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Persistence of pdm2009‑H1N1 
internal genes of swine influenza 
in pigs, Thailand
Chanakarn Nasamran1,2, Taveesak Janetanakit1,2, Supasama Chiyawong1,2, 
Supanat Boonyapisitsopa1,2, Napawan Bunpapong1,2, Duangduean Prakairungnamthip1,3, 
Aunyaratana Thontiravong1,3 & Alongkorn Amonsin1,2*

Swine influenza is one of the important zoonotic diseases of pigs. We conducted a longitudinal survey 
of swine influenza A viruses (S‑IAV) circulating in a pig farm with history of endemic S‑IAV infection 
from 2017 to 2018. The samples were collected from 436 pigs including nasal swab samples (n = 436) 
and blood samples (n = 436). Our result showed that 18.81% (82/436) were positive for influenza A virus 
and subsequently 57 S‑IAV could be isolated. Then 24 out of 57 S‑IAVs were selected for whole genome 
sequencing and could be subtyped as S‑IAV‑H1N1 (n = 18) and S‑IAV‑H3N2 (n = 6). Of 24 S‑IAVs, we 
observed 3 genotypes of S‑IAVs including rH1N1 (pdm + 1), rH1N1 (pdm + 2), and rH3N2 (pdm + 2). 
Since all genotypes of S‑IAVs in this study contained internal genes from pdmH1N1‑2009, it could 
be speculated that pdmH1N1‑2009 was introduced in a pig farm and then multiple reassorted with 
endemic S‑IAVs to generate diversify S‑IAV genotypes. Our study supported and added the evidences 
that pdmH1N1‑2009 and it reassortant have predominately persisted in pig population in Thailand. 
Thus, monitoring of S‑IAVs in pigs, farm workers and veterinarians in pig farms is important and 
should be routinely conducted.

Swine influenza is one of the important zoonotic diseases of pigs. Swine influenza A virus (S-IAV) subtypes 
H1N1, H3N2 and H1N2 cause respiratory disease in pigs worldwide. In Thailand, S-IAV-H1N1 and S-IAV-H3N2 
were first reported in the  1970s1. S-IAV-H1N2 was reported in pig farms in  20052. In general, there are 3 major 
lineages of H1 gene; Classical swine lineage (CS; 1A), Eurasian avian-like swine lineage (EA; 1B) and human 
seasonal (Hu; 1C). The CS (1A) has 6 subclusters; α (1A.1), β (1A.2), γ1 (1A.3.3.3), γ2 (1A.3.2), TR (1A.3.3.1) 
and pdm09 (1A.3.3.2)3. Alpha subclusters (1A.1) could be further classified to subgroups; 1A1.1, 1A.1.2 and 
1A.1.3. In Thailand, previous study reported that genotypes of endemic Thai-S-IAV-H1N1 contained H1 from 
Classical swine lineage (CS) and seven genes from Eurasian avian-like swine lineage (EA) (designated 7 + 1) or 
H1 and NS genes from Classical swine lineage and six genes from Eurasian avian-like swine lineage (designated 
6 + 2)4,5. For S-IAV-H3N2, there are 2 major lineages of H3 gene; North American lineage and Eurasian swine 
lineage. The North American lineage can be classified into 4 clades of H3 (clade I, clade II, clade III, clade IV) 
as well as Human-like swine. The Clade IV of North American S-IAV can be further divided into 6 sub-clusters: 
A-F. In Thailand, the endemic Thai-S-IAV-H3N2 contained H3 and N2 genes from human-like swine lineage 
and other internal genes from Eurasian swine lineage (PB1, PB2, PA and M genes) and Classical swine lineage 
(NP and NS genes)6. For S-IAV-H1N2, endemic Thai-S-IAV-H1N2 contains N2 gene from human-like swine 
lineage, two segments (HA and NS) from Classical swine lineage and other five internal genes (PB2, PB1, PA, 
NP and M) from Eurasian swine  lineage5.

Genetic diversity of swine influenza viruses has been observed especially in Asian countries. It has been 
reported that all major S-IAVs lineages from different continents (CS-H1, EA-H1, pdm2009-like H1, Ameri-
can TR, human-like H3, European H3N2, Avian-like viruses etc.,) are co-circulating in pigs in Asia including 
Thailand. Co-circulation of different virus lineages could result in virus reassortment and more genetic diverse 
of the viruses. After the introduction of pdmH1N1-2009, several studies reported pdmH1N1-2009 infection 
in  pigs7,8. Then endemic Thai-S-IAVs were reassorted with pdmH1N1-2009, which contributing triple reas-
sortment internal genes (TRIG). Reassortant S-IAVs with pdmH1N1-2009 became predominant genotypes of 
S-IAVs in pigs in Thailand and the  region9,10. Persistence of gene especially pdmH1N1-2009 in pigs for decade 
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could contribute the generation of a novel virus with high infectivity and more virulence in pigs or humans. Due 
to the novel S-IAV reassortant could be found in pig farms, routine genetic monitoring of S-IAVs is important.

It has been reported that the transmission of human-origin viruses to pigs could contribute the adaptations 
or mutations for the fitness of the viruses. For example, adaptive mutations of pdmH1N12009 after infection 
in pigs, the NP gene of the virus develop D53E mutation correlated to less resistance to the antiviral factor in 
pigs. While some human-origin viruses contain H289Y substitution to reduce resistance to the antiviral factor 
and increase viral  replication11. Some human-origin viruses maintain or loss glycosylation sites in HA protein 
due to less antibody selection pressure in  pigs12. Thus genetic analysis of the S-IAVs is important to identify the 
potential adaptations or mutations that might relate to potential zoonotic of the viruses. The objective of this 
study was to conduct a longitudinal survey of S-IAVs circulating in a pig farm with history of endemic S-IAV 
infection from 2017 to 2018. Genetic diversity of S-IAVs and evidence of genetic reassortment of S-IAVs in a 
pig farm was investigated.

Results
Survey for swine influenza viruses in a pig farm. In this study, we conducted longitudinal sample col-
lection from a pig farm in central province of Thailand from 2017 to 2018. This pig farm had a history of endemic 
S-IAV infection in the past 5 years. Our result showed that 18.81% (82/436) and 19.95% (87/436) of nasal swab 
samples were positive and suspected for S-IAVs, respectively. By year, S-IAVs could be detected all year round 
in 2017 which highest in June 2017 (33.33%). In 2018, S-IAVs could be detected in every month of 2018, except 
March 2018. Highest percentage of S-IAV positivity was in April 2018 with 40.63% (13/32). The 169 S-IAV 
positive and suspected samples were subjected to virus isolation by egg inoculation. Our result showed that 57 
influenza viruses (13.07%) could be isolated (Supplement Table 1).

Diversity of swine influenza viruses in a pig farm. Twenty four out of 57 swine influenza viruses were 
selected for whole genome sequencing. The 24 S-IAVs were selected based on time of sample collection, subtypes 
of the viruses and virus titer (low Ct-value). To identify subtype of S-IAVs, nucleotide sequences of HA and NA 
genes were compared with nucleotide sequences in the NCBI database by using BLAST program. Our result 
showed that 24 S-IAVs could be identified as S-IAV-H1N1 (n = 18) and S-IAV-H3N2 (n = 6) (Table 1). Phylo-
genetic tree of H1 was constructed by comparing S-IAV-H1N1 (n = 18) to 125 references viruses. Phylogenetic 
tree of H1 gene showed that all S-IAV-H1N1s in this study were clustered with alpha sublineage (1A.1.2) of 
the classical swine lineage (Fig. 1A). It is noted that alpha sublineage (1A.1.2) is a common lineage of endemic 
Thai-S-IAVs. Phylogenetic tree of N1 was constructed by comparing 18 S-IAV-H1N1 to 70 references viruses. 
N1 of S-IAV-H1N1s in this study was clustered with either Eurasian avian-like swine lineage (n = 6) or pdm09 
lineage (n = 12) (Fig. 1B). The Eurasian avian-like swine lineage is a common lineage of N1 of endemic S-IAVs in 
Thailand. Phylogenetic tree of H3 was constructed by comparing S-IAV-H3N2 (n = 6) to 142 references viruses. 
Phylogenetic analysis showed that H3 of S-IAV-H3N2 in this study was clustered with North America lineage, 
sublineage human-like swine (both Ha and Hb), which is previously identified as common lineages of endemic 
Thai-S-IAV-H3N2 (Fig. 2A). Phylogenetic tree of N2 was constructed by comparing S-IAV-H3N2 (n = 6) to 82 
references viruses. The reference of NA2 gene included 2 major lineages; North American lineage and Eurasian 
swine lineage. The North American lineage contains 2 subclusters: N2-1998 and N2-2002 lineages from human 
seasonal influenza. Phylogenetic analysis showed that N2 genes of S-IAV-H3N2s were clustered into North 
American lineage with sublineage human-like swine of endemic Thai S-IAV-H3N2 (Fig. 2B). Phylogenetic trees 
of the internal genes of the S-IAV-H1N1 and S-IAV-H3N2 were constructed by comparing S-IAV-H1N1 (n = 18) 
and S-IAV-H3N2 (n = 6) to references viruses. The reference viruses included Classical swine lineage, Eurasian 
swine lineage, North America triple reassortant lineage, human seasonal lineage and pdm09 lineage. Phylo-
genetic analysis of each internal genes showed that internal genes of S-IAV-H1N1s (n = 18) and S-IAV-H3N2s 
(n = 6) were clustered with pdm09 lineage indicating S-IAVs in this study acquired internal genes (backbone) 
from pdmH1N1-2009 virus (Supplement Figures 1–6).

Gene constellation of the S-IAVs was identified by designated by using the combination of eight lineages or 
clusters of the virus. Of 24 S-IAVs, we observed 3 genotypes of S-IAVs including (1) rH1N1 (pdm + 1) contained 
H1 from classical swine lineage (CS) of endemic Thai-S-IAVs and the other 7 genes (NA and internal genes) from 
pdm09 lineage. (2) rH1N1 (pdm + 2) contained H1 from classical swine lineage (CS) of endemic Thai-S-IAVs, 
while N1 from Eurasian avian-like swine lineage (EA) of endemic Thai-S-IAVs and the 6 internal genes from 
pdm09 lineage, and (3) rH3N2 contained HA3 and NA2 genes from human-like swine lineage of endemic Thai-
S-IAVs and internal genes from pdm09 lineage (Fig. 3A,B). Our result suggested that internal genes of pdm09 
lineage persist and become predominant lineage in endemic Thai-S-IAVs (Figs. 1A and 2A, Supplement Table 2). 
It should be concerned that persistence of gene especially pdmH1N1-2009 in pigs for long period in the pig farms 
could contribute the generation of a novel virus with high infectivity and transmissibility in pigs or humans.

For genetic analysis of H1 cleavage site, S-IAVs in this study had identical H1 cleavage site “PSIQSRGLF” 
to pdmH1N1-2009 and endemic S-IAVs. For receptor binding sites (HA-190, 225), most S-IAVs contained 
190D and 225D suggesting preferential binding to human receptor (2,6 sialic acid receptor)13. Expect one virus 
(CU21626) contained E190 suggesting the virus prefer to bind avian receptor (2,3 sialic acid receptor)14. Genetic 
analysis of H1 antigenic sites (Sa, Sb, Ca1, Ca2 and Cb) showed that S-IAVs in this study contain similar amino 
acids of antigenic sites to endemic Thai-S-IAVs (Table 2). For HA3 genetic analysis, the receptor binding sites 
(HA3-226 and 228) of S-IAVs in this study and endemic Thai-S-IAVs posed I226 and S228 suggesting prefer-
ential binding to human  receptor14,15. Genetic analysis of antigenic sites of H3 (A, B, C, D, and E) showed that 
antigenic sites A (140–146) and B (156–161, 189–199) contained amino acids similar to endemic Thai-S-IAVs 
(Table 3). For genetic analysis of some internal genes (PB2, M and NS genes), all S-IAVs in this study possessed 
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glutamic acid (E) at position 627 in PB2 (E627), which correlated with less virulence of the viruses. While all 
S-IAVs contained aspartic acid (D) at position 701 in PB2 (N701D) and position 92 in NS (E92D), which cor-
related to the more virulence of the  viruses15–17. For genetic analysis of antiviral resistance in M gene at position 
31 of M gene, all S-IAVs in this study possessed amino acid N at position 31 (31N) suggesting the viral resistance 
to  amantadine18. On the other hand, genetic analysis of antiviral resistance (oseltamivir) in NA gene (NA1-119, 
275, 293, and 295 and NA2-146, 219, and 272) showed that all S-IAVs in this study are sensitive to oseltamivir 
(for NA1; E119, H275, R293, N295 and NA2; N146, S219, A272) (data not shown). 

For serological test of S-IAVs, the serum samples were tested for antibodies against influenza subtypes H3N2, 
H1N1 and pdmH1N1. Our results showed that serum samples had antibodies against S-IAV-H3N2 (37.23%; 
140/436), S-IAV-H1N1 (18.35%; 69/436) and pdmH1N1 viruses (27.13%; 102/436). In detail, the HI titer against 
S-IAV-H3N2 (endemic Thai-S-IAVs-H3N2) was highest in April 2017 (73.33%) and in September 2018 (51.52%). 
For S-IAV-H1N1, antibody titer against endemic Thai-S-IAV-H1N1 was highest in November 2017 (16.67%) 
and in August 2018 (29.03%). For pdmH1N1, HI titer against pH1N1 was highest in November 2017 (50.00%) 
and in July 2018 (63.33%).

Discussion
In this study, we conducted a longitudinal survey in a pig farm from January 2017 to November 2018. The 
previous study on S-IAVs in this pig farm in 2015 showed that this pig farm had been infected with S-IAVs and 
estimated prevalence of S-IAVs was 6.66%5. Comparing to previous study, the S-IAV prevalence in this study 
was 18.81% (from January 2017 to November 2018), which was higher than previous report in 2015. The pos-
sible explanation is that this study was more focusing on target sample collection in piglets and weaning pigs 
(4–10 week-old), thus higher prevalence of S-IAVs was observed.

In this study, two subtypes of S-IAVs (S-IAV-H1N1 and S-IAV-H3N2) were identified. Comparing to the 
previous study in Thailand during 2000–2014, three subtypes of S-IAVs were identified, but S-IAV-H1N2 could 
not be identified in this study. Notably, S-IAV-H1N2 has lower prevalence than S-IAV-H1N1 and S-IAV-H3N25,19. 
Phylogenetic analysis of H1 gene showed that S-IAVs in this study as well as endemic Thai-S-IAVs belonged to 

Table 1.  Description of Thai S-IAV-H1N1 and S-IAV-H3N2 characterized in this study. a rH1N1 (pdm + 1): 
reassorted S-IAV-H1N1 genotype contained HA gene from classical swine lineage (CS) and other genes from 
pandemicH1N1-2009 lineage (pdm09). rH1N1 (pdm + 2): reassorted S-IAV-H1N1 genotype contained HA 
gene from classical swine lineage (CS), NA gene from Eurasian avian-like lineage (EA) and internal genes from 
pandemicH1N1-2009 lineage (pdm09). rH3N2 (pdm + 2): reassorted S-IAV-H3N2 genotype contained HA 
and NA genes from human-like swine and internal genes from pandemicH1N1-2009 lineage (pdm09).

Virus Subtypea Year Host Age GenBank no

S-IAV-H1N1

A/swine/THA/CU3732/2017 rH1N1 (pdm + 2) Jan-17 Swine 4 weeks MT378014-21

A/swine/THA/CU3743/2017 rH1N1 (pdm + 2) Jan-17 Swine 6 weeks MT378022-29

A/swine/THA/CU3759/2017 rH1N1 (pdm + 2) Apr-17 Swine 4 weeks MT378030-37

A/swine/THA/CU3764/2017 rH1N1 (pdm + 2) Apr-17 Swine 6 weeks MT378038-45

A/swine/THA/CU3770/2017 rH1N1 (pdm + 2) Apr-17 Swine 6 weeks MT378046-53

A/swine/THA/CU3793/2017 rH1N1 (pdm + 2) Jun-17 Swine 4 weeks MT378062-69

A/swine/THA/CU3802/2017 rH1N1 (pdm + 1) Jun-17 Swine 6 weeks MT378086-93

A/swine/THA/CU3803/2017 rH1N1 (pdm + 1) Jun-17 Swine 6 weeks MT378094-01

A/swine/THA/CU3798/2017 rH1N1 (pdm + 1) Jun-17 Swine 4 weeks MT378078-85

A/swine/THA/CU21299/2018 rH1N1 (pdm + 1) Apr-18 Swine 6 weeks MT377918-25

A/swine/THA/CU21304/2018 rH1N1 (pdm + 1) Apr-18 Swine 10 weeks MT377942-49

A/swine/THA/CU21626/2018 rH1N1 (pdm + 1) Jun-18 Swine 6 weeks MT377950-57

A/swine/THA/CU21630/2018 rH1N1 (pdm + 1) Jun18 Swine 8 weeks MT377958-65

A/swine/THA/CU21970/2018 rH1N1 (pdm + 1) Jul-18 Swine 6 weeks MT377966-73

A/swine/THA/CU22117/2018 rH1N1 (pdm + 1) Aug-18 Swine 4 weeks MT377974-81

A/swine/THA/CU22300/2018 rH1N1 (pdm + 1) Sep-18 Swine 10 weeks MT377982-89

A/swine/THA/CU22351/2018 rH1N1 (pdm + 1) Oct-18 Swine 9 weeks MT377998-05

A/swine/THA/CU22630/2018 rH1N1 (pdm + 1) Nov-18 Swine 4 weeks MT378006-13

S-IAV-H3N2

A/swine/THA/CU3794/2017 rH3N2 (pdm + 2) Jun-17 Swine 4 weeks MT378102-09

A/swine/THA/CU3816/2017 rH3N2 (pdm + 2) Jun-17 Swine 10 weeks MT378070-77

A/swine/THA/CU3790/2017 rH3N2 (pdm + 2) Jun-17 Swine 4 weeks MT378054-61

A/swine/THA/CU20218/2018 rH3N2 (pdm + 2) Nov-17 Swine 8 weeks MT377926-33

A/swine/THA/CU20226/2018 rH3N2 (pdm + 2) Nov-17 Swine 12 weeks MT377934-41

A/swine/THA/CU22337/2018 rH3N2 (pdm + 2) Oct-18 Swine 6 weeks MT377990-97
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Figure 1.  (A) Phylogenetic tree of H1 of S-IAV-H1N1. (B) Phylogenetic tree of N1 of S-IAV-H1N1. Yellow, 
pink, and green colors indicate pdm2009-H1N1 lineage (pdm09), classical swine lineage (CS), Eurasian avian-
like lineage (EA), respectively. Circles indicate S-IAV-H1N1 isolated in this study. The phylogenetic tree was 
constructed by using the Beast program with Bayesian Markov‐Chain Monte Carlo (BMCMC), with 50,000,000 
generations and an average standard deviation of split frequencies < 0.10. Values on branches represent posterior 
probability and times of most recent common ancestor (TMRCA) among H1-S-IAV.
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the distinct sublineage 1A.1.2 of classical swine (CS)5,9. Based on the MCC phylogenetic tree, the H1 gene of 
S-IAVs in this study was estimated to have separated from endemic S-IAVs-H1N1 since 2010 (Fig. 1A). While 
N1 gene of S-IAVs in this study was closely related to either Eurasian avian-like swine lineage (EA) of endemic 
Thai-S-IAVs or pdm09 lineage of pdmH1N1-2009 virus. This result suggested that pdmH1N1-2009 circulated 
for a period of time or repeat introduced into this pig farm. Then the pdmH1N1-2009 reassorted with other 
endemic S-IAVs and contribute N1 gene to novel reassortant influenza viruses. Phylogenetic analysis of H3 and 
N2 genes showed that H3 and N2 were clustered with human-like swine viruses that introduced in pigs during 
1990s and became the predominant subclusters (Ha and Hb) of endemic S-IAV-H3N2 in  Thailand20. In this study, 
HA3 and NA2 genes were still clustered with human-like swine lineage, subclusters Ha (n = 1) and Hb (n = 5) 
suggesting the fitness combination of surface genes (H3 and N2) from endemic S-IAVs and internal genes from 
pdmH1N1-200921. The MCC tree of H3 showed that the S-IAVs in this study was diverged from the endemic 
S-IAVs-H3N2 since 2012–2013.

Figure 1.  (continued)
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In this study, there were 3 reassortant genotypes of S-IAVs; rH1N1 (pdm + 1), rH1N1 (pdm + 2) and rH3N2 
(pdm + 2). In Thailand, at least 7 genotypes have been reported including eH1N1 (6 + 2), eH1N1 (7 + 1), rH1N1 
(pdm + 1), rH1N1 (pdm + 2), rH1N2 (pdm + 2), rH3N2 (pdm + 2) and pdmH1N1 (Supplement Table 2)5,9,20. The 
genotype rH1N1 (pdm + 2) and rH3N2 (pdm + 2), which identified in this study, have been previously reported in 

Figure 2.  (A) Phylogenetic tree of H3 of S-IAV-H3N2. (B) Phylogenetic tree of N2 of S-IAV-H3N2. Yellow, 
pink, green, blue and dark blue colors indicate pdm2009-H1N1 lineage (pdm09), classical swine lineage (CS), 
Eurasian avian-like lineage (EA), Ha human-like swine lineage (Ha), Hb human-like swine lineage (Hb), 
respectively. Circles indicate S-IAV-H1N1 isolated in this study. The phylogenetic tree was constructed by using 
the Beast program with Bayesian Markov‐Chain Monte Carlo (BMCMC), with 50,000,000 generations and an 
average standard deviation of split frequencies < 0.10. Values on branches represent posterior probability and 
times of most recent common ancestor (TMRCA) among H3-S-IAV.
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Thailand indicating these genotypes are stable and continuous circulating in a pig farm for several years. In con-
trast, novel genotype rH1N1 (pdm + 1), (H1 from classical swine and other 7 genes from pdmH1N1), has never 
been reported in Thailand. Our result supported the reassortment or multiple-reassortment between endemic 
Thai-S-IAVs and pdmH1N1-2009. Reassortment of swine influenza viruses have been observed worldwide such 
as in  China22,23,  Europe24 and  America25–27. Since all genotypes of S-IAVs in this study contain backbone (PB2, 
PB1, PA, NP, M and NS genes) from pdmH1N1-2009. It could be speculated that the entire pdmH1N1-2009 
virus did not persist but the internal genes of pdmH1N1-2009 have became predominant lineage of S-IAVs in 
Thailand. Thus the predominant of internal genes of pdmH1N1-2009 could stimulate the expand diversity and 
rapid evolution of S-IAVs in Thailand as well as in the  region21.

The recent study in China has reported that the predominant reassortant S-IAVs genotype G4 (H1N1 gene 
from Eurasian Avian-like (HA, NA) and internal genes from pdmH1N1-2009 (PB2, PB1, PA, NP, M) and Triple 
reassortant internal gene (NS)) showed efficient infectivity and high pathogenicity in experimental animal model. 
Their findings raise a concern of potential pandemic of the  viruses28.

Figure 3.  (A) Schematic presentation of genotypes of S-IAV-H1N1 in this study. (B) Schematic presentation 
of genotypes of S-IAV-H3N2 in this study. Oval represent the virus with 8 gene segments. Lines from top to 
bottom represent PB2, PB1, PA, HA, NP, NA, M and NS genes. Yellow, pink, green, blue and dark blue colors 
indicate pdm2009-H1N1 lineage (pdm09), classical swine lineage (CS), Eurasian avian-like lineage (EA), Ha 
human-like swine lineage (Ha), Hb human-like swine lineage (Hb), respectively.
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Based on genetic analysis, the transmission of human-origin viruses to pigs could contribute the adaptations 
or mutations for the fitness of the viruses. In this study, HA cleavage site, receptor binding sites and antigenic 
sites of S-IAVs in this study resemble to human viruses, thus the S-IAVs could possibly infect and/or replicate 
in mammal host including humans. For example, outbreaks of swine origin-H3N2v from pigs to humans and 
humans to pigs have been  documented29. In this study, antibodies against H1N1, H3N2 and pdmH1N1 were 
observed in this pig farm. It is noted that pig had antibody against pdmH1N1, even though the pdmH1N1 viruses 

Table 2.  Genetic analysis of the H1 gene of Thai S-IAV-H1N1 in this study. a Amino acid positions are based 
on H3 numbering.

Viruses Subtype
H1 
Cluster

H1  genea

Antigenic site

Receptor 
binding 
site

HA 
cleavage 
site

Sa Sb Ca1 Ca2 Cb

190 225 325–333128–129 156–160 162–167 187–198 169–173 206–208 238–240 140–145 224–225 78–83

Reference

Califor-
nia/04/2009 pdmH1N1 pdm PN KKGNS PKLSKS TSADQQS-

LYQNA INDKG GSS EPG PHAGAK RD SLSTAS D D PSIQSR-
GLF

THA/
CUPL65/2010 PdmH1N1 pdm PN KKGNS PKLSKS TSADQQS-

LYQNA INDKG GSS EPG PHAGAE RD SLSTAS D D PSIQSR-
GLF

THA/
CU3340N/2012

eH1N1 
(6 + 2) CS PN KKGNS PKLSKS TSTDQQS-

LYQNA VNNKK SSS EPG HYAGAN RD LLFKAS D D PSIQSR-
GLF

THA/
NIAH587/2005

eH1N1 
(7 + 1) CS PN KKGNS PKLSKS TNTDQQS-

LYQNA VNNKK GSS EPG PYAGAN RG LLFAIN D G PSIQSR-
GLF

THA/
CU3795N/2013

rH1N1 
(6 + 2) CS PN KKENS PKISKS TSNDQQS-

LYQNA FNNKG SSS KPG PYAGAN RD LLFNAS D D PSIQSR-
GLF

THA/
CUSA43/2010

rH1N1 
(7 + 1) pdm PN KKGNS PKLSKS TSADQQS-

LYQNA INDKG GSS EPG PHAGAK RD SLSTAS D D PSIQSR-
GLF

THA/
CUS3629N/2012

rH1N1 
(pdm + 2) CS PN KKENS PKISKS TSNDQQS-

LYQNA FNNKG SSS KPG PYAGAN RD LLFNAS D D PSIQSR-
GLF

This study

THA/
CU3759/2017

rH1N1 
(pdm + 2) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNKG SSS KPE PYAGAN RN SLFNAS D N PSIQSR-
GLF

THA/
CU3764/2017

rH1N1 
(pdm + 2) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNKG SSS KPE PYAGAN RD SLFNAS D D PSIQSR-
GLF

THA/
CU3770/2017

rH1N1 
(pdm + 2) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNKG SSS KPE PYAGAN RD SLFNAS D D PSIQSR-
GLF

THA/
CU3793/2017

rH1N1 
(pdm + 2) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNKG SSS KPE PYAGAK RD SLFNAS D D PSIQSR-
GLF

THA/
CU3802/2017

rH1N1 
(pdm + 1) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNRG SSS KPE PYAGAN RD LLFNAS D D PSIQSR-
GLF

THA/
CU3798/2017

rH1N1 
(pdm + 1) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNRG SSS KPE PYAGAN RD LLFNAS D D PSIQSR-
GLF

THA/
CU3803/2017

rH1N1 
(pdm + 1) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNRG SSS KPE PYAGAN RD LLFNAS D D PSIQSR-
GLF

THA/
CU21299/2018

rH1N1 
(pdm + 1) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNRG SSS KPE PYAGAK RD LLFNAS D D PSIQSR-
GLF

THA/
CU21304/2018

rH1N1 
(pdm + 1) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNRG SSS KPE PYAGAN RD LLFNAS D D PSIQSR-
GLF

THA/
CU21626/2018

rH1N1 
(pdm + 1) CS PN KKENS PKLSKS TSNEQQV-

LYQNA FNNRG SSS KPE PYAGAN RD LLFNAS E D PSIQSR-
GLF

THA/
CU21970/2018

rH1N1 
(pdm + 1) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNRG SSS KPE PYAGAN RD LLFNAS D D PSIQSR-
GLF

THA/
CU22117/2018

rH1N1 
(pdm + 1) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNRG SSS KPE PYAGAN RD LLFNAS D D PSIQSR-
GLF

THA/
CU21630/2018

rH1N1 
(pdm + 1) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNRG SSS KPE PYAGAN RG LLFNAS D G PSIQSR-
GLF

THA/
CU22300/2018

rH1N1 
(pdm + 1) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNRG SSS KPE PYAGAN RN LLFNAS D N PSIQSR-
GLF

THA/
CU22351/2018

rH1N1 
(pdm + 1) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNRG SSS KPE PYAGAN RD LLFNAS D D PSIQSR-
GLF

THA/
CU22630/2018

rH1N1 
(pdm + 1) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNRG SSS KPE PYAGAN RG LLFNAS D G PSIQSR-
GLF

THA/
CU3732/2017

rH1N1 
(pdm + 1) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNKG SSS KPE PYAGAN RG SLFNAS D G PSIQSR-
GLF

THA/
CU3743/2017

rH1N1 
(pdm + 1) CS PN KKENS PKLSKS TSNDQQV-

LYQNA FNNKG SSS KPE PYAGAN RD SLFNAS D D PSIQSR-
GLF
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could not be identified in the pig farm. It has been reported that no cross-reaction between antibodies against 
H1-S-IAV and H1 pandemic  viruses30. Thus, the HI titer result confirmed that pigs in this farm were exposed 
to both endemic S-IAV-H1 and S-IAV-H3 and pdmH1N1. It should be noted that the HI antibody titer against 
pdmH1N1 could be either from pandemic HA already circulating in this swine farm or from pandemic HA that 
has been recently introduced from human. Based on our findings, we can speculate that reverse zoonotic infec-
tion from workers to pigs as well as zoonotic infection from pigs to workers in the pig farm could be occurred. 
Thus, monitoring of influenza virus in pigs and workers is important and should be routinely conducted. The 
management in pig farm is important for example personal hygiene, personal protective equipment (PPE), sea-
sonal influenza vaccination should be practiced and used in the pig farms for prevention and control of influenza 
transmission in pigs and humans.

Materials and methods
A longitudinal survey of swine influenza viruses in a pig farm. In this study, a longitudinal sample 
collection was conducted in a pig farm from 2017 to 2018. A pig farm was selected based on a history of S-IAV 
subtypes H1N1, H1N2 and H3N2 circulated in a pig  farm5. The pig farm is located in central province, where 
considered as high-density pig production area in Thailand. The pig farm is a large-scale pig farm contains 
approximately 1600 sow and produces 2000 piglets per month with 43 building as farm office, 32 pig housing and 
10 worker housing. The farm has open-housing system with moderate biosecurity, which birds and domestic 
animals can access to pig housing areas. The samples were collected from 436 pigs, including nasal swab samples 
(n = 436) and blood samples (n = 436) from piglets and nursery pigs (4–10-week-old) with clinical signs of S-IAV 
infection such as coughing, sneezing and nasal discharge. Samples collection was carried out every 4 months 
in 2017 and every month in 2018 (Supplement Table 1). The nasal swabs were placed in viral transport media 
(MEM with 7% BSA, 100 U/ml penicillin, 100 mg/ml streptomycin and 1 mg/ml trypsin). The blood samples 
were withdraw from jugular vein and placed in 5 ml tubes. The samples were kept on ice and transported to the 
laboratory within 24 h. The Chulalongkorn University, Animal Care and Uses Protocol committee approved the 
animal study (CU-VET IACUC #1831103). All animal study procedures were performed in accordance with 
CU-VET IACUC guidelines and regulations.

Detection and isolation of swine influenza virus. Viral RNA was extracted from nasal swab sam-
ples (n = 436) by using GeneAll GENTi Viral DNA/RNA Extraction Kit (GeneAll; Lisbon, Portugal) on a Genti 
(GeneAll; Lisbon, Portugal). For influenza A virus detection, one-step Real-time RT-PCR was performed by 
using SuperScript III Platinum One-Step Quantitative RT-PCR System (Invitrogen; California, USA). The 
one-step Real-time RT-PCR protocol with M gene specific primers and probes was carried out as previously 
 descripted31. Real-time RT-PCR result was interpreted by cycle threshold (Ct- value) of < 36 as positive, Ct-value 
of 36–40 as suspected, and Ct-value of > 40 as negative.

For S-IAV isolation, the real-time RT-PCR positive (n = 82) and suspected (n = 51) samples were subjected to 
virus isolation by egg inoculation following WHO  recommendation32. For egg inoculation, each 100 ul of nasal 

Table 3.  Genetic analysis of the H3 gene of Thai S-IAV-H3N2 in this study. a Amino acid positions are based 
on H3 numbering.

Viruses Subtype H3 Cluster

H3  genea

Antigenic site
Receptor 
binding site

A B C D E

226 228140–146 156–161 189–199 277–282 205–221 171–175 243–249

Reference

THA/KU5.1/2004 eH3N2 Hu KRGSVKS KLDYKY SDQTNLYVQAS CNSECI STKRSQQTVIP-
NIGSRP NDKFD LLINSTG I S

THA/
CUS3673N/2012 rH3N2 (pdm + 2) Hu KRGSVKS KLDYKY NDQTNLYVQAS CNYGCI STKRSQQTVIP-

NIGSRP NDKFN LLINSTG I S

THA/
CUS14252N/2014 rH3N2 (pdm + 2) Hu KRGSVKS KLDYKY SDQTNLYVQAS CNSECI STKRSQQTVIP-

NIGFRP NDKFD LLINSTG I S

THA/
CUS14129N/2013 rH3N2 (pdm + 2) Hu KRGYVNS QSGHKY SDQTSLYVQAS CNSECV STKRSQQTVIP-

NIGSRP NEKFD LLINSTG I S

This study Hu

THA/CU3794/2017 rH3N2 (pdm + 2) Hu KRGSVKS QLNYKY SDQTNLYVQAS CNSECI STKRSQQTVIP-
NIGFRP NDKFD LLINSTG I S

THA/CU3816/2017 rH3N2 (pdm + 2) Hu KRGSVKS QLNYKY SDQTNLYVQAS CNSECI STKRSQQTVIP-
NIGFRP NDKFD LLINSTG I S

THA/CU3790/2017 rH3N2 (pdm + 2) Hu KRGSVKS QLNYKY SDQTNLYVQAS CNSECI STKRSQQTVIP-
NIGFRP NDKFD LLINSTG I S

THA/
CU20226/2017 rH3N2 (pdm + 2) Hu KRGSVKS QLNYKY SDQTNLYVQAS CNSECI STKRSQQTVIP-

NIGFRP NDKFD LLINSTG I S

THA/
CU20218/2017 rH3N2 (pdm + 2) Hu KRGSVKS QLNYKY SDQTNLYVQAS CKSECI STKRSQQTVIP-

NIGFRP NDKFD LLINSKG I S
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swab sample was inoculated into 3 embryonated chicken eggs (9 to 11-day-old). After 72 h incubation at 37 °C, 
allantoic fluid was collected and tested for hemagglutinating activity by HA test. For HA test interpretation, 
sample with HA titer of ≥ 4 HA unit per 50 µl was interpret positive. For virus confirmation, RNA samples were 
tested for influenza virus by using one-step Real-time RT-PCR.

Characterization of swine influenza virus. For genetic characterization of S-IAVs, 24 IAVs were sub-
jected to whole genome sequencing by next-generation sequencing (NGS). The criteria of selection of 24 S-IAVs 
for characterization were based on time of sample collection, subtypes of S-IAVs and high virus titer (low Ct-
value). To perform whole genome sequencing, eight segments of S-IAVs were amplified by using one-step RT-
PCR with SuperScript III RT-PCR system with Plantinum Taq DNA polymerase (Invitrogen; California, USA) 
with MBT12 and MBT13  primers33. Purified PCR products were quantified and submitted to Novogene co. 
LTD for Illumina Hiseq PE150 (Illumina Corporation, San Diego, California, USA) using NEBNext Multiplex 
Oligos for Illumina (New England BioLabs, Ipswich, Massachusetts, USA). To validate and determine nucleo-
tide sequences of eight gene segments of influenza A virus, each nucleotide sequence read, 150 bp each (read) 
was trimmed to remove adaptors. Then nucleotide sequences were assembly using de-novo assembly method 
by CLC genomics workbench software Version 11.0.1. (QIAGEN; Hilden, Germany). The sequence contigs 
were compared with sequence database by BLAST. After the references influenza viruses were selected from 
BLAST results, the trimmed sequences were used for read mapping to references. Finally, the whole genome 
sequences were extracted to FASTA format (.fas) by CLC genomics workbench software. Nucleotide sequences 
of 8 gene segments of swine influenza virus were submitted to the GenBank database under accession number 
# MT377918-MT378109 (Table 1).

For phylogenetic analysis, the nucleotide sequences of each gene of S-IAVs from this study were compared 
with reference S-IAVs. The reference nucleotide sequences of S-IAVs were obtained from Influenza Research 
Database (https ://www.fludb .org). The reference S-IAVs were selected to represent clades/clusters, geographic 
locations and times of isolation of the viruses. For H1 gene, the reference viruses include the S-IAVs of Classical 
swine lineage, CS (1A), human seasonal lineage, Hu (1B), Eurasian avian-like swine lineage, EA (1C). The Clas-
sical swine lineage (1A) can be further divided into 6 sub-clusters: alpha (1A.1), beta (1A.2), gamma1 (1A.3.3.3), 
gamma2 (1A.3.2), pdm09 (1A.3.3.2) and North American triple reassortant (TR) lineage  lineages3. For HA3 
gene, the reference viruses include the S-IAVs of North America lineage and Eurasian swine lineage. The North 
American lineage contains 4 clades of S-IAVs (Clade I, II, III, IV). The Clade IV of North American S-IAV can 
be further divided into 6 sub-clusters: A-F. For NA1 gene, the reference viruses include the S-IAVs of Classical 
swine lineage (CS), human seasonal lineage (Human seasonal), North American triple reassortant (TR) lineage 
and Eurasian avian-like swine lineage (EA). For NA2 gene, the reference viruses include the S-IAVs of North 
American and Eurasian swine lineages. The North American lineage can be further divided into 2 sub-groups 
based on year: 1998 from earlier H3N2 introduction (N2-1998–2012) and 2002 from 2000s human seasonal H1 
introduction (N2-2012–2016). For internal genes, the reference viruses include the S-IAVs of Classical swine 
lineage, human seasonal lineage, North American triple reassortant and Eurasian swine lineage.

To construct phylogenetic trees, the nucleotide sequences of each gene of the viruses (both references viruses 
and viruses form this study) were aligned with Muscle program v3.634 in MEGA v7.0  software35. Phylogenetic 
analysis of HA and NA gene of S-IAV was performed by using a BEAST 2.0 program applying a Bayesian Markov 
Chain Monte Carlo (BMCMC) algorithm. The best-fit substitution model was implemented by bModelTest 
(Bayesian model test package for BEAST 2). A strict clock model with coalescent constant population was used 
as model parameters. The Bayesian MCMC chain lengths were 50,000,000 generations, with sampling every 
10,000 generations. The tree iteration was discharged with 10% of the chains as a burn-in pattern by using a tree 
annotator. The resulting MCC tree was drawn with FigTree software (v1.4.2) (Molecular evolution, phylogenetic 
and epidemiology, Edinburgh, Scotland, UK). Posterior probability and times of most recent common ancestor 
(TMRCA) among S-IAVs are provided on branches of trees. Phylogenetic analysis of each internal gene of S-IAV 
was performed by using MEGA v.7.0 (Tempe, AZ, USA) with neighbor-joining method with Kimura 2-parameter 
with 1000 bootstrap replicates and Beast program with Bayesian Markov chain Monte Carlo (BMCMC) with 
50,000,000 generations and an average standard deviation of split frequencies < 0.05. Substitution rates among 
sites were set in uniform rate and gabs in the sequences were treated in pairwise deletion. To assign genotype 
of the S-IAVs, lineages or clusters of each gene of the virus were assigned based on the comparison to reference 
viruses. After lineages or clusters of gene are assigned, the combination of eight lineages or clusters was assigned 
as genotype or genetic constellation of S-IAVs. The genotypes of the S-IAVs can help to identify reassortment 
and genetic diversity of the viruses.

Serological test for antibodies against swine influenza virus. Hemagglutination inhibitor test (HI 
test) was used for detecting antibodies against S-IAVs. In this study, HI test was performed to detect antibodies 
against 3 reference antigens including endemic S-IAV-H1N1 (A/swine/Thailand/CU-CB1/06), pandemic H1N1-
2009 (A/swine/Thailand/CU-RA29/2009) and endemic S-IAV-H3N2 (A/swine/Thailand/CU-CB8.4/2007). In 
detail, the serum sample was incubated at 56  °C for 30  min to remove heat-labile non-specific factor. Then 
100 µl of serum sample was treated to remove non-specific inhibitor. For HI test of S-IAV-H3N2 virus, receptor 
destroying enzyme (RDE) was used to treat serum (50 µl of serum: 150 µl of RDE) and incubated at 37 °C for 
24 h and inactivated at 56 °C for 1 h. The RDE-treated serum was mixed with 100 µl of 50% chicken erythrocyte 
and incubated at room temperature for 1 h. After centrifuging at 2000 rpm for 10 min, the supernatant was free 
from non-specific inhibitor serum. For HI test of S-IAV-H1N1 and pdmH1N1-2009, 20% of kaolin was used to 
treat serum (100 µl of serum: 400 µl of 20% kaolin) and incubated at 25 °C for 30 min. For sedimentation of kao-
lin, the kaolin-treated serum was centrifuged at 2000 rpm for 10 min. The serum was added with 100 µl of 50% 

https://www.fludb.org
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chicken erythrocyte and incubated at 25 °C for 1 h. After centrifuging at 2000 rpm for 10 min, the supernatant 
was free from non-specific inhibitor serum. To perform HI test, reference antigens were prepared to 8 HA unit 
per 50 µl. First 50 µl of treated serum was mixed with 50 µl of PBS in the first well and serially twofold diluted. 
50 µl of reference serum was added in each well and incubated at 25 °C for 45 min. 100 µl of 0.5% chicken 
erythrocyte was added into each well. After incubating at 25 °C for 1 h, the samples with HI titer of ≥ 1:40 were 
interpreted as positive against specific S-IAVs subtypes.

Ethics statement. This study was conducted under the approval of the Institute for Animal Care and Use 
Protocol of the Chulalongkorn University (CU-VET; IACUC#1831103). All animal study procedures were per-
formed in accordance with CU-VET IACUC guidelines and regulations.

Data availability
The nucleotide sequence data that support the findings of this study are openly available in the GenBank database 
at https ://www.ncbi.nlm.nih.gov/genba nk/, accession numbers # MT377918-MT378109.
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