite the fact that virulence genes had 
reached very high frequencies just prior to elimination occurring. The only observable infection, with exception 
of the no rotation strategy (S1), occurred in the 5-year rotation strategy (S3) (Fig. 5).

Subsequently, increasing ǫ from 0.05 to 0.5 (Case 4) resulted in only a small change to the predicted infection 
rates, but it did make a difference to virulence allele frequencies as expected (Fig. 6 cf Fig. 5). In all the rotation 
strategies, the virulence allele frequencies were pushed towards zero over time. While it may not be clearly evident 
in the graphs, in Fig. 6 the disease was completely eradicated in all the rotation strategies within 25 years, while 
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Figure 3.  Case 1, model predictions of total infection by each pathogen genotype (proportion of total locations 
infected, left), and the corresponding frequencies of each virulent allele (right) changing over time under 
different rotation strategies (From top to bottom: (S1) no rotation; (S2) rotation every year; (S3) rotation every 
5 years; and (S4) rotation every year with stacked resistance genes). The parameters are at baseline values: the 
initial frequency of each virulent allele equals 5% , the fitness modifier is set at 0.9, the modifier of increase rate 
for non-virulent strains equals 0.05, and the initial amount of inoculum represents 10% of available locations.
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in Fig. 5, the disease was not eradicated within 25 years in any of the rotation strategies. Instead, the virulence 
alleles were eradicated from the population, leaving only the non-virulent pathogen strain (i.e. 0000; Fig. 2) at 
relatively low levels. When all the parameter values were returned to baseline values ( δ = 0.9, Init.freq = 0.05 
and Init.path = 10% of m), but ǫ was 0.5 instead of 0.05 (Case 5, Fig. 7), then results were similar to the baseline 
scenario (Fig. 3), except that selection of virulence was much slower and infection levels were somewhat higher.

Discussion
Overview of the model. We have developed a dynamic spatially implicit model to simulate the evolution 
of different pathogen strains within a field in response to different rotation strategies of resistant crop cultivars. 
The model represents the different phases of a polycyclic disease, including phases when the pathogen persists 
in crop residues (gene recombination during sexual reproduction and subsequent release of spores) or on living 
plants (asexual reproduction and secondary infections)57. Moreover, the model represents selection and compe-
tition between pathogen strains with a cultivar-pathogen interaction matrix while allowing for a fitness cost that 
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Figure 4.  Case 2, model predictions of total infection by each pathogen genotype (proportion of total locations 
infected, left), and the corresponding frequencies of each virulent allele (right) changing over time under 
different rotation strategies (from top to bottom: (S1) no rotation; (S2) rotation every year; (S3) rotation every 
5 years; and (S4) rotation every year with stacked resistance genes). The initial frequency of each virulent 
allele equals 50% , and other parameters are at baseline values: the fitness modifier is set at 0.9, the modifier of 
increase rate for non-virulent strains equals 0.05, and the initial amount of inoculum represents 10% of available 
locations.



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19752  | https://doi.org/10.1038/s41598-020-76788-7

www.nature.com/scientificreports/

sequentially penalises virulent strains with an increasing number of virulence  genes6,58,59. The model includes 
intra-seasonal dynamics but ignores inter-seasonal variation for the sake of simplicity and generality, but it could 
also be extended to take into account seasonal differences, for example, climate variables and time of planting 
and harvesting. Lastly, the model achieves its aim of being capable of representing Blackleg disease, but it also 
offers the capability of being applied more generally to other diseases.

We believe the model is highly parsimonious in being one of the simplest possible models representing key 
processes of pathogen population and its evolutionary dynamics while accounting for sexual recombination and 
the fact that potential infection sites are  limited17,31,43,45,47,48. The model achieves our aim of accounting for the 
important processes involved in the evolution of pathogen virulence over a number of seasons, without includ-
ing additional parameters likely to increase model complexity and parametrisation sensitivity. Furthermore, the 
model is stochastic but consistent, providing very similar outcomes across different simulation runs with the 
same parametrisation. Only in a few ‘borderline’ cases is the stochasticity apparent; for example, in the baseline 
parameters case (Table 1) the stacked rotation strategy generally resulted in disease extinction (as illustrated 
in Fig. 3), but it occasionally resulted in selection of super-virulence and high infection levels instead. Lastly, 
the model is spatially implicit—it does not explicitly account for spatial structure in pathogen populations or 
cultivar deployment—but uses the surrogate m (total number of potential lesions, Table 1). We acknowledge 
that spatiotemporal dynamics are key when modelling disease epidemiology and evolutionary  dynamics6,10,31 
and we hope to implement such processes in future versions of the model.

Overview of the simulation results. Our simulation results indicated that the population and evolution-
ary dynamics of the different pathogen strains are driven by a range of factors, including crop cultivar rotation 
strategies, fitness penalties and the degree that growth rates are reduced in the absence of virulence genes. Viru-
lence evolution and infection levels over time are also highly dependent upon initial conditions such as the total 
amount of pathogen inoculum and the frequency of the different virulence  alleles6,60.

In baseline simulations, when there was no rotation (S1) and the same cultivar was deployed every year, the 
pathogen strain with the exact virulence alleles to overcome the resistance alleles of the crop cultivar (see Fig. 2) 
was quickly selected for (Fig. 3). The more resistance genes the crop cultivar has, the greater the number of cor-
responding virulence genes that will be selected for. The speed of selection of the corresponding virulence genes 
depends on the degree to which avirulent strains (i.e pathogen strains without virulence genes) can grow and 
reproduce on the deployed cultivar, here determined by the ǫ parameter. For example, if ǫ was set to zero, selec-
tion occurred within a single season. The non-corresponding virulence alleles disappeared from the population 
slowly over time due to their fitness penalties. This meant that the only process occurring was then the bounded 
exponential growth of the corresponding pathogen strain. This growth period was extended when the cultivar 
deployed had more resistance alleles, due to the higher fitness penalty. Moreover, the initial virulent pathogen 
population was smaller due to the need for more virulence alleles to occur together in a single strain to confer 
effective virulence. The time taken for pathogen populations to build up in these no rotation baseline simulations 
(S1) also depended strongly on the initial population size and the initial virulence allele frequency.

The results clearly indicate the importance and possible effectiveness of rotating cultivars with different 
resistance genes. Regardless of the initial pathogen population level or the rotational strategy employed, rotation 
always kept pathogen populations lower for longer than deploying a single resistance gene cultivar every year. 
However, the efficacy of rotation depended strongly on the initial frequency of the virulence alleles. With the 
baseline parameter values (Case 1), pathogen populations were kept at negligible levels for at least 25 years in all 
tested rotation strategies (Fig. 3), despite the fact that a super-virulent strain with all virulence alleles was selected 
for well within 25 years for two of the strategies (S2 and S3; Fig. 3). While all three rotation strategies (S2-S4) 
worked well with lower initial virulence allele frequency (Fig. 3), the best strategy appeared to be the stacked 
gene strategy (S4), because it avoided selection of the super-virulent strain. On the other hand, for the scenario 
where virulence frequency as 0.5 instead 0.05 (Case 2, Fig. 4), the best strategy appeared to be the 5-year rota-
tion strategy (S3), as it kept pathogen populations under control and also avoided selection of the super-virulent 
strain for longer (Fig. 4). Model analysis also highlighted the importance of fitness penalties and the degree to 
which growth rates are reduced in the absence of virulence genes that overcome the crop cultivars’ resistance 
genes (i.e. non-virulent pathogen strains) (e.g. Figs. 5, 6). Increasing the fitness penalty (i.e. reducing δ here) led 

Table 1.  Baseline model parameter values used for our analysis, with alternative values shown in parentheses.

Parameters Description Values

m Carrying capacity (maximum number of lesions) 10,000,000

Init.path Initial quantity of pathogen 1,000,000

Init.freq Initial frequency of virulent allele 0.05 (or 0.5)

nb.years Number of years 25

nu Number of loci 4

I Number of strains 16

α Disease increase rate 3

δ Fitness modifier associated with virulence alleles 0.9 (or 0.7)

ǫ Modifier of increase rate for non-virulent strains 0.05 (or 0.5)
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to the disease being completely eradicated in all rotation strategies, even when the initial virulence frequency 
was high (Case 3 and 4, Figs. 5, 6). When we allowed the non-virulent pathogen strains to grow at a relatively 
higher rate on resistant crop stubble (Fig. 6), infection was maintained at low levels with a high fitness penalty, 
because the virulence genes were pushed to extinction, even though the disease was not completely eradicated.

In combination, these results highlight the difficulty of making general statements about the likely effi-
cacy and/or relative advantage of different resistant cultivar rotation strategies. From a practical perspective, it 
has been demonstrated that growing cultivars with the same Blackleg resistance genes leads to changes in the 
pathogen’s  virulence6. Such changes enable the pathogen to overcome cultivar Blackleg resistance. However, it 
is recommended to Australian canola producers that they can reduce the probability of resistance breakdown 
and reduce disease severity by simply rotating between cultivars with different resistance  genes61. The lack of 
complete understanding of fitness penalties, current virulence allele frequencies, and to a lesser extent, the ability 
of non-virulent pathogen genotypes to grow and reproduce on resistant crop cultivars also add to difficulty to 
assert the efficacy of rotation  strategies6,17,31,58,59,62. Our results showed that varying fitness penalty or the initial 
virulence allele frequency could totally change the efficacy of a given rotation strategy. For example, rotating 
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Figure 5.  Case 3, model predictions of total infection by each pathogen genotype (proportion of total 
locations infected, left), and the corresponding frequencies of each virulent allele (right) changing over time 
under different rotation strategies (from top to bottom: (S1) no rotation; (S2) rotation every year; (S3) rotation 
every 5 years; and (S4) rotation every year with stacked resistance genes). The fitness modifier is set at 0.7, the 
initial frequency of each virulent allele equals 50% , and other parameters are at baseline values: the modifier of 
increase rate for non-virulent strains equals 0.05, and the initial amount of inoculum represents 10% of available 
locations.
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cultivars with stacked resistance genes (S4) could eradicate the disease if initial virulence allele frequencies were 
relatively low (S4, Fig. 3), but quickly select for super-virulence if initial virulence allele frequencies were rela-
tively high (S4, Fig. 6). In addition, varying the ability of non-virulent pathogen strains to grow and reproduce 
on resistant crop cultivars (i.e. ǫ parameter) could change whether the disease was eradicated (Fig. 6) or the rate 
at which virulence evolved (Fig. 7). In particular, our results highlight the importance of using crop cultivar 
rotation strategies consistently while pathogen virulence gene frequencies are still low, rather than introducing 
them once pathogen gene frequencies are high.

Model assumptions and future improvements. Like all models, the current model is based on sim-
plifying assumptions, some of which might be usefully broadened in future work. Multiple species could be 
introduced to allow investigation of crop species as well as resistant cultivars of a single crop. This could be done 
in either a spatial or non-spatially explicit way. A spatially explicit version of the model would allow us to inves-
tigate the effects of different strategies of crop and cultivar placement across a landscape in addition to rotation 
strategies through  time31,44,45. The value added by and the need for such a spatially-explicit model would depend 
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Figure 6.  Case 4, model predictions of total infection by each pathogen genotype (proportion of total locations 
infected, left), and the corresponding frequencies of each virulent allele (right) changing over time under 
different rotation strategies (from top to bottom: (S1) no rotation; (S2) rotation every year; (S3) rotation every 
5 years; and (S4) rotation every year with stacked resistance genes). The fitness modifier is set at 0.7, the initial 
frequency of each virulent allele equals 50% , the modifier of increase rate for non-virulent strains equals 0.5, and 
other parameters are at baseline values: the initial amount of inoculum represents 10% of available locations.
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on the pathosystem type and the dispersal strategy (e.g. wind-borne, rain-splashed and/or soil-borne) and on 
the typical dimension of the fields and/or assemblage of fields in the situation being  investigated4,18,43,63.

This study considered only four resistance genes, each with a major effect; in reality there may be more major 
resistance genes  available64,65. These could be relatively easily added, but we would expect similar outcomes to the 
results observed here. Minor quantitative resistance traits could also be added, and the model could be extended 
to represent this kind of resistance as well. Furthermore, the current model does not represent ongoing mutation; 
this means that extinction of alleles can occur. In reality, extinction may be unlikely, due to ongoing mutation in 
combination with huge spore numbers leading to constant reintroduction of virulent alleles. We do not believe 
this is a significant caveat for this study, since adding mutation would just translate into frequencies being driven 
to very low levels rather than completely eradicated. Nonetheless, mutation could be added to future versions 
of the model, so that its effect can be explicitly studied and situations where mutation is crucial are properly 
accounted for in the future. Unlike many models of resistance evolution to xenobiotics, by representing a finite 
population with stochastic processes we have accounted for genetic  drift66,67. Lastly, the way population dynamics 
are represented in the current model assumes that the size of the final pathogen population in a season depends 
on its size at the start of the season, which consequently depends on their size at the end of the previous season 
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Figure 7.  Case 5, model predictions of total infection by each pathogen genotype (proportion of total locations 
infected, left), and the corresponding frequencies of each virulent allele (right) changing over time under 
different rotation strategies (from top to bottom: (S1) no rotation; (S2) rotation every year; (S3) rotation every 5 
years; and (S4) rotation every year with stacked resistance genes). The modifier of increase rate for non-virulent 
strains equals 0.5 and other parameters are at baseline values: the initial frequency of each virulent allele equals 
5% , the fitness modifier is set at 0.9, and the initial amount of inoculum represents 10% of available locations.
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(Fig. 1). In some cases, when conditions between cropping seasons are particularly unfavourable for the patho-
gen, pathogen load seems to depend almost entirely on weather conditions during a given season rather than 
previous population  size68. Thus, it may be useful to adapt the model to represent this situation in future as well.

Implications of the simulation outcomes. Our results indicate that rotating cultivars with a number of 
single (S2 and S3) or stacked resistance genes (S4) may significantly delay the build-up of pathogen populations 
to damaging levels. The potential downside of rotation strategies is the selection of super-virulent pathogen 
strains. Even though we found cases where virulence alleles were completely eliminated (e.g. S4, Figs. 3, 7 and 
S2–S4, Figs. 5, 6), in reality, the reintroduction of virulence alleles through mutation and spatial dispersal from 
adjacent fields means that elimination is unlikely, and eventual emergence of a super-virulent strain is highly 
likely. Therefore, consideration should always be given to combining resistant cultivar rotations with additional 
crop management practices such as: i) one or more applications of pesticides; ii) adjusting the timing of sow-
ing; iii) by spatial arrangement of crops; iv) by making tactical planting decisions based on weather conditions; 
and v) by strategies of rotation with alternative/non-host  crops10,31,61. Nonetheless, the amount of time until the 
super-virulent strain causes populations to rise to damaging levels may be great enough, such that rotation of 
cultivars of the same crop is a viable strategy by itself; depending on the economics of the crop in question, and 
the availability of alternative/non-host crops.

We expect that current and future versions of the model will prove useful for predicting rotation strategies’ 
capacity to negate or at least halt resistance circumvention by pathogens in crop cultivars, and therefore minimise 
yield losses and maximise crop profitability. The model is general enough that it can be applied to identifying 
general strategies across a wide range of pathogens-crops combinations as well as management strategies with-
out major modifications. We hope that this will help prevent or at least delay the collapses of major gene host 
resistances in cropping systens.
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