
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20722  | https://doi.org/10.1038/s41598-020-76528-x

www.nature.com/scientificreports

White matter microarchitecture 
and structural network integrity 
correlate with children intelligence 
quotient
Ilaria Suprano 1,6, Gabriel Kocevar 1,6, Claudio Stamile 1, Salem Hannoun 2, 
Pierre Fourneret 3, Olivier Revol 3, Fanny Nusbaum 4 & Dominique Sappey‑Marinier 1,5*

The neural substrate of high intelligence performances remains not well understood. Based on 
diffusion tensor imaging (DTI) which provides microstructural information of white matter fibers, 
we proposed in this work to investigate the relationship between structural brain connectivity and 
intelligence quotient (IQ) scores. Fifty‑seven children (8–12 y.o.) underwent a MRI examination, 
including conventional T1‑weighted and DTI sequences, and neuropsychological testing using the 
fourth edition of Wechsler Intelligence Scale for Children (WISC‑IV), providing an estimation of the 
Full‑Scale Intelligence Quotient (FSIQ) based on four subscales: verbal comprehension index (VCI), 
perceptual reasoning index (PRI), working memory index (WMI), and processing speed index (PSI). 
Correlations between the IQ scores and both graphs and diffusivity metrics were explored. First, 
we found significant correlations between the increased integrity of WM fiber‑bundles and high 
intelligence scores. Second, the graph theory analysis showed that integration and segregation 
graph metrics were positively and negatively correlated with WISC‑IV scores, respectively. These 
results were mainly driven by significant correlations between FSIQ, VCI, and PRI and graph metrics 
in the temporal and parietal lobes. In conclusion, these findings demonstrated that intelligence 
performances are related to the integrity of WM fiber‑bundles as well as the density and homogeneity 
of WM brain networks.

The investigation of the neural substrate of intelligence has been a topic of increasing interest in the neurosci-
ence field. Indeed, based on the Jung and Haier meta-analysis review of 37 neuroimaging studies, a distributed 
brain network, mainly based on frontoparietal connections, was identified and associated to high intelligence 
quotient (IQ)1. More recently, this model was extended to other brain regions including the posterior cingulate 
cortex and subcortical  structures2. Additionally, diffusion tensor imaging (DTI) application in childhood research 
studies, correlated IQ scores to fractional anisotropy (FA) and mean diffusivity (MD) metrics in several WM 
 regions3. Indeed, Navas-Sanchez et al. reported a significant positive correlation between IQ and FA, mainly in 
the corpus callosum, supporting the idea that efficient information transfer between hemispheres is crucial for 
higher intellectual  capabilities4. Tamnes et al. confirmed that verbal and performance abilities were positively 
related to FA and that WM development was accelerated in late childhood of subjects with high VCI compared 
to subjects with average verbal  abilities5. Exploring different cognitive performances, Muetzel et al. showed also 
that visuo-spatial abilities were related to high FA  values6. Nevertheless, these relationships between WM integrity 
and IQ may depends on the  gender7 as well as on the intelligence  profile8. In summary, these studies paved the 
way of a strong relationship between WM integrity and high cognitive performance.
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Furthermore, the human brain can be described as a network with “small-world” characteristics using graph 
 theory9. Considering gray matter (GM) regions as brain networks nodes and WM fibers, derived from diffusion 
MRI tractography as links connecting the nodes, local and global metrics derived from graph theory can be 
 measured10. A few studies investigated the role of structural connectivity in human intelligence. Li et al. were 
the first to demonstrate the association between the level of intelligence and the efficiency of the brain structural 
network in  adults11. In children, two recent studies explored the relationship between graph metrics and intel-
ligence showing some specific correlations between visual construction ability and IQ scores with structural 
 efficiency12,13. Finally, brain structural connectivity was recently demonstrated to correlate particularly with 
fluid  intelligence14.

In the present study, we propose to explore the neural substrate of intelligence in a cohort of children. We 
tested the hypothesis that children intelligence is associated with a better structural connectivity and a specific 
network organization at both local and global scales. To this end, the relationships between all IQ indices and 
topological properties of brain structural networks as well as diffusivity metrics of the main WM fiber-bundles 
were investigated.

Material and methods
Subjects. This prospective MRI study included 57 children (14 girls and 43 boys, age (mean ± SD): 
9.81 ± 1.16 years). Subjects were recruited from the PSYRENE center and the children’s psychiatry department 
of Lyon’s Neurological Hospital as well as through advertisement in medical practices and public institutions. 
All children with any neurological diseases, medical psychiatric comorbidities, learning disabilities, psycho-
tropic treatments, or contra-indications for MRI were excluded (reported in Kocevar et al.14). Ethical committee 
approval called in French “Comité de Protection des Personnes (CPP) Sud-Est IV” and written informed con-
sent from the children and their parents were obtained.

Intelligence scores. All children underwent the Wechsler intelligence scale for children (WISC-IV) to 
obtain a reliable estimation of the full-scale IQ (FSIQ). The WISC-IV is based on four subscales, namely, the 
verbal comprehension index (VCI), the perceptual reasoning index (PRI), the working memory index (WMI), 
and the processing speed index (PSI).

MRI acquisition and processing. MRI examinations were performed on a 1.5 T Siemens Sonata system 
(Erlangen, Germany) with an 8-channels head-coil and 40 mT/m gradients at the MRI department of “CERMEP-
Imagerie du Vivant”. As reported in Kocevar et al.14, the MRI protocol included a 3D T1-weighted magnetization 
prepared rapid gradient echo (MPRAGE) sequence (time of repetition/time of echo/time for inversion [TR/TE/
TI] = 1970/3.93/1100 ms; flip angle = 15°; matrix size = 256 × 256; field of view (FOV) = 256 × 256 mm; slice thick-
ness = 1 mm; voxel size = 1 × 1 × 1 mm; acquisition time = 8 min). DTI protocol was based on a 2D multi-slice 
spin-echo echo-planar imaging (EPI) sequence (TR/TE = 6900/86 ms, matrix size = 96 × 96, FOV = 240 × 240 mm, 
acquisition time = 7 min). Fifty-one contiguous axial slices of 2.5 mm thickness were acquired in the anterior 
commissure–posterior commissure (AC–PC) plane. Twenty-four diffusion gradient directions (b = 1000 s/mm2) 
were applied with a nominal isotropic resolution of 2.5  mm3. The b0 image was acquired four times to increase 
signal to noise ratio while the other directions were acquired twice.

Diffusion data preprocessing was performed using the Functional Magnetic Resonance Imaging of the Brain 
(FMRIB) Software Library (FSL)15. First, data were corrected for subjects’ motion and Eddy currents and non-
brain voxels were removed using FSL-BET. From transformation matrices generated during the Eddy current 
correction, we obtained a mean patient displacement value of 1.26 ± 0.52 mm (mean ± SD), which is half of a 
voxel size (2.5 mm). For each subject, the tensor model was then fitted on diffusion data using FSL-FDT16 and 
four diffusion maps (FA, MD, AD, and RD) were extracted.

Fiber‑bundle analysis. Based on the Illinois Institute of Technology (IIT) atlas (see Supplementary Mate-
rial), large WM fiber-bundles were defined including the forceps major (Fmajor), the forceps minor (Fminor), 
the superior and inferior longitudinal fasciculus (SLF and ILF respectively), the inferior fronto-occipital fascicu-
lus (IFOF), the uncinate fasciculus (Unc), the cingulum (Cing), and the cortico-spinal tract (CST)17.

The IIT atlas FA map was co-registered to each subjects’ FA image using a non-rigid transformation per-
formed with  NiftyReg18 and the deformation field was applied to all fiber-bundles. Since fiber-bundles masks 
of IIT atlas contained the probability of each voxel to belong to a specific fiber-bundle, a threshold of 35% was 
used to discard all voxels having a lower probability to belong to the fiber-bundle of interest and the resulting 
masks were binarized. Finally, the mean value of FA, MD, AD, and RD, were extracted from each subject’s 
fiber-bundles14.

Graphs analysis. Desikan cortical and subcortical GM parcellation (see Supplementary Material) was 
transformed to each subject space using the previously generated deformation field, and 84 nodes were  defined19.

The pipeline for graph generation started from the whole brain tractography that was performed for every 
subject using  MRtrix20. The main diffusion directions were estimated in each voxel using diffusion orientation 
distribution function (dODF) using a maximum spherical harmonics order h = 4 to match with the acquisi-
tion protocol. Anatomically constrained probabilistic streamline tractography was then performed to generate 
1,000,000 streamlines based on the four-tissue-class classification (WM, cortical GM, sub-cortical GM and 
cerebro-spinal fluid (CSF)) of the IIT atlas and dODF. Finally, summing the number of streamlines connecting 
each pair of nodes, adjacency matrices were generated for each subject. In order to remove the weakest connec-
tions generated by tractography, a proportional threshold (τ = 0.25) was applied to obtain binary connectivity 
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matrices. This threshold, corresponding the minimum mean variability, was optimized after the estimation of 
the inter-subject variability of the global metrics measured for different thresholds varying between 0 and 1 in 
subjects with standard IQ.

Brain structural connectivity was analyzed globally as well as locally by dividing the connectivity matrices 
in different sub-graphs: the left and right hemispheres, and the inter-hemisphere connections graph. The con-
nectivity matrices were also divided into lobes (frontal, occipital, parietal and temporal), cingulate, and sub-
cortical GM.

Small-world properties of each subject’s graph were verified and the topological properties of the brain net-
works were analyzed using six global and four nodal metrics from graph  theory21. At a global scale, the graph 
density ( D ) is measured as the ratio between the number of effective connections in the graph (l) to the number 
of possible connections. On one hand, the integration property of the graph was evaluated using characteristic 
path length (CPL), which is the mean of the shortest paths in the graph, and Eg, which is the mean of the inverse 
of the distance matrix of the graph. On the other hand, the segregation property of the graph was analyzed using 
the transitivity (T) which is the ratio between the number of triangles and the number of triplets in the graph, 
the assortativity ( r ) which is the Pearson coefficient between the degrees of two nodes at the extremities of an 
edge, and the modularity (Q) which is the difference between the number of intra-modules connections and the 
number of inter-modules connections. At a nodal scale, the degree (ki) represents the number of connections of 
each node. The clustering coefficient (Ci) defined as the ratio between the number of triangles and the number 
of triplets around each node, measures the network’s tendency to form dense local clusters. The betweenness 
centrality (Bi), defined as the ratio of the number of the shortest paths comprising the node to the total number 
of shortest paths in the graph, measures the hub property of the node. The nodal efficiency (Ei) defined as the 
mean of the inverse of the distance vector, measures the signal transmission efficiency.

All the metrics, except graph density, were computed based on the binarized connectivity matrices using the 
brain connectivity toolbox on  Matlab21.

Statistical analysis. Partial correlations between intelligence scores and network measures were calculated 
in the total sample using age and gender as covariates. A general linear model (GLM) was used to investigate 
the relationship between each WISC (Wi) index and the global and nodal graph metrics as well as the diffusion 
metrics of the WM fiber-bundles. The general expression of this model was as follows:

Statistical significance of all predictor was tested for each fit by applying analysis-of-variance and analysis-
of-deviance with a 5% significance level. All statistical analysis were computed using  R22. In order to correct for 
multiple comparisons, FDR correction was applied to p values.

Ethics approval. Following the ethical standards laid down in the 1964 Declaration of Helsinki, its later 
amendments, and in application of article L 1121-4 of the French Public Health Code, this biomedical research 
has obtained the approval of the local Ethic Committee named “Comité de Protection des Personnes (CPP) 
Sud-Est IV” and the authorization from the French medical authorities (Agence Nationale de sécurité et du 
Médicament (ANSM)). The written informed consent was obtained from the children and their two parents. In 
the consent form, both parents and the child agree that the publication of the results will be done anonymously, 
without any individual identifying results.

Results
Fiber‑bundles analysis. In each WM fiber-bundle, FA and AD values were obtained and their association 
with intelligence scores analyzed as reported in Table 1. Positive correlations were found in several WM fiber-
bundles. FA was significantly correlated with FSIQ and VCI in the Fminor bundle of the corpus callosum, and 
only for the FSIQ in the Fmajor bundle. AD was also significantly correlated with FSIQ and VCI, as well as PRI 
and WMI in both the Fmajor and Fminor bundles. In all associative fiber-bundles, except the cingulum, FA and 
AD metrics were correlated with intelligence scores. Significant correlations were observed between FSIQ and 
FA values of the left and right IFOF, and Unc fasciculi, and only with the left ILF and SLF. VCI and FA values 
were also correlated in the left and right IFOF. Significant correlations were observed between FA and PRI values 
in the left and right Unc fasciculi and left IFOF. Between PSI and FA, we found significant correlations in the 
left ILF. AD was significantly correlated with FSIQ, VCI, and PRI in bilateral Unc and with FSIQ and VCI in 
bilateral IFOF. Finally, FSIQ, VCI were correlated with AD in the right CST, while in the left CST, only VCI was 
correlated with AD. Significant effect for gender was found in few correlations between diffusivity metrics and 
WISC scores. However, this effect observed in only 5 fiber bundles, remained much lower than the diffusivity 
metric effect. No RD and MD correlation survived after multicomparison correction.

Graph analysis. Global graph metrics. When measured in whole brain, significant correlations were found 
between graph metrics and FSIQ as well as WISC-IV subscales. More in details, FSIQ, VCI, PRI, and WMI 
showed positive correlations with the density D (Fig. 1). In contrast, negative correlations were found between 
FSIQ, PRI, and WMI and the modularity Q, as well as between VCI and WMI and the transitivity T. When 
measured in both hemispheres, FSIQ, VCI, PRI, and WMI values were positively correlated with D. In the right 
hemisphere, a negative correlation was observed between PRI and Q. Finally, positive correlations were observed 
between FSIQ, VCI, and WMI and D, and between PSI and T, in the inter-hemispheric connections.

Wi ∼ metric
(

Diffusivity or Graph
)

+ Age + Gender
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The same graph metrics were also measured in other networks such as brain lobes (frontal, parietal, occipital, 
and temporal) as well as sub-cortical nuclei. In the left parietal lobe FSIQ and WMI were negatively correlated 
with Q. In the right occipital lobe, WMI was negatively correlated with T, and WMI positively correlated with 
CPL. In the left temporal lobe, FSIQ and WMI were positively correlated with r and T. FSIQ, PRI, and PSI were 
negatively correlated with Q. VCI, and PRI were negatively correlated with Eg. FSIQ, and VCI were positively 
correlated with CPL. Finally, in the left subcortical GM networks, PRI was negatively correlated with r, while 
PSI was positively correlated with T. All the correlations between global graph metrics and intelligence scores 
are reported in Table 2.

Nodal graph metrics. Several significant correlations were observed between the nodal graph metrics and the 
intelligence scores, including mainly FSIQ and VCI, and to a lesser extent PRI. These correlations were observed 
in numerous networks, mainly located in the left hemisphere, as reported in Table 3. As shown in Fig. 2, FSIQ 
was positively correlated with the degree ki and negatively with the local efficiency Ei in the left precuneus net-
works and in the left middle temporal networks. In the middle and superior temporal networks, VCI was posi-
tively correlated with ki and only in the middle temporal networks negatively with Ei (Fig. 3). In the right caudate 
nuclei networks, PRI was positively correlated with ki (Fig. 4).

Discussion
The present study used both graph theory and fiber-bundle analysis methods, to demonstrate the relationship 
of WM microarchitecture and structural connectivity metrics with children intelligence.

The exploration of structural connectivity using graph metrics provided evidence of a strong relationship 
between brain networks connectivity and intelligence. More specifically, we showed that higher intelligence 
is related to a dense and homogeneous brain networks. Indeed, most of the IQ indices (VCI, PRI and WMI) 
correlated positively with graph density and negatively with modularity and transitivity, two metrics describ-
ing segregation properties. These results are in accordance with the idea that intelligence depends on the brain 
networks capacity to enhance their structural  connectivity23.

When analyzing the relationship between intelligence scores and graph metrics in cerebral lobes, most of the 
significant correlations were found in the temporal and parietal lobes, two important regions of the networks 
proposed by Jung and Haier in their P-FIT  theory1. On one hand, the strong correlations observed between both 
VCI and WMI scores and graph metrics in the temporal lobe confirmed that high integration and density levels of 
the temporal connectivity are related to high verbal and memory abilities, as previously  reported24,25. On the other 
hand, the high levels of structural connectivity observed in the parietal lobe in relation with high FSIQ confirmed 
the important role of parietal functions in children intelligence, such as visuospatial and memory abilities (mirror 

Table 1.  Standardized beta and statistical significances obtained with a GLM model between the mean 
fractional anisotropy (FA) and axial diffusivity (AD) of the WM fiber-bundles (forceps major (Fmajor), 
forceps minor (Fminor), cortico-spinal tract (CST), superior and inferior longitudinal fascicle (SLF and ILF 
respectively), uncinate fascicle (Unc), and inferior fronto-occipital fascicle (IFOF)) and the IQ scores (full 
scale intelligence quotient (FSIQ), verbal comprehension index (VCI), perceptual reasoning index (PRI), 
working memory index (WMI), and processing speed index (PSI)). Values in bold represent correlations with 
a significant effect for gender. *p < 0.05; **p < 0.01; ***p < 0.001.

FSIQ VCI PRI WMI PSI

FA AD FA AD FA AD FA AD FA AD

Fmajor 0.333* 0.519*** – 0.446*** – 0.337* – 0.436** – –

Fminor 0.337* 0.566*** 0.379* 0.526*** – 0.404* – 0.389* – –

CST

L – – – 0.378* – – – – – –

R – 0.339* – 0.334* – – – – – –

SLF

L 0.372* – – – – – – – – –

R – 0.483*** – 0.423** – 0.332* – 0.485** – –

ILF

L 0.440* – – 0.344* – – – – 0.414* –

R – 0.460*** – – – 0.372* – 0.428** – –

Unc

L 0.417* 0.401** – 0.411** 0.437* 0.370* – – – –

R 0.355* 0.625*** – 0.521*** 0.359* 0.517*** – 0.509** – –

IFOF

L 0.507** 0.355* 0.526** 0.469** 0.373* – – – – –

R 0.354* 0.497*** 0.382* 0.430** – 0.393* – 0.417** – –
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neurons), as well as mathematical operations  processing26. Moreover, as shown by Sowell et al., the parietal lobe 
presents the most important changes during adolescence, a period of rapid cerebral  development27.

Structural connectivity was further explored by measuring local graph metrics for each brain region. With 
a preponderance of the parietal and temporal lobes, significant associations were observed with most of the 
cortical nodes. In particular, metrics measured in the left precuneus showed a better network integration in 
relation with FSIQ, mostly driven by the PRI. This result is in agreement with previous studies, highlighting the 
importance of the precuneus in visuospatial abilities and self-consciousness28. Local metrics, measured in the left 
middle and superior temporal networks, were associated to VCI. These findings are concordant with the report 
of Crinion et al., showing that speech comprehension employs both temporal lobes, with a left  predominance29. 
All these regions have been demonstrated to be related to intelligence as they are included in the P-FIT theory 
by Jung and  Haier1. Moreover, in agreement with the report of Basten et al. we observed a relation between PRI 
and local graph metrics in the subcortical  networks2. High PRI was associated to high network integration of 
the right caudate nucleus, region also involved in  reasoning30.

Our analysis was completed by the characterization of WM fiber-bundles microstructure. Derived from the 
diffusion tensor, FA values (reflecting WM integrity) and AD (quantifying WM connectivity) could be influenced 
by several microscopic factors, such as myelination and axonal density or  diameter31,32. Indeed, positive correla-
tions were observed between both FA and AD values, and IQ subscales in most of the large WM fiber-bundles 
of both hemispheres. These correlations were mostly located in the commissural and associative fiber-bundles. 
Particularly, diffusivity metrics were correlated with all intelligence scores (except the PSI) in the uncinate bundle, 
implied in memory, language, and emotion  processing33, and the inferior fronto-occipital fascicle, implied in 
many integrative functions. These findings suggest that high intellectual performances could be related to high 
axonal myelination level and/or density.

Methodological limitations. This study presents some limitations. The first one was the low number of 
participants, related to the difficulty of young children recruitment. Also, the unbalanced number of boys and 
girls was overcome by including the gender effect in the statistical analysis. This limitation is often encountered 
in high potential children studies, as girls present the ability of “over-adaptation” which leads to less clinical 

Figure 1.  Significant positive correlations obtained between the graph density of the whole brain networks 
and the full-scale intelligence quotient (FSIQ), the verbal comprehension index (VCI), the perceptual reasoning 
index (PRI), and the working memory index (WMI).
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Table 2.  Standardized beta and statistical significances obtained with a GLM model between global graph 
metrics, namely density (D), assortativity (r), transitivity (T), modularity (Q), characteristic path length 
(CPL), and efficiency (Eg) measured in different brain networks (whole brain, inter-hemisphere, left and 
right hemispheres, different lobes, and subcortical regions), and the IQ scores (full scale intelligence quotient 
(FSIQ), verbal comprehension index (VCI), perceptual reasoning index (PRI), working memory index (WMI), 
and processing speed index (PSI)). *p < 0.05; **p < 0.01; ***p < 0.001.

Networks Metric FSIQ VCI PRI WMI PSI

Whole brain –

D 0.451*** 0.575*** 0.353** 0.421** –

Q − 0.321* – − 0.281* − 0.363* –

T – − 0.333 * – − 0.307* –

Inter-hemisphere –
D 0.374 ** 0.499 *** – 0.394** –

T – – – – 0.292*

Hemisphere

L D 0.391** 0.459*** 0.370** 0.362 ** –

R
D 0.359** 0.436 ** 0.358* 0.288* –

Q – – − 0.338* – –

Parietal L Q − 0.385* – – − 0.437* –

Occipital R
CPL – – – 0.317* –

T – – – − 0.317* –

Temporal

L

r 0.282* – – 0.359* –

Q − 0.385* – − 0.396* – − 0.401*

T 0.298* – – 0.421** –

R
Eg – − 0.421* − 0.400* – –

CPL 0.386* 0.440* – – –

Sub-Cortical L
r – – − 0.301* – –

T – – – – 0.276*

Table 3.  Standardized beta and statistical significances obtained with a GLM model between the local 
graph metrics, namely degree (ki), betweenness centrality (Bi), clustering coefficient (Ci), and efficiency (Ei), 
measured from gray matter (GM) nodes of brain lobes of each hemispheres (left (L) and right (R)), and the IQ 
scores (full scale intelligence quotient (FSIQ), verbal comprehension index (VCI), perceptual reasoning index 
(PRI), working memory index (WMI), and processing speed index (PSI)). * p <0.05; ** p <0.01; *** p < 0.001.

Networks GM nodes Metric FSIQ VCI PRI WMI PSI

Frontal L

Paracentral ki – 0.402* – – –

Frontalpole
ki − 0.399* − 0.390* – – –

Bi − 0.431* – – – –

Parietal
L Precuneus

ki 0.464* 0.415* 0.462* – –

Ci − 0.469* – − 0.484* – –

Ei − 0.448* – – – –

R Supramarginal Bi – 0.429* – – –

Occipital R Lateraloccipital Bi 0.442* – – – –

Temporal

L

Fusiform ki – − 0.409* – – –

Middletemporal

ki 0.401* 0.409* – – –

Ci − 0.439* – – – –

Ei − 0.437* – – – –

Superiortemporal

ki – 0.451* – – –

Bi – 0.445* – – –

Ci – − 0.482* – – –

Ei – − 0.477* – – –

Transversetemporal ki − 0.473* − 0.391* − 0. 464* – –

R
Bankssts

ki – − 0.419* – – –

Bi – − 0.433* – – –

Transversetemporal ki − 0.479* − 0.390* − 0.430* – –

Sub-cortical R Caudate ki 0.416* 0.370* 0.508** – –

Cerebellum R Cerebellum ki – – 0.430* – –
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consultations, thus reducing the number of girls identified as high IQ. While we observed a FSIQ difference 
between male (128.7 ± 15.2) and females (122.6 ± 21.0), the non-parametric Wilcoxon-test performed for each 
WISC index between the two gender groups didn’t show any significant difference (e.g. FSIQ: p = 0.24). Second, 
this DTI analysis was performed with 24 directions, that is relatively low compared to current studies. In order 
to minimize the potential crossing-fibers errors, a spherical deconvolution model was applied instead of classic 
diffusion tensor model. Finally, because brain WM changes occur continuously during childhood  maturation34, 
our results can only be exploited between the ages of eight and twelve years-old. This age range may contribute to 
the lack of findings in the prefrontal regions. Indeed, the course of brain maturation is known to progress from 
temporal and occipital towards the parietal and frontal lobes during adolescence, while the prefrontal regions 
do not mature until the 20 s35.

Conclusion
This study showed significant correlations between several graph metrics based on diffusion measures and 
psychometric scores. First, the increase of network degree with intelligence scores, confirmed that fiber bundles 
density of brain networks plays a significant role in children intelligence. Second, considering that modularity 
represents a measure of segregation level between graph modules, and that transitivity reflects the redundancy 
in the network connections, the low modularity and low transitivity observed in high IQ children confirmed that 
homogeneous brain organization correlates with intelligence. These findings show that children’s high IQ may be 
related to a high fiber density and optimally distributed brain networks, thanks to the global sensitivity of such 
graph-based methods for the investigation of brain topological organization. Furthermore, diffusion metrics 
measured in WM fiber-bundles confirmed that children intellectual abilities are correlated with enhanced WM 
myelination and integrity. In summary, this study demonstrated that intelligence quotient is correlated with the 
microstructure as well as the topological organization of the WM brain networks.

Data availability
The datasets generated analyzed during the current study are available from the corresponding author on rea-
sonable request.

Figure 2.  Significant correlations obtained between the full-scale intelligence quotient (FSIQ) and the local 
graph metrics in the left precuneus and the left middle temporal networks. Image drawn with Connectome 
Workbench toolbox v1.3.2 (https ://human conne ctome .org/softw are/conne ctome -workb ench).

https://humanconnectome.org/software/connectome-workbench
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