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DNN‑assisted statistical analysis 
of a model of local cortical circuits
Yaoyu Zhang1* & Lai‑Sang Young2,3*

In neuroscience, computational modeling is an effective way to gain insight into cortical mechanisms, 
yet the construction and analysis of large‑scale network models—not to mention the extraction of 
underlying principles—are themselves challenging tasks, due to the absence of suitable analytical 
tools and the prohibitive costs of systematic numerical exploration of high‑dimensional parameter 
spaces. In this paper, we propose a data‑driven approach assisted by deep neural networks (DNN). 
The idea is to first discover certain input‑output relations, and then to leverage this information 
and the superior computation speeds of the well‑trained DNN to guide parameter searches and 
to deduce theoretical understanding. To illustrate this novel approach, we used as a test case a 
medium‑size network of integrate‑and‑fire neurons intended to model local cortical circuits. With 
the help of an accurate yet extremely efficient DNN surrogate, we revealed the statistics of model 
responses, providing a detailed picture of model behavior. The information obtained is both general 
and of a fundamental nature, with direct application to neuroscience. Our results suggest that the 
methodology proposed can be scaled up to larger and more complex biological networks when used in 
conjunction with other techniques of biological modeling.

One can distinguish between two types of mathematical models in the study of biological systems: phenomeno-
logical models that are intended to describe or summarize empirical observations, e.g. results of pyscho-physics 
experiments, and biology-based models that incorporate the underlying anatomy or physiology, e.g. neuronal 
interactions in the cerebral cortex. Both types of models are widely used, and they serve very different purposes. 
The work reported in this paper is motivated by the benefits and challenges of models of the second kind. The 
benefits are clear: by seeking to quantitatively reproduce a biological process, these models have the capability 
to capture emergent behaviors; they have the potential to offer insight into biological mechanisms, and to have 
predictive power. These benefits, however, come at considerable costs. Biology-based models are invariably highly 
complex, involving very large numbers of variables with complicated interactions. Gaps in one’s knowledge of 
the system typically translate into unknown parameters in mathematical modeling, and in biological models, 
the number of such parameters tends to be large. As is well known to be the case, systematic exploration of high 
dimensional parameter spaces is computationally not feasible.

In this paper, we propose a strategy to assist in the construction and analysis of detailed biological models. 
The idea is as follows. Even though such models are high dimensional, complex dynamical systems, there tends 
to be a finite number of quantities or observations that are of special interest. Our proposal is to identify a finite 
number “inputs” and “outputs” of the model that are important to us—unknown parameters, for example, can 
be in the “inputs” category—and to first discover, without prejudice, an approximation of the input-output 
mapping. Such a task is well suited to deep neural nets (DNN). Once this mapping is constructed, we can use 
the information gained together with the vastly superior computing speeds of the DNN to assist in parameter 
tuning and model analysis.

That is to say, as a substitute for parameter exploration via direct simulation, our proposal is to train a DNN 
from limited mapping data obtained by simulation. After learning, a well-trained DNN can serve as a surrogate 
for the original model to inform on output values for given sets of parameters and inputs. Because the DNN can 
generate input-output pairs far more quickly than actual simulations of the network model, with speeds exceeding 
easily 10,000 times that of actual simulations (e.g. fractions of a millisecond versus minutes to hours per trial), 
it has the capability to provide large collections of data points, which can then be used for systematic statistical 
analyses leading to a better understanding of network behavior. On the practical level, such a surrogate model can 
be used for automated parameter tuning in model construction, and it can be used to inform on the limitations 
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of existing models, i.e., whether or not a model has the capability to produce certain outputs. Both model build-
ing and their statistical analysis are essential steps towards a better understanding of biological mechanisms.

A neuronal network of modest size and complexity will be used for demonstration. We view this model as 
a testbed to study the efficacy of the methodology, and to assess the feasibility of scaling up to models that are 
larger and more complex. In more detail, we consider in this paper a network of integrate-and-fire neurons 
intended to model a local circuit in the mammalian cerebral cortex; a mechanistic understanding of such circuits 
is instrumental to understanding cortical computation. In this model, the “inputs” include external drive to the 
local population and synaptic coupling weights within the population, and “outputs” are mean firing rates of 
excitatory and inhibitory neurons. The model has a ∼ 1000-dimensional phase space and 7 parameters. While 
it does not have the complexity of models such  as1–6, no systematic study of parameter dependence has been 
performed up until now; indeed exploration of a 7D parameter space by direct simulation is impossible. How-
ever, with the aid of a well-trained DNN, we were able to reveal the statistics of model responses and to provide 
a broad picture of model behavior.

We finish with the following remarks on the use of DNNs. That the subject has achieved huge success in many 
areas of  applications7,8 needs no elaboration. It has also firmly established its place in fundamental  research9. 
In neuroscience, DNNs, specifically the hierarchical convolutional neural networks, have been used to model 
single-unit and population responses in higher visual cortical  areas10. Our DNN-assisted approach falls into the 
general framework of surrogate-based modeling, a well established practice in engineering with wide applica-
tions to many problems that involve complex simulations or experiments  (see11–13 for reviews). In biology, the 
use of surrogate models has been more limited but there are precedents, e.g., support vector machines have 
been recently explored in hemorrhage and renal  denervation14 and yeast mating  polarization15. A purpose of 
this paper is to further promote this approach in biological modeling, in the area of computational neuroscience 
in particular. Note that, there are other approaches proposed for parameter tuning of neuronal circuit models 
(e.g., Refs.16,17), and we believe a DNN-surrogate used in combination with these modeling techniques under 
experimental guidance can lead to substantial advances in the subject.

Results
This paper is about the use of a DNN-surrogate to assist in the analysis of model outputs for a neuronal network 
intended to model local circuits in the cerebral cortex. The model is a network of conductance-based integrate-
and-fire neurons and is described in detail in “Materials and methods” (“I&F neuronal model”). The deep neural 
net that will serve as surrogate for this model is described in “Materials and methods” (“DNN surrogate”). We 
begin by framing the problem and outlining our approach, to give the reader a sense of our perspective. This is 
followed by preliminary information on the capabilities of the DNN. We then present our first key results, which 
consist of a statistical analysis of the derivatives of model responses and their interpretation. We will demonstrate 
that such analyses can have surprisingly rich implications. The last part of this paper discusses another use of 
surrogates in biological modeling, namely to assist in the evaluation of the capabilities and limitations of models.

DNN‑assisted approach: setup and overview. We study a neuronal model of local cortical circuits 
with the goal of understanding its dependence on parameters and input values, and our approach is to first 
discover the mapping

This mapping is then used to assist in the analysis of model dynamics and cortical mechanisms. The proposed 
methodology avoids parameter tuning, and represents a different viewpoint than standard dynamical systems 
approaches. As we will show, it is well suited for data-driven inferences using neural networks, and provides 
useful statistical information that has the potential to help unravel what goes on in complex dynamical systems.

As illustration of this methodology, we consider a homogeneously connected network of integrate-and-fire 
(I&F) neurons that can be thought of as a generic model of a local neuronal population. This is a dynamical 
system of medium complexity, with O (103) state variables. The equations governing its dynamical evolution 
are given in “Materials and methods” (“I&F neuronal model”). The undetermined parameters of this model are 
the coupling weights between excitatory (E) and inhibitory (I) neurons. These synaptic coupling weights are 
denoted by SXY where X,Y ∈ {E, I} ; SEI , for example, represents the amount of influence an I-spike has on a 
postsynaptic E-cell. The inputs to the model network are described by the following three numbers: ηext,E and 
ηext,I are the amounts of external drive supplied to the E and I-neurons in the model population, and ηamb is an 
“ambient” drive intended to depict modulatory influences from outside of the population.

The objects of our study are population mean firing rates, the most fundamental statistical quantities of a 
neuronal circuit. Specifically, we will focus on rE and rI , the mean firing rates of E and I-neurons in the model.

In the setup above, the mapping to be discovered and analyzed is

and PS and PI are as follows: For reasons to become clear we have chosen to represent the parameters correspond-
ing to synaptic coupling between E and I-cells as

i.e., we scale the other three parameters to SEE or SEI , and to represent the input parameters as

parameter space× input space → output space.

P → O, where O = [rE , rI ] and P = [PS, PI],

PS = [SEE , SEI/SEE , SIE/SEE , SII/SEI ] ,
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where η0 is a kind of normalizing constant.
Additionally, we specify in advance a physiological domain P for P. These parameter ranges correspond to 

a priori biological constraints either deduced from indirect experimental measurements or gleaned from previ-
ous modeling results (such  as3); they are effectively educated guesses. We also identify a physiological domain 
O for O consisting of firing rates observed in the laboratory under a variety of circumstances. We did not know 
in advance—and do not assume—that P ∈ P will produce O ∈ O.

This completes a description of the setup for the rest of this paper. The mapping P → O is the mapping alluded 
to at the beginning of this section. We will train a DNN, details of which are given in “Materials and methods” 
(“DNN surrogate”), to learn this mapping from limited data obtained from simulation. Through the training, the 
DNN gradually interpolates the discrete data by a smooth function, allowing efficient evaluation and differentia-
tion. Once we are satisfied that the DNN is performing satisfactorily, we will replace the original neuronal model 
by the DNN. The DNN surrogate is a model of the original neuronal model, one that is more limited in scope (it 
is focused solely on the mapping P → O ) but computes at vastly higher speeds and performs efficiently certain 
operations that are difficult or impossible via simulation of the original model. It serves as a compass, enabling 
us to explore more systematically model responses as parameters are varied in a high dimensional space.

In computational modeling, DNN surrogates can assist by offering baseline values to initialize searches and 
by proposing parameter corrections along the way. It provides a general description of input-output relations as 
well as statistical information on the effects of perturbations, tasks that are well suited to the DNN. This paper 
is not a modeling paper and we will not get into specific instances of parameter tuning, but as an example of the 
theoretical insight that DNN surrogates can offer, we will present a derivative analysis of the P → O mapping. 
To our knowledge such an analysis has not been done before for a large network of integrate-and-fire neurons.

Finally, there are two aspects of model analysis that we would like to illustrate in this paper. One is what the 
model can tell us about neural mechanisms, that is, having skipped over the dynamical process, how we can 
now use the P → O mapping to deduce what may be going on in the neuronal model, in the hope of shedding 
light on what goes on in real cortex. But there is another aspect to model analysis that is also very important: all 
models are limited in scope because they are orders or magnitudes simpler than the real brain, and it is impor-
tant to understand the limitations of a model, whether it has the capability to reproduce specific types of neural 
phenomena. We will finish by presenting an example of that.

Performance of DNN surrogate. Firing rates can be measured experimentally using electrophysiology, 
or estimated using various kinds of optimal imaging techniques. On the theoretical level, however, how firing 
rates depend on network properties and inputs is not well understood, as firing rates cannot be computed ana-
lytically in semi-realistic network models such as the one described in “Materials and methods” (“I&F neuronal 
model”). In this paper we will use the DNN surrogate as an investigative tool to study these questions, but before 
we do that, we need to first confirm the viability of our physiological range P (see “Materials and methods”, “I&F 
neuronal model” for details) and document the performance of the DNN surrogate. With regard to the latter, we 
will examine the accuracy of the DNN surrogate as a function of the size of its training set, and we will investigate 
its performance in parameter tuning, i.e. to solve the inverse problem of locating parameters to produce target 
outputs.

Viability of parameters and DNN performance. To confirm the viability of our a priori choice of physiological 
domain P , we randomly selected 20, 000 sets of P from this domain and computed from simulations their mean 

PI = [ηamb/η0, η
ext,E, ηext,I/ηext,E] ,

Figure 1.  Viability of parameters and DNN performance. (a) Heat map of count of O = [rE , rI ] in D 20,000
train  

(white indicates zero counts). The trapezoid zone indicates the biological plausible range of E and I firing rate 
pairs in an active state of the circuit, i.e., 5Hz ≤ rE ≤ 30Hz and 2.5 ≤ r

I/rE ≤ 5.5 . (b) Testing accuracy of DNN 
well-trained on D n

train as a function of training sample size n. Mean-absolute errors (MAE) (solid line) and root-
mean-square errors (RMSE) (dashed line) for rE (red) and rI (blue) are exhibited.
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population firing rates O, which forms a training dataset D 20,000
train  . The results are presented in Fig. 1a. The physi-

ological domain O consists of values in the region bounded by the trapezoid. Fig. 1a confirms that parameters 
from P produce firing rates in a broad region containing O , justifying our choice of P . It also shows that only 
about 10% of the outputs O actually fall into the trapezoidal zone, underscoring the challenges in prescribing P 
for desired firing rates.

We then investigated the accuracy of DNN surrogates trained on datasets of various sizes from 200 to 20, 000, 
The mean-absolute error (MAE) and root-mean-square error (RMSE) of well-trained DNNs on the testing 
dataset are presented in Fig. 1b. The error follows approximately a power law decay of ∼ n−2/3 where n is the 
size of the training set, much faster than the ∼ n−1/7 law implied by the curse of dimensionality. This curse-of-
dimensionality free convergence behavior of DNN is supported by theoretical  studies18,19; it is one of the reasons 
why DNNs are widely used for high dimensional problems.

Note also that with a surprisingly small size of 500 training data points, a small error (MAE) of ∼ 1Hz was 
obtained. In these experiments, errors are roughly independent of firing rate, resulting in smaller relative errors 
at high firing rates and larger relative errors at low firing rates. For predictions that result in a target E-firing rate 
of ∼ 10Hz , the relative prediction errors of our DNNs typically are ∼ 10% and ∼ 1% with 500 and 20, 000 train-
ing data, respectively. By theoretical studies of  DNN20,21, such a good performance suggests a low complexity/
frequency nature of the P → O mapping, i.e., its power is mainly concentrated at low frequencies in the Fourier 
domain.

The sigmoid function 1/(1+ e−x) , which is used as the activation function of our DNN, yields far lower 
testing errors than the popular choice of ReLU. A key difference between ReLU and sigmoid activation is their 
smoothness, a property more important for regression problems as considered in this paper than for classification 
problems which are commonly considered by the AI community. As suggested in Ref.21, when the smoothness 
of activation matches the smoothness of the target function, an optimal error bound can be achieved. Thus the 
better empirical performance of sigmoid compared to ReLU activation suggests a smooth nature of the P → O 
mapping, a point we will revisit later on in our analysis. We remark also that smooth activation functions like 
sigmoid or tanh (hyperbolic tangent, a rescaled sigmoid function) have been shown to be better choices for 
other regression problems, e.g., in molecular dynamics  simulation22,23. In practice, apart from the sigmoid or 
tanh activation, elu, selu, gelu are also suitable for fitting smooth target functions. Their subtle differences are a 
subject of study in its own right; this is out of scope of the present work.

In the rest of this paper, we will use the most accurate DNN well-trained on D 20,000
train  as a surrogate to inves-

tigate the statistical properties of the P → O mapping.

Performance of DNN surrogate for parameter tuning. Realistic models of neuronal circuits typically involve 
large numbers of parameters corresponding to quantities not directly measurable in the laboratory. Fitting these 
parameters to experimental observations is an essential task. Up until now, this task has often been done “by 
hand”, relying on the experience of the modeler. As such, it is both laborious and time-consuming if it can be 
successfully carried out at all. Because of the high dimensionality of the parameter space, and the difficulty in 
directly computing the derivatives ∇PO from discrete data points, automated gradient-based approaches widely 
used in many applications are not viable in this kind of parameter tuning.

Our first demonstration of the usefulness of an accurate DNN surrogate is to apply it to the problem of 
automated parameter tuning. This is an inverse problem, requiring that we find parameter P given target output 
Otarget . Assisted by the DNN surrogate Ô(P) well trained on D 20,000

train  , whose derivatives can be easily computed 
by back-propagation, a gradient-based approach can be efficiently applied as follows. In each iteration step t, 
Pt is updated as

where α is the learning rate.
Figure 2 shows the results of a numerical experiment we performed. In this experiment, the initial parameter 

P0 was randomly sampled from P , and if Pt fell outside of the domain, it was projected back to P . For each Otarget , 
we selected 100 random initial parameters. After 10000 steps of iteration, all final P’s with predicted output suf-
ficiently close to the target, e.g., with ||Ô(P)− Otarget||1 < 0.2Hz , formed the candidate set of parameters for 
Otarget . For acceleration, we incorporated the scheme of  Adam24.

In general, given Otarget , a randomly chosen parameter in P has probability < 0.01% to be a candidate param-
eter. The iterative scheme above was intended to autonomously steer it towards a candidate. An example is 
depicted in Fig. 2b: parameters at initialization (projected from 7D) are represented by cyan dots; they are steered 
to black dots through the tuning for a given target. For each target, we found that of the 100 initial parameters 
picked, on average over 90% successfully yielded a candidate after 10000 steps. The accuracy of the candidate 
parameters were then evaluated by comparing their simulated outputs (black points) with the corresponding 
targets (crosses). The error was larger than the mean testing error of ∼ 0.1Hz for the DNN, as can be expected 
for an inverse problem. However, except from parameters in the periphery of P , most tuning results were faith-
ful to the target. Note that, the accuracy of the above parameter tuning approach can be further improved by 
incorporating a few trials of simulation online to fix the local prediction error of the DNN surrogate.

Figure 2b illustrates another important point, namely that for a given target Otarget , the parameters obtained by 
the above tuning process are far from unique. In Fig. 2b, different pairs of input strengths ηext,E and ηext,I indicated 
by black dots (each with its own accompanying parameters in the other 5 dimensions) give rise to the same E and 
I firing rates of 25Hz and 100Hz , respectively. Indeed, if the P → O mapping is smooth, one would expect, for 

Pt+1 = Pt − α∇Ô(Pt)

(

Ô(Pt)− Otarget

)

,
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each given Otarget , the set {P : Ô(P) = Otarget} to be a 5D submanifold in our 7D parameter space. In modeling, 
additional physiological phenomena will likely place further constraints on the set of viable parameters.

Statistical analysis of parameter dependence: first derivatives. Crucial for understanding cortical 
mechanisms is a quantitative description of how the firing rates of a brain region depend on its structural and 
input parameters. Yet except for extremely idealized models with few state variables, there is no explicit relation 
between these parameters and firing rates, and exploration of parameter space via simulations is not feasible as 
we have explained earlier. In this paper, we propose a statistical approach to this problem via the use of DNN 
surrogates.

In Fig. 1a, we presented the statistics of firing rate responses for parameters in P . This section focuses on 
statistics on the derivatives of output responses. Our study is assisted by the well-trained DNN surrogate Ô(P) , 
which allows very efficient evaluation and differentiation. To our knowledge, this is the first time that param-
eter dependence of firing rates in integrate-and-fire models are systematically investigated through a statistical 
analysis.

Quantitative information on ∇PO will shed light on a number of questions. Of particular interest is a system’s 
response to changes in its input. As we will show, our statistical analysis points to a dichotomy in the response 
behavior of neuronal populations. It supports a novel interpretation of “high gain” that may have implications 
in cortical phenomena such as surround suppression.

Derivative analysis. Recall that in our model, input parameters are

and output parameters are

Using the DNN surrogate Ô(P) trained on D 20,000
train  (see “Materials and methods”, “DNN surrogate”), one can 

easily compute ∇PÔ , which approximates ∇PO , over a very large number of input parameters. Figure 3a,b show 
the distributions of partial derivatives ∇Pr̂

E and ∇Pr̂
I , respectively, with respect to each of the seven parameters 

in {PS, PI } . (We write r̂E , r̂I to stress that these results are computed from the DNN surrogate Ô(P) .) The histo-
grams in Fig. 3 were computed from 5× 105 randomly selected P ∈ P , keeping only the ∼ 10% of P for which 
Ô(P) ∈ O and discarding the rest.

To familiarize the reader with the meaning of the plots in Fig. 3, consider, for example, differentiating with 
respect to SEI/SEE keeping the other 6 parameters fixed. The second columns of the two panels show that both 
∂SEI/SEE r̂

E and ∂SEI/SEE r̂I are almost always negative indicating that increase of strength from I to E consistently 
decreases the firing rate of both the E and the I-population. In addition, the magnitude of ∂SEI/SEE r̂I is in general 
larger than ∂SEI/SEE r̂E , indicating that changes in SEI/SEE have a larger effect on I-firing rate, not surprisingly 
since I-firing rates are generally 3 to 4 times larger than E-firing  rates3,25,26.

Differentiating with respect to SIE/SEE yields rather curious results: while ∂SIE/SEE r̂E is always strongly nega-
tive, ∂SIE/SEE r̂I can be positive or negative with a relatively small magnitude. This statistical result suggests the 
existence of an interesting regime where increasing the synaptic strength of E to I (while keeping that from E 
to E fixed) decreases the firing of the I-population (even though the strength of E to I is increased) and it sup-
presses the firing of the E-population (even though I-firing is lowered). This model behavior is reminiscent of 
the “paradoxical effect” identified earlier  in27–30. We will revisit this point in the next subsection.

PI = [ηamb/η0, η
ext,E, ηext,I/ηext,E] and PS = [SEE , SEI/SEE , SIE/SEE , SII/SEI ] ,

O = [rE , rI ] .

(a) (b)

Figure 2.  Visualization of DNN-assisted parameter tuning. (a) Visualization of accuracy of parameter tuning. 
Crosses are target firing rates, black dots are the simulated output of the candidate parameters found through 
gradient-based approach assisted by the DNN surrogate. The trapezoid constrained by the dashed lines indicates 
the physiological domain of output. (b) Parameters at initialization (cyan dots) and after tuning (black dots) for 
a target Otarget = [25Hz, 100Hz] projected to the 2D plane of ηext,E and ηext,I/ηext,E.
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The following information on the dependence of response properties on parameters can be gleaned from 
Fig. 3: 

(1) Parameter dependences are nonlinear. Figure 3a,b ruled out the possibility that rE and rI are as simple as a 
linear function of P because most of the partial derivatives are clearly nonconstant; some in fact have quite 
a large spread.

(2) Dependence on ηamb/η0 is insignificant and dependence on SEE is weak. As the other three synaptic weights 
are indexed to SEE in our bookkeeping, the relatively weak dependence on SEE when the other parameters 
are fixed confirms our conjecture (see “Materials and methods”, “I&F neuronal model”) that not a great 
deal changes when the four synaptic weights SEE , SEI , SIE and SII are scaled up and down together as long 
as they maintain the same relationship.

(3) Near-monotonicity of the function P  → r̂E . Differentiating r̂E , one sees that 5 out of the 7 partial derivatives 
have a single sign, i.e., they are either positive or negative for all the parameters tested, and the remaining 
two are relatively small. All this points to a simple structure for the mapping P  → r̂E . One notes also that 
the signs of the 5 all go in directions expected: increasing I to E and E to I lowers r̂E as one would expect as 
that increases the power of the inhibition, increasing I to I increases r̂E , and increasing external drive to E 
increases r̂E while increasing external drive to I lowers r̂E—all are as expected.

(4) The mapping P  → r̂I is more complex. Our statistics show that the I-responses are not as clean as 
E-responses, in that changes in r̂I in response to increases in SIE/SEE , SII/SEI and ηext,I/ηext,E can be posi-
tive or negative. As noted earlier, the idea that increasing drive to I-neurons could decrease r̂I is somewhat 
counter-intuitive. With the help of the DNN surrogate, we examine next in more detail the circumstances 
surrounding this response reversal of I-neurons.

Cortical mechanisms via DNN‑assisted derivative analysis: an illustrative example. The phe-
nomenon that stimulation of an inhibitory population not only decreases the activity of the excitatory popula-
tion but that it can also decrease the activity of the stimulated population is known to the neuroscience com-
munity. The intuition is that the excitatory population is sufficiently suppressed that the total excitation received 
by the inhibitory population is  reduced27–32. In rate models, it has been demonstrated mathematically that this 
occurs in inhibition stabilized networks (ISN), where recurrent excitation is strong and the regime is stabilized 
by  inhibition27–29. Models with multiple inhibitory populations have also been investigated  recently30,33–35. For 
network models of integrate-and-fire neurons such as the one studied here, analytical approaches are not viable, 
and conditions for the reversal of I-response have not been investigated. This is what we would like to do using 
a DNN-assisted statistical analysis.

Response of I-neurons: a dichotomy. Following up on the observation in Item (4) above, namely that r̂I may 
increase or decrease in response to changes in SIE/SEE , SII/SEI and ηext,I/ηext,E , we looked into potential cor-
relations between the signs of these partial derivatives. The results are shown in Fig. 4a, and they show that the 
signs of these partial derivatives are highly correlated to one another, with correlations very close to ±1 (see 
“Materials and methods”, “Correlation analysis and logistic regression” for details). This suggests the existence 
of two distinct regimes: one in which an increase in SIE/SEE or ηext,I/ηext,E , or a decrease in SII/SEI causes rI to 
increase, and another in which the same changes cause rI to decrease.

While SIE , ηext,I , and SII directly contribute to the input received by the I-population as illustrated in Fig. 4b, 
the positivity of correlations with respect to changes in SIE and ηext,I is not clear a priori, because these changes 
also affect the firing rates of E-neurons, and the synaptic excitatory input from within the population to an 
I-neuron is determined not just by SIE but also by rE , the firing rate of the E-population. The same is true for the 

Figure 3.  First derivative statistics. 2D Histograms of ∇PÔ for P’s satisfying P ∈ P and Ô(P) ∈ O . The partial 
derivatives are normalized as (a) ∇Pr̂

E ×� , (b) ∇Pr̂
I ×� where � is a vector consisting of the length of 

physiological domain for each parameter in P. � is used to fix ∇Pr̂
E to a dimensionless unit with P scaled as a 

unit box. Pi refers to the i-th element in P indicated sequentially in the x-axis.
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effect of SII : increasing that does not necessarily mean that an I-neuron will receive greater suppression, because 
the amount of inhibitory synaptic input it receives depends also on rI.

To summarize, our results as shown in Figs. 3 and 4a show that the set of parameters

can be divided into two distinct groups according to the sign of ∂ηext,I/ηext,E r̂I , equivalently the sign of either one 
of the other two partial derivatives. This means that the mapping P  → r̂I , which we had noted earlier might be 
considerably more complex than P  → r̂E , has a fairly simple structure after all. The simplicity of the mapping 
P  → O may be the reason why DNNs achieve very good accuracy even for training datasets of small sizes.

Below we will refer to the phenomenon of ∂ηext,I/ηext,E r̂I < 0 as “inhibitory response reversal”.

Correlating network properties to inhibitory response reversal. We first used the seven quantities in P to predict 
the sign of ∂ηext,I/ηext,E r̂I by logistic regression, i.e., we used the logistic function 1/(1+ e−a·P+b) to fit the prob-
ability of sign

(

∂ηext,I/ηext,E r̂
I (P)

)

= 1 (it is either equal to 0 or to 1 in this problem). Similar to linear regression 
for real-valued output, in machine learning, logistic regression is often a first try for fitting binary output with 
real-valued input. After regression, the accuracy of prediction using the sign of 1/(1+ e−a·P+b)− 0.5 is ∼ 83% 
over P ∈ P

∗ . This accuracy indicates that signs of the target can roughly be separated by a hyperplane in the 
space of P ( 100% indicates perfectly linearly separable while chance rate 50% indicates complex behavior far from 
linearly separable). Relative importance of each parameter Pj is evaluated by 

a2j VarP ∗ (Pj)

�ja
2
j VarP ∗ (Pj)

 , where VarP ∗ indi-
cates the variance over P ∗ (see Fig. 5a).

Clearly, SIE/SEE and ηext,I/ηext,E are the two most salient factors for regime determination. The performance 
of regime separation using these two parameters is shown in Fig. 5c. One can see a trend that smaller values of 
SEI/SEE and ηext,I/ηext,E indicating weak drives to the I-population are more likely to result in inhibitory response 
reversal. The prediction accuracy by logistic regression using only these two parameters yields a significantly 
worse accuracy of ∼ 67% , indicating that the ignored input dimensions in fact play nonnegligible roles in the 
prediction, and there is no clean linear separation between the two regimes in the space of P.

As noted in Fig. 4b, rE and rI also play important roles in determining the inputs that go into I-neurons, so we 
experimented next with using P and Ô together for the prediction of the sign of ∂ηext,I/ηext,E r̂I . After logistic regres-
sion, we achieved a surprisingly high accuracy of ∼ 97% . Moreover, as shown in Fig. 5b, ηext,E and r̂E stood out as 
effectively the only key factors that mattered for the prediction. By using only ηext,E and r̂E , one can still achieve a 
very high prediction accuracy of ∼ 94% . This surprisingly good performance is illustrated in Fig. 5d, where the 
two regimes characterized by the sign of ∂ηext,I/ηext,E r̂I are very well separated by a line of the form r̂E = cηext,E 
for some c > 0 . Note that, this c is clearly independent of 7 model parameters, however, may depend on other 
factors like connection probabilities that two randomly picked neurons are connected, fixed in our model.

A regime with a large excitatory response to external drives can be thought of as having high gain. Our results 
suggest that a natural definition of high gain might be rE > cηext,E for the critical value of c defined above. With 
this notion of gain, the above statistical analysis suggests that inhibitory response reversal occurs in a regime 
of high gain.

It is difficult to compare directly the parameters used in rate models and in networks of integrate-and-fire 
neurons. In our model, the physiological ranges of the parameters are chosen to be consistent with experimental 
 data3. For parameters in this range, we found that sufficiently high gain, i.e., rE/ηext,E > c , is the best condition 
for inhibitory response reversal. This finding is new, it is quantitative, and it was discovered entirely through our 

P
∗ := {P ∈ P such that Ô(P) ∈ O }

(a) (b)

Figure 4.  Illustration and analysis of I-population response. (a) Correlation matrix of the sign of ∂rI

∂(SIE/SEE)
 , 

∂rI

∂(SII/SEI)
 and ∂rI

∂(ηext,I/ηext,E)
 . (b) Illustration for different input sources received by the I population. Red indicates 

excitation and blue indicates inhibition.
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DNN-assisted analysis. The implications of this finding and its relation to ISN need to be explored; that will be 
done elsewhere. We finish with a direct application of this idea.

Plausible explanation for surround suppression. Surround suppression is a well documented visual phenome-
non. It refers to the fact that a neuron’s sensitivity to a stimulus is modulated by the extent of the stimulus outside 
of its classical receptive field. The discussion below is far from a systematic study of surround suppression, which 
is a wide-ranging and important topic in its own right. We wish to point out only a plausible explanation for the 
suppression associated with spatially extended stimuli that follows from the observations above.

To briefly review the phenomenon, consider an excitatory neuron in the primary visual cortex, V1. Drift-
ing gratings of various sizes aligned with the neuron’s orientation preference and centered at its receptive field 
are presented. It has been observed that while the neuron spikes vigorously in response to smaller gratings, its 
response peaks at a certain grating radius and decreases as the size of the grating continues to increase, leveling 
off eventually when the stimulus is many times the size of its classical receptive  field36. This decrease in firing 
rate of a neuron at the center when the surround is also stimulated is called surround suppression. Experimental 
measurements of a quantity called suppression index indicates that the suppression of E-neurons can be quite 
strong depending on layer within  V137. For some layers, firing rates for large gratings may be no more than half 
those for smaller gratings. A similar phenomenon has been found to hold for I-neurons, though the decline in 
firing rate is  smaller28.

Here is how our results may be relevant:
Consider a local population located at the center, receiving external input from feedforward and feedback 

sources as well as from within its own layer via long-range connections. We hypothesize that for E-neurons in 
this population, as the size of the stimulus increases, ηext,E first increases and then saturates as the size of the 
grating continues to increase, whereas input to the I-population, ηext,I , increases for a while longer saturating at 
a larger grating radius. This means that ηext,I/ηext,E is at first constant and later increases. We further hypothesize 
that the circuit is always in a high gain state, i.e., rE/ηext,E is always larger than the critical value c defined above.

When ηext,E and ηext,I are both increasing and ηext,I/ηext,E is constant, our derivative analysis asserts that both 
rE and rI should be increasing, consistent with experimental observations before the size-tuning curves peak. 
When ηext,E saturates and ηext,I continues to increase, we are in the situation where the partial derivatives with 
respect to ηext,I/ηext,E becomes relevant, and if the population is in a high gain state, then our derivative analysis 
predicts that rI would decrease though not as steeply as rE , a prediction in agreement with experimental data.

Figure 5.  Analysis of inhibitory response reversal. Upper panels: Relative importance of each parameter in the 
best logistic predictor of the sign of ∂ηext,I/ηext,E r̂I using (a) P only, (b) both P and Ô . Bottom panels: ∂ηext,I/ηext,E r̂I 
(red indicates strongly positive and blue indicates strongly negative) over different pairs of (c) SIE/SEE and 
ηext,I/ηext,E , (d) r̂E and ηext,E , both selected based on the importance analysis in (a) and (b) respectively.
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To summarize, our proposed explanation suggests that it is entirely possible to have both rE and rI decrease 
while ηext,E and ηext,I are both increasing, provided the relative rates of increase in ηext,E and ηext,I are as above. 
We have also identified the property that is the key to what makes this possible, namely that the population 
should be in a state of high gain.

Analysis of second derivatives. Second derivatives reflect the acceleration and deceleration of the output 
in response to changes in parameters. In this section, we study the statistics of second derivatives, and investigate 
the model’s capability to produce nonlinear outputs in response to increasing drive.

Distribution of second derivatives. Figure 6 displays the distribution of second partial derivatives of r̂E and r̂I 
with respect to each dimension of P. As an example of what these histograms tell us, consider the fact that 

∂2 r̂E

(∂SEI/SEE)2
 and ∂2 r̂I

(∂SEI/SEE)2
 are always positive. Combined with our earlier result that ∂ r̂E

∂SEI/SEE
 and ∂ r̂I

∂SEI/SEE
 are both 

negative, we get the following picture: As SEI increases (with all other parameters fixed), r̂E and r̂I both decrease, 
and the graphs are convex. The effect of SIE is curious: As SIE increases, r̂E decreases and the graph is (quite 
strongly) convex. The graph of r̂I is also convex, but since ∂ r̂I

∂SIE/SEE
 can change sign, there is the possibility that it 

can decrease first and later increase.
In general, the following response properties can be inferred from the statistics of second derivatives. 

(1) Outputs are not describable by second-order polynomials. Fig. 6a,b rule out the possibility that rE and rI can 
be as simple as second-order polynomials of P. Most second partial derivatives are clearly nonconstant, 
and some have quite a wide spread.

(2) Insignificance of dependence on SEE and ηamb/η0 . This is consistent with results from our first derivative 
analysis.

(3) Convexity of rE and rI as functions of all parameters in P except for ηext,E . This property further supports the 
simplicity of the mapping P  → O.

(4) Nonlinearity of gain curves. We are concerned here with the second derivatives of rE and rI with respect to 
ηext,E , i.e. when both ηext,E and ηext,I are increasing with the ratio of ηext,I/ηext,E fixed. Firing rates almost 
always increase monotonically by our first derivative analysis, but they can accelerate or decelerate as our 
second derivative analysis shows. A more quantitative analysis reveals the following, however: While a 
typical change of r̂E is > 30Hz over the input domain, the normalized second derivative 12

∂2 r̂E

∂(ηext,E)2
�2

6 is 
typically between ±10Hz . The smallness of the second derivative compared to the first suggests that gain 
curves are statistically more likely to be fairly linear for our model with physiological parameters.

  As mentioned in the Overview of Results, one of the uses of a surrogate model is to inform on the 
limitations of the original neuronal network model. In real cortex, gain curves have been observed to be 
sigmoidal in shape. Item (4) in the second derivative analysis above raises the question of whether neurons 
in the model described in “Materials and methods” (“I&F neuronal model” are capable of producing such 
nonlinear gain curves. We now investigate this question more systematically using the DNN surrogate.

Generation of nonlinear gain curves. Gain curves capture changes of rE in response to changes in external 
input. For convenience, we let P− denote all the parameters of P except for ηext,E , and study the gain curve 
rEP−(η

ext,E) = rE(ηext,E; P−) . In physiological experiments, sigmoidal gain curves are often  observed38, and neu-
rotheories hinging on the shapes of gain curves have been  proposed39. In this section, we study with the help of 
the DNN surrogate whether the model described in “Materials and methods” (“I&F neuronal model” is capable 
of producing gain curves that are sigmoidal in shape.

Figure 6.  Second derivative statistics. Histograms of second order partial derivatives for the physiological 
parameters yielding physiological output, i.e., as P vary over P ∗ is presented. (a) 12

∂2 r̂E

∂P2
i

�2
i
 , (b) 12

∂2 r̂I

∂P2
i

�2
i
 for 

index i = 1, . . . , 7 , where � is the length of physiological domain for each parameter in P. Here 12�
2 is used to 

fix second partial derivatives to a dimensionless unit with physiological domain of P scaled as a unit box.
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To capture the sigmoidal property, we require, for definiteness, that rE as a function of ηext,E be accelerating 
for rE ∈ [5Hz, 15Hz] , and decelerating for rE ∈ [20Hz, 30Hz] . For each P− in the physiological range, we 
increase ηext,E , and as rEp−(η

ext,E) increases, we identify the intervals J1, J2 of ηext,E that correspond to rEp−(η
ext,E) 

falling in [5Hz, 15Hz] and [20Hz, 30Hz] respectively. We then compute the mean values of 12
d2rE

p−

(dηext,E)2
(η30Hz)

2 
on J1 and J2 , and call them m1(P

−) and m2(P
−) . Here, η30Hz , which is determined by solving rEp−(η30Hz) = 30Hz , 

is used to normalize the second derivative to a unified dimensionless unit.
In Fig. 7, the x and y-axes show the m1 and m2 values for each plausible P− satisfying (i) [P−, ηext,E] ∈ P 

and (ii) ÔP−(η
ext,E) ∈ O for r̂EP−(η

ext,E) ∈ [5Hz, 30Hz] . The lower right box bounded by the two black lines 
describes the region with the desired sigmoidal properties. As one can see, very few data points lie in this box. 
Some examples of gain curves are displayed in Fig. 7b–d, where results from the DNN surrogate and firing rates 
simulated directly from the neuronal network are superimposed. At least in these examples, our DNN surrogate 
quite accurately emulates the true behavior of the network model.

We conclude that the integrate-and-fire model described in “Materials and methods” (“I&F neuronal model”) 
without further enhancement is incapable of producing gain curves that are sigmoidal in shape and that deviate 
substantially from a straight line. This is a limitation of the model. The present study should serve to inform the 
modeling community that to produce a sigmoidal gain curve with more pronounced curvature (as has been 
observed experimentally), some other mechanisms must be incorporated. In the V1 network model  in6, for 
example, mechanisms such as synaptic depression of I-neurons and potassium currents that prevent E-cells from 
firing repeatedly in rapid succession were implicated in contrast response properties.

Discussion
A broader aim of this work is to promote the use of machine-learning approaches in biological modeling. We pro-
pose that these more systematic methods can be useful not as replacement of but as supplement to conventional 
modeling  techniques9. To demonstrate the efficacy of this approach, we considered a neuronal network built to 
resemble local circuits in the cerebral cortex, and illustrated how via the use of a surrogate DNN combined with 
data analysis (such as “Correlation analysis and logistic regression”), rich statistical structures can be extracted 
from limited data generated by simulation.

A specific approach that we are proposing here is the following: While biological processes are typically 
extremely complex, if one is able to build a model of the system modulo a finite—possibly very large—number 
of unknown parameters and identify a finite number of key quantities that best describe what goes on, then the 
modeling problem can be framed in terms of discovering the mapping from

Such input-output relations are especially well suited to data-driven inferences using neural nets. The statisti-
cal analysis of DNN surrogates in general suggests rather than proves any specific behavior of the target mapping, 
due to the presence of uncertainties intrinsic to any data-driven approach. Nevertheless, compared to heuristic 
arguments and ad hoc numerical explorations of parameter space, these results are quantitative in nature and 
provide strong supporting evidence for the conclusions they suggest.

On surrogate‑based modeling and DNN. After a surrogate learns from data, it allows highly efficient 
manipulation including evaluation, differentiation, optimization (e.g. parameter tuning) and statistical analy-
sis. Among a rich class of conventional surrogate models, many of which may serve our purpose equally well, 
DNN is convenient to use for a number of reasons: there are rich and sophisticated open source libraries (e.g., 
Tensorflow, Keras, Pytorch); DNN is faithful to data, with low training error; it is robust, generalizes well, and 

parameter space× input space → output space.

Figure 7.  Model capability in generating sigmoidal gain curve. (a) m1 vs. m2 (see main text for notation) for 
physiologically plausible P−’s. (b–d) are example gain curves corresponding to the three typical data points 
[−11, 0] , [−3, 10] and [4, 30] marked in (a), respectively. Blue dashed lines indicate surrogate gain curves 
r̂
E

P−
(ηext,E) whereas black lines indicate the simulated gain curves rE

P−
(ηext,E).
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often does not require extra regularization; finally it is flexible, with universal approximation capability and rich 
architecture.

In engineering, the use of surrogate-based modeling to assist in the analysis and exploration of complex 
experiments and designs is well established. In spite of its huge success in tasks related to image, audio, and video 
recognition and processing, DNN up until now has largely remained a black box. It is only in recent years that 
researchers from different scientific disciplines have begun to exploit its many potentials. We believe that DNN 
surrogates can potentially be of great use in biological modeling, and it is with more complex models in mind 
that we have embarked in this direction. This paper is a first step to demonstrate, using a network model of a 
local cortical circuit, the type of statistical analysis made possible by such an approach.

Applications to neuroscience. Many questions remain. For local circuits, the P in our P → O mapping 
can include, e.g., connectivity and system size, O can be currents, and an important problem inspired by the bal-
anced-state  ideas40–43 may be to quantify the balancing of currents under different network conditions. Nor must 
the target O be limited to firing rates and currents. It can include other quantitative measures of firing patterns, 
such as correlations and degrees of synchrony. A problem of interest is to relate gamma rhythms as characterized 
by their power spectral densities to network  parameters44,45, as gamma rhythms are known to be altered by dis-
ease, drugs and other physiological  states46–48 These are all potential applications of the methodology proposed.

Populations of homogeneously connected, i.e., the probability of connection is fixed depending on the con-
nection type, and homogeneously driven neurons are ideal starting points for theoretical studies. A natural 
next step is to consider multi-component networks, beginning with source-target populations and progressing 
to more complicated network motifs with feedback loops. Neuronal networks in the real cortex are in fact not 
abstract graphs; they have spatial structures (see e.g.49). An ultimate use of DNN-assisted surrogates may be to 
reveal the mapping

Outlook on the use of surrogates in biological (neural) modeling. High degrees of complexity and 
a low ratio of knowns to unknowns is characteristic of biological modeling. A case in point is the modeling of 
neuronal circuits. Network models that incorporate neuroanatomy and physiology are necessarily very compli-
cated because of the large numbers of neurons (on the order of 1011 in the human cerebral cortex), the many 
neuron types, their detailed and varied modes of interactions, not to mention the complex wiring, with intra/
inter-laminar connections, and inter-areal connections with multiple feedforward and feedback loops.

This level of complexity implies (i) any realistic model will contain a large number of unknown parameters; 
(ii) a priori constraints for many of these parameters are hard to obtain, and (iii) simulation time is long, limiting 
the number of training sets possible. The issues above exacerbate one another. For example, when parameter 
space has dimension d ≫ 1 , a search domain that is k times larger in each dimension will result in a volume 
that is kd times larger; and if the actual physiological domain is small relative to the search domain, then with 
high probability, a reasonable-sized sample will not contain a single point in the actual physiological domain.

In Fig. 8 we used a parameter domain PL with k ≈ 5 compared to P , the domain used in Results. Using a 
training set of 40000 points sampled randomly from PL , it was very likely that none was P . This figure shows, 
however, our well-trained DNN still achieved a good accuracy of ∼ 1Hz . Compared to Fig. 1b, a larger training 
set was needed, and the accuracy was lower, but it performed satisfactorily nevertheless.

In “Results” (“Viability of parameters and DNN performance”) and again in Fig. 8, the reason why small 
training sets sufficed was the simplicity of the mapping from input to output, a fact we confirmed in subsequent 
sections. Obviously one cannot conclude from this one study that such mappings always have simple structures, 
but modeling experience of the authors suggests that even in large-scale biologically realistic network models 
(e.g.6) neuronal responses tend to depend fairly smoothly on parameters. This means that locally in parameter 

network structures × stimulus → temporal dynamics

Figure 8.  Performance of DNN trained on a large domain. Performance of DNN trained by training datasets of 
size n sampled from PL tested on a test dataset of size 10000 sampled from P is presented. MAE (dashed line) 
and RMSE (solid line) for rE (red) and rI (blue) are exhibited.
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space, the dependence of target mappings on parameters is relatively simple, not unlike those revealed in our 
derivative analysis.

These observations offer hope to the feasibility of surrogate-based approaches for more complex neuronal 
circuit models. They also point to the need for good a priori bounds on physiological ranges to help simplify 
the structure of input-output maps, and this is where biology enters. The judicial use of biological facts and 
experimental data to partially constrain parameters in advance will increase the chances of success for machine-
learning approaches.

We do not pretend to have a roadmap going forward, but our analysis has shown that DNN surrogates may 
have a role to play in complex biological modeling when used in conjunction with other techniques. We finish 
with a discussion of how this might work. A major obstacle to using surrogate modeling directly is the large 
number of parameters in complex biological models in relation to the relatively small training sets that can be 
obtained through simulations. In the local cortical network model studied in this paper, DNN surrogates per-
formed well with smaller-than-expected training sets (“Results”, “Performance of DNN surrogate”). This strong 
performance can be explained by the simplicity of the input-output map, a fact confirmed in our derivative 
analysis: firing rate (E or I) were shown to vary monotonically (increasing or decreasing), or were mostly indif-
ferent, with respect to parameter increases in all but two or three instances. One cannot expect input-output 
maps in complex biological networks to always possess such simple structures, but some degree of regularity can 
be expected. In large cortical models, for example, we have found outputs to be fairly smooth due probably to 
the large numbers of neurons and the averaging effects of random noise. As smooth maps have relatively simple 
local structures dominated by their derivatives, this gives reason to hope that after (most) parameters have been 
localized to small enough intervals, DNN surrogates and the sensitivity analysis made possible by them can offer 
insight into properties of input-output relations.

In other words, we believe that surrogate methods can be useful when a priori bounds on parameters are 
known. This is not to downplay the challenges in locating such bounds, but it is a different kind of problem 
requiring different methods, such as leveraging information from biology, practicing smart parameter tuning (e.g. 
invoking experiments that involve as few parameters as possible to stabilize baseline values). Machine learning 
techniques such as evolution and genetic algorithms may also be useful at this stage. The more parameters one 
is able to localize and the better constrained they are, the more effective surrogate modeling techniques will be.

Materials and methods
We first describe the neuronal model that was used for illustration throughout the paper. Then, we define the 
deep neural network that was used as surrogate for this model. At last, we briefly introduce “Correlation analysis 
and logistic regression”.

I&F neuronal model. In this work, we consider a homogeneously connected network of integrate-and-
fire (I&F) neurons that can be thought of as a generic model of a local neuronal population. The network 
has NE = 225 excitatory neurons (E-neurons) and NI = 75 inhibitory neurons (I-neurons) with a ratio of 
NE/NI = 3 . Each E-neuron is postsynaptic to another E-neuron with probability 10% and to an I-neuron with 
probability 50% . Each I-neuron is postsynaptic to any other neuron with probability 50% . These connection 
probabilities are consistent with those in the visual cortex;  see50 for supporting references. A single realization 
of the random graph with these connectivities was fixed and used throughout in our numerical experiments.

The dynamics of each neuron in the network is modeled by the I&F equation

Here time is in milliseconds (ms) and V is the membrane potential normalized in a dimensionless unit with a 
reset value VR = 0 and a spiking threshold VT = 1 , so that when V reaches VT , the neuron fires a spike; then V is 
reset to VR and will remain there for an absolute refractory period of 2.5ms . In these normalized units, VE = 14/3 
and VI = −2/3 are excitatory and inhibitory reversal potentials, and τleak = 20ms is the leak  rate51. For any 
neuron n of type Q ∈ {E, I} , gE , gI ≥ 0 are its excitatory and inhibitory conductances governed by

where τE = 2ms and τI = 3ms are decay rates for excitatory and inhibitory conductances respectively. Synaptic 
inputs from other neurons within the network are described in the second terms on the right sides of Eqns (2) 
and (3): {tsyn,Ei }∞i=1 and {tsyn,Ii }∞i=1 are the spike times of all the E- and I-neurons presynaptic to neuron n, and δ(·) 
is the dirac delta function indicating an instantanous jump of conductance gE or gI upon the arrival of an E or 
I-spike, with amplitude equal to βQESQE/τE and SQI/τI respectively. The quantity SQE

∑∞
i=1 δ(t − texti ) models the 

independent excitatory drive to neuron n from another region of the brain with Poisson kicks at rate ηext,Q arriv-
ing at times {text,Qi }∞i=1 . In addition, neuron n receives an independent Possion drive with strength Sdr = 0.005 , 
rate ηamb and arrival times {tdri }∞i=1 ; this term is intended to represent “ambient” modulatory influences from 
other parts of the brain or body. Note that we do not model synapses individually, and to simulate the effect of 

(1)V̇ = −
1

τleak
V − (V − VE)gE − (V − VI )gI .

(2)τEġE = −gE + βQESQE
∞
∑

i=1

δ(t − t
syn,E
i )+ SQE

∞
∑

i=1

δ(t − t
ext,Q
i )+ Sdr

∞
∑

i=1

δ(t − tdri ),

(3)τI ġI = −gI + SQI
∞
∑

i=1

δ(t − t
syn,I
i ),
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synaptic failure between E-neurons, at each spike a random number βEE is picked from the uniform distribu-
tion on [0.8, 1]; we have set βIE = 1 , i.e., no synaptic failure for the synapses from E- to I-neurons is assumed.

The undetermined parameters of this model are the synaptic coupling weights among model neurons, SEE , 
SEI , SIE and SII , and inputs parameters to the population ηext,E , ηext,I and ηamb.

Synaptic weights of real cortical neurons are not known, but physiologically plausible ranges can be estimated 
from a combination of indirect measurements (such as in vitro experiments and the firing rates of neurons) 
together with some analysis  (see3, Methods). In this paper, following Ref.3, we will assume the physiologically 
plausible ranges to be

We have chosen to normalize the other quantities by SEE because it has been observed from parameter tuning 
(in e.g.3) that the 4 synaptic weights SQQ′ can be adjusted up and down together without having a strong effect 
on the system; this point will be justified later on in our analysis. Note that SII is normalized by SEI with a ratio 
less than 1 to account for electrical coupling among I-neurons, which effectively weakens the self-inhibition of 
the I-population.

With regard to the input parameters, in this paper we will assume the plausible ranges are

The range for ηext,E is large as it is intended to include input strengths that range from spontaneous to strong 
drive, and we have coupled the drive to E and to I-neurons because most synaptic input will affect both. The 
quantity η0 = 1200  Hz is the threshold for causing a neuron to spike in the absence of other inputs, and ηamb in 
real cortex is known to be below this threshold.

From here on, we will refer to the parameters above as P = [PS, PI] , where

are network synaptic parameters and

are input parameters, and we will say P = [PS, PI] is in our physiological domain P , if all 7 parameters fall 
within the ranges above.

Given P, we let rE and rI denote the mean firing rates of the E- and I-populations at steady state, and our 
model output is taken to be

Model firing rates are computed through numerical simulation. In our simulations, each trial runs for 3s , the 
last 2s of which are used to compute the system’s (empirical) firing rates. We assume, based on physiological 
experiments, that in an active state of the cortex,

and we will say O is in our physiological domain O if both rE and rI fall in the ranges above.
We reiterate that P consists of a priori biological constraints either deduced from indirect experimental 

measurements or learned from previous modeling results. It is necessary to partially constrain parameter space, 
and these are effectively educated guesses. The domain O consists of firing rates that correspond roughly to what 
is observed in the laboratory under a variety of circumstances. There is no guarantee whatsoever that P ∈ P 
will produce O ∈ O.

DNN surrogate. First we review the general setup for a DNN. For the regression problem of fitting a train-
ing dataset {(xi; yi)}ni=1 , where xi ∈ R

d and yi ∈ R
d′ for each i, a fully connected DNN of H layers, H ≥ 2 , is 

defined as follows. Let h[l]j  be the output of the jth node of the lth layer of the DNN. Then

where x ∈ R
d , ml is the number of neurons in layer l ( m1 = d , mH = d′ ), b[l]j ∈ R , W [l]

j ∈ R
ml−1 , and 

h[l−1](x) = [h
[l−1]
j (x)]

ml−1
j=1 ∈ R

ml−1 . For the jth neuron of the output layer of the DNN,

The DNN is abbreviated as h(x; θ) = h[H](x) , where

is the set of parameters of the DNN. In this work, the activation σ is fixed to the sigmoid function, i.e., 
σ(s) = 1/(1+ e−s) . The loss function is fixed to the mean-square error (MSE)

SEE ∈ [0.02, 0.03], SEI/SEE ∈ [1.5, 3],

SIE/SEE ∈ [0.2, 0.5], SII/SEI ∈ [0.5, 1] .

ηext,E ∈ [25, 3000]Hz, ηext,I/ηext,E ∈ [2, 6],

ηamb ∈ [1/3, 2/3] ∗ 1200Hz.

PS = [SEE , SEI/SEE , SIE/SEE , SII/SEI ]

PI = [ηamb/η0, η
ext,E, ηext,I/ηext,E]

O = [rE , rI ] .

rE ∈ [5, 30]Hz, rI/rE ∈ [2.5, 5.5] ,

hlj(x) = σ(W
[l]
j · h[l−1](x)+ b

[l]
j ) , j = 1, . . . ,ml ,

h
[H]
j (x) = W

[H]
j · h[H−1](x)+ b

[H]
j .

θ = [W [H], b[H],W [H−1], b[H−1], . . . , b[1]]
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During training, the parameters of the DNN in each epoch t can be updated using gradient descent as

where α is the learning rate. To speed up the training process, we use a popular accelerated gradient-based 
optimizer of Adam in our  experiments24.

Here is how the DNN will be used in this work: We train a sigmoid-DNN h(x; θ) of hidden layer sizes 
800− 200− 200 on training dataset D n

train = {(Pi;Oi)}
n
i=1 obtained from n trials of simulations (for various 

values of n), where each Pi is randomly drawn from a uniform distribution in its physiological domain P . The 
accuracy of the DNN h(·; θn) , where θn is the weight of DNN well-trained on D n

train , is evaluated on a testing 
dataset Dtest consisting of 10000 (P, O)-pairs where P was drawn independently from P and O was computed 
from simulations. Mean-absolute error (MAE) defined as 1n

∑n
i=1 ||h(Pi; θn)− Oi||1 and root-mean-square error 

(RMSE) defined as 
√

1
n

∑n
i=1 ||h(Pi; θn)− Oi||

2
2 are used for accuracy quantification. A DNN trained on D 20,000

train  , 
donoted by Ô(P) = [r̂E(P), r̂I (P)] = h(P; θ20,000) , serves as a surrogate of the neuronal circuit for all later 
analysis.

We remark on the following known properties of the DNN that make it a powerful tool: (i) DNN is a uni-
versal approximator. It has been proved that a sufficiently wide neural network of at least one hidden layer can 
approximate any continuous function to any desired  accuracy52–54. (ii) Empiricial and theoretical studies indicate 
that the DNN approach is free from the curse of dimensionality, i.e., error decay can be bounded by a scaling 
∼ n−

1
2 independent of the input  dimension18,19. (iii) It has been observed in practice that DNNs in general do not 

overfit even in an overparameterized setting without explicit  regularization55. Non-overfitting combined with 
the universal approximation property makes DNN a highly robust and flexible approach for capturing general 
nonlinear mappings. (iv) It has been shown by the discovery of the Frequency Principle that DNNs are especially 
effective in learning low frequency functions from training  data20,21,56,57. Therefore, very good accuracy can be 
achieved if the target mapping is dominated by low frequencies.

The evaluation of output using DNN is extremely efficient, especially when a large batch of input parameters 
is passed all at once to the DNN to best exploit the parallel computing capability of GPU. For our DNN of size 
800− 200− 200 , evaluation of 10000 inputs takes ∼ 1 s on Nvidia GTX1080 using Tensorflow. The evaluation 
of outputs using simulation is much slower. A 3 s simulation of our 300-neuron network takes 7 ∼ 10 s on Intel 
i7 6800K using Brian2. Our simulation of neuronal networks can be speeded up with better optimization for 
parallel computing, but it is impossible to close such a gap of over 104 in efficiency difference. For a more realistic 
neuronal network of over 10000 neurons, the gap in efficiency will be much larger.

It is widely known that the choice of DNN architecture and hyperparameters can have a large impact on 
the training and generalization performance of a DNN. Because the mapping we consider in this work lacks 
structures that can take advantage of architectures like CNN or RNN, we have used a vanilla fully-connected 
network. Empirically, we found that the depth of the network is not crucial for our problem; however, a mod-
erate depth, say 4 layers as used in this work, can help accelerate the training and reduce the requirement of 
width, i.e., number of neurons in each layer. In addition, the performance of the DNN is not sensitive to width 
as long as the network is sufficiently overparameterized, i.e., the number of parameters is larger than the size of 
training samples, to ensure a very low training error. In this work, we found a mysterious dependence of DNN 
performance on the scale of output. The test error of our DNN can be over 2 times larger if we scale the output 
by a factor of 0.01. This phenomenon is currently poorly understood in both theoretical and experimental stud-
ies of DNN and is out of the scope of this paper. For the optimization algorithm, we have stuck to Adam, which 
significantly improves the convergence rate during the training in comparison to gradient descent. In general, 
hyperparameter search can improve the training efficiency and test accuracy of DNN, though that is not crucial 
for the present study.

Finally, as noted in the Introduction, other machine learning approaches like support vector regression 
(kernel method) and gaussian process regression (kriging) may also serve our purposes of surrogate modeling. 
However, we anticipate that, for more complex biological networks, the flexibility of DNN surrogates may be a 
great advantage in application.

Correlation analysis and logistic regression. Correlation between two variables xi , xj ∈ {−1, 1} is 
defined by

where x̃ = x − E(x) . |cij| is also a good indicator of how accurate xi and xj can predict one another.
Logistic regression solves a classification problem as follows. Model f (x; θ) = 1/(1+ e−(a·xi+b)) with 

θ = [a, b] is fitted to data {(xi ∈ R
d , yi ∈ {0, 1})}ni=1 by maximizing the log-likelihood function, i.e.,

Then, for any x, if f (x; θ∗) > 0.5 , the output is predicted as 1, otherwise as 0. A high prediction accuracy indi-
cates that input domains correspond to different outputs are linearly separable, whereas low prediction accuracy 

L(θ) =

n
∑

i=1

(

h(xi; θ)− yi
)2
.

θ t+1 = θ t − α∇θL(θ
t),

cij =
E(x̃i x̃j)

√

E(x̃2i )E(x̃
2
j )

∈ [−1, 1].

θ∗ = max
θ

�n
i=1

[

yi log f (xi; θ)+ (1− yi) log(1− f (xi; θ))
]

.
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( � 50% ) indicates a complex structure not linearly separable. In Results, to use logistic regression for the predic-
tion of sign of derivatives, we map positive sign to 1, negative sign to 0 and solve the optimization problem above.
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