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Multifunctional rhodamine 
B appended ROMP derived 
fluorescent probe detects  Al3+ 
and selectively labels lysosomes 
in live cells
Upendar Reddy Gandra1, Raphael Courjaret2, Khaled Machaca2, Mohammed Al‑Hashimi1* & 
Hassan S. Bazzi1,3*

There a few reports of rhodamine‑based fluorescent sensors for selective detection of only  Al3+, due 
to the challenge of identifying a suitable ligand for binding  Al3+ ion. The use of fluorophore moieties 
appended to a polymer backbone for sensing applications is far from mature. Here, we report a new 
fluorescent probe/monomer 4 and its ROMP derived polymer P for specific detection of  Al3+ ions. 
Both monomer 4 and its polymer P exhibit high selectivity toward only  Al3+ with no interference from 
other metal ions, having a limit detection of 0.5 and 2.1 µM, respectively. The reversible recognition 
of monomer 4 and P for  Al3+ was also proved in presence of  Na2EDTA by both UV–Vis and fluorometric 
titration. The experimental data indicates the behavior of 4 and P toward  Al3+ is pH independent 
in medium conditions. In addition, the switch‑on luminescence response of 4 at acidic pH (0 < 5.0), 
allowed us to specifically stain lysosomes (pH ~ 4.5–5.0) in live cells.

The development of highly sensitive and selective fluorescent chemosensors over recent years has attracted great 
 interest1–7. One such element of interest is aluminium being the third most abundant element worldwide, and 
being significantly utilised in various applications such as in the healthcare, manufacturing industries, food 
additives, kitchen utensils and packaging. Furthermore, elevated levels of  Al3+ ions in the human body can result 
in serious health  problems7. Given the extensive use of  Al3+ these health effects need to be considered. Some 
causes of aluminium toxicity have been linked to aluminosis, dialysis encephalopathy, Alzheimer’s, Parkinson’s 
and breast  cancer6. In addition, aluminum is found naturally in the environment and drinking water. The toler-
able weekly intake of  Al3+ set by the European food safety authority (EFSA) is 1 mg Al/kg body weight in a 60 kg 
adult and according to the World Health Organization (WHO) the concentration of  Al3+ ions in drinking water 
should be lower than 7.41 μM7.

In this respect, and due to the potential impact of  Al3+ on human health and the environment, it is of consider-
able importance to develop new fluorescent sensor probes. To date, most of the reported  Al3+ probes developed 
are based on small organic  molecules8–25, carbon  dots26–28,  MOFs7,29, and transition metal  complexes30,31. How-
ever, many of such systems suffer from achieving specificity either due to the interference of other transition 
metal  ions4,9,32,33 or weak coordination and strong hydration ability (enthalpies of hydration is − 4680 kJ/mol) 
character. Thus, the issue of specific, efficient recognition of  Al3+ with colorimetric and fluorometric response 
is challenging one to attain semi quantification and higher sensitivity. In this contest, chemosensors appended 
to a polymeric material is an attractive way to engineer new probes, preserving their activity for longer times 
and promoting  polymerization34,35. In addition, having a polymer backbone has several advantages: firstly, there 
would be a high signal amplification because of the increase in the number of receptor moieties attached to a 
single site. Secondly, polymers can be easily fabricated into several applications by incorporating several different 
fluorophores and recognition units into the polymer backbone.
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Herein, we report the synthesis of probe 4 by reacting the highly tethered ring-strained  dione36 with rhoda-
mine B. Subsequently, ring opening metathesis polymerization (ROMP) as a simple methodology was utilized 
for the synthesis of polymer P. ROMP has many advantages over other polymerization technics since it is chemi-
cally robust and has excellent functional group  tolerance37–40. To date, very few reports was reported by using 
norbornene appended fluorophore based polymers via ROMP strategy for sensing  applications41–46. Both probe 
4 and polymer P showed high selectivity and exhibited a large spectral response towards binding with  Al3+. In 
addition, the switch-on luminescence response of probe 4 at acidic pH (0 < 5.0) allowed us to selectively label 
lysosomes in live cells. There are few disadvantages associated with the current reported lysosomal pH probes; 
including short excitation wavelengths, which considerably restricts the use of the probes in bio-imaging47,48 
complicated synthetic routes, lack of specificity and poor photo  stability49,50.

In this regard, we utilized rhodamine derivatives having amine group of low ionic strength with the ability to 
stain lysosomes having a high excitation  wavelengths49,51,52. This can be used as a marker that is lysosome-specific, 
an alternative low-cost strategy in comparison to utilizing expensive commercial dyes for specific staining of 
lysosomes.

Experimental
Materials and  instrumentation36. Rhodamine B, ethylene diamine, exo-3,6-Epoxy-1,2,3,6-tetrahydroph-
thalic anhydride, triethyl amine and Hoveyda-Grubbs 2nd generation catalyst (HG2). All metal nitrate salts 
such as  NaNO3,  KNO3, Mg(NO3)2, Al(NO3)3, Cu(NO3)2, Zn(NO3)2, Co(NO3)2, Ni(NO3)2, Zr(NO3)3, Ce(NO3)3, 
La(NO3)3, Cd(NO3)2, Hg(NO3)2, Pb(NO3)2 and  LiNO3 were purchased from Sigma-Aldrich. Solvents were puri-
fied by standard techniques prior to use for all synthesis. 1H NMR and 13C NMR spectra were recorded on AV 
400 MHz Bruker or AV 600 MHz Bruker NMR spectrometer using  CDCl3 and  CD3CN as the solvent at 298 K. 
Tetra methyl silane (TMS) as an internal standard for 1H NMR. GPC analysis were carried out using a Viscotek 
GPC Max VE 2001 instrument with Viscotek TDA 302 tripe array detector Viscotek Org Guard column. UV–Vis 
spectra were recorded on a Perkin Elmer Lambda 950 UV–Vis spectrometer, using quartz cells of 10 mm path 
length at 273 K. Fluorescence emission spectra were recorded on Cary eclipse fluorescence spectrophotometer, 
using quartz cells of 10 mm path length at 273 K. IR spectra on Perkin Elmer FT-IR spectrometer, DSC spectra 
on Perkin Elmer Jade DSC and TGA on Perkin Elmer Pyris 6 were recorded.

General experimental methods for UV–vis and fluorescence  studies53,54. 20 × 10–3  M solution 
of the nitrate salts of the respective ion  (Na+,  K+,  Fe3+,  Na+,  Mg2+,  Ni2+,  Co2+,  Cu2+,  Cd2+,  Pb2+,  Zn2+,  Al3+,  Ce3+, 
 La3+ and  Hg2+) were prepared in pure aqueous medium and the same solution was used for all the studies after 
appropriate dilution. A stock solution of the monomer 4 and polymer P was prepared in dimethylsulphoxide 
(DMSO) medium and 10 μL or 5 μL of this stock solution was added to 2.98 mL of HEPES aqueous buffer: ace-
tonitrile (1:1) medium having solution pH 7.2 to make the effective ligand concentration of 10 µM or 5 µM. For 
all luminescence measurements, λExt = 525 nm with an emission slit width of 2.5 nm.

Cell lines. All cell lines were obtained from ATCC and are grown in high glucose DMEM (4.5 g L−1) sup-
plemented with 10% FCS and penicillin (100 U mL−1) streptomycin (100 μg mL−1). The cells were plated 24 h 
before experiments at a density of 2000 cells  mm−2 on glass bottom dishes coated with Poly-d-Lysine (Mattek).

Staining. The culture media was replaced by a saline of the following composition (in mM): 145 NaCl, 5 
KCl, 2  CaCl2, 1  MgCl2, 10 Glucose, 10 HEPES. The cells were incubated at room temperature with 25 μM of 4 
diluted in the saline for 60 min and then washed three times prior to imaging. The nuclear stain Hoechst 33342 
(10 μg mL−1) was added to the staining solution. In another set of experiments, the lysosomal compartment 
was stained using 0.5 μM of Lysotracker Blue DND-22 (Thermofisher) and the cells simultaneously loaded with 
5 μM of 4 for 60 min. For cell imaging experiments, the probes were diluted in pure DMSO and further diluted 
to the final working concentration. Stock solutions were prepared so that the maximum final DMSO concentra-
tion was 0.5%.

Imaging. The images were acquired using a confocal microscope (Zeiss LSM 880) fitted with a 40×/1.30 
objective controlled by the Zen black software (ver. 2.3, Zeiss). The 4 was imaged using the following parameters: 
excitation λext = 561 nm and detection λem = 566/685 nm, and for Hoechst λext = 405 nm and λem = 410–542 nm, 
the pinhole was set to 1 Airy unit. The scattered light from the 405 nm excitation was collected using a transmis-
sion photomultiplier tube (T-PMT) to generate a bright field image of the cells. For the co-localization experi-
ments in the lysosome the Airy Scan detector was used with the same laser lines and automatic post-processing 
of the image using the Zen software.

Cell viability assay. The potential effect of the probes on cell viability was evaluated using a Thiazolyl Blue 
Tetrazolium Blue (MTT) assay. Hela cells seeded at a density of 7000 cells per well were treated for 1 h with vari-
ous doses of the probes or the corresponding vehicle concentration (DMSO, max concentration 0.5%). The cells 
were then loaded with 0.25 mg mL−1 of MTT for 2 h at 37 ºC, the media was then removed, and the cells freeze-
dried at − 80 ºC. The final product was resuspended in DMSO before reading the absorbance on a multiplate 
reader (Clariostar, BMG LabTech). The experiment was conducted once on 4 technical replicates.
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Synthetic procedures
Procedure of synthesis of aminoethyl rhodamine B (2)55. Rhodamine B (1.0  g, 2.26  mmol) was 
dissolved in 30 mL of ethanol. It was then heated to 70 °C with constant starring. Then excess ethylene diamine 
(2.5 mL) was added to the reaction medium. It was then allowed to reflux at 75 °C for 14 h. After cooling, the 
reaction mixture solvent was removed in vacuum under reduced pressure. Subsequently water (20  mL) was 
added to the reaction mixture and the organic phase was extracted using DCM (3 × 20 mL), dried over  MgSO4 
and the pure product 2 was isolated as a light red solid in 94% yield. 1H NMR (400 MHz,  CDCl3) δ 7.99–7.82 
(1H, m), 7.44 (2H, dd, J = 5.6 Hz, 3.1 Hz), 7.09 (1H, d, J = 3.0 Hz), 6.43 (2H, d, J = 8.8 Hz), 6.38 (2H, d, J = 2.5 Hz), 
6.27 (2H, dd, J = 8.9 Hz, 2.5 Hz), 3.33 (8 H, q, J = 7.1 Hz), 3.19 (2H, t, J = 6.6 Hz), 2.40 (2H, t, J = 6.6 Hz), 1.16 
(12H, t, J = 7.0 Hz). 13C NMR [151 MHz,  CDCl3, 298 K] δ 168.58, 153.45, 153.25, 148.77, 132.38, 131.22, 128.67, 
128.02, 123.80, 122.72, 108.09, 105.62, 97.65, 77.29, 76.87, 64.88, 44.32, 43.86, 40.80 and 12.57. IR (ATR) ν = 1680 
and 1616 cm−1.

2‑(6‑((2‑(3′,6′‑bis(diethylamino)‑3‑oxospiro[isoindoline‑1,9′‑xanthen]‑2‑yl)ethyl)amino)
hexyl)‑3a,4,7,7a‑tetrahydro‑1H‑4,7‑epoxyisoindole‑1,3(2H)‑dione (4)55. Amino ethyl rhoda-
mine B (600 mg, 1.23 mmol) was dissolved in 10 mL dry THF. To this  Et3N (170 µL) was added and the result-
ing solution was stirred for 20 min under  N2 atmosphere. Then 2-(6-bromohexyl)-3a,4,7,7a-tetrahydro-1H-4,7-
epoxyisoindole-1,3(2H)-dione (403 mg, 1.23 mmol) was added and the resulting reaction mixture and refluxed 
for 12 h. TLC monitored the progress of the reaction. Upon completion of the reaction, reaction mixture was 
allowed to attain the room temperature. Solvent was removed in vacuum under reduced pressure. The crude 
reaction mixture washed with water (15 mL), and then extracted with DCM (3 × 15 mL). The organic solvent 
was concentrated; column chromatography was performed using silica gel (chloroform) to afford 4 in pure form 
(500 mg, 54%). 1H NMR [400 MHz,  CDCl3, 298 K] δ 7.89 (1H, dd, J = 5.8 Hz, 2.6 Hz), 7.49–7.40 (2 H, m), 7.08 
(1H, dd, J = 5.8 Hz, 2.6 Hz), 6.50 (2 H, s), 6.39 (4 H, dd, J = 17.9 Hz, 5.6 Hz), 6.27 (2 H, dd, J = 8.8 Hz, 2.5 Hz), 5.25 
(2 H, s), 3.45 (2 H, dd, J = 14.1 Hz, 6.8 Hz), 3.41–3.24 (12 H, m), 2.58–2.41 (3 H, m), 2.22 (1H, s), 1.62–1.48 (2 H, 
m), 1.41 (2 H, s), 1.23–1.10 (17 H m); 13C NMR [151 MHz,  CDCl3] δ 176.3, 170.7, 153.62, 149.18, 136.54, 133.52, 
129.64, 128.57, 124.10, 123.08, 108.48, 103.18, 97.88, 80.91, 77.27, 76.85, 67.07, 48.89, 47.66, 44.40, 38.87, 31.58, 
29.69, 27.29, 26.33, 25.91, 22.65, 14.12 and 12.59; LCMS calcd.for  C44H53N5O5: 731.4, found: 732.6 [4 + H+]; IR 
(ATR) ν = 1692, 1676, 1630 and 1610 cm−1.

Polymerization of 4 in presence of  [HG2]36. In a glove box, 4 (100 mg, 0.137 mmol) was dissolved 
in DCM (1 mL) in a reaction vail. To this solution of HG2 complex (10 mol%, 8.5 mg) in DCM (0.5 mL) was 
added. The reaction mixture was stirred at room temperature for 12 h. The polymerization was quenched using 
ethyl vinyl ether (0.5 mL). Polymer was precipitated into methanol to afford an off-red solid (80 mg, 74%). 1H 
NMR [400 MHz,  CDCl3] δ 7.87 (1 H, s), 7.47 (2 H, s), 7.09 (1 H, s), 6.88 (1 H, s), 6.48–6.31 (4H, m), 6.29 (2 H, 
d, J = 8.4), 6.07 (1 H, s), 5.78 (1 H, s), 5.11 (1 H, s), 4.46 (1 H, s), 3.36 (16 H, d, J = 22.8), 2.49 (1 H, s), 2.24 (1 H, 
s), 1.77 (2 H, s), 1.36 (2 H, s), 1.24 (15 H, d, J = 60.1 Hz), 0.88 (1 H, t, J = 7.0 Hz); 13C NMR (151 MHz,  CDCl3) δ 
175.84, 153.46, 153.34, 149.12, 135.04, 130.12, 128.58, 128.25, 124.05, 123.08, 108.49, 108.25, 97.83, 63.10, 47.64, 
44.39, 38.84, 27.48, 26.26, 22.21, 21.08, 18.22, 15.41 and 12.62.; IR (ATR) ν = 1698, 1676 and 1610 cm−1.

Results and discussion
As depicted in Scheme 1 spirolactam intermediate 2 was synthesized by reacting rhodamine B ethylethana-
minium 1 with excess ethylene diamine. Subsequent amine alkylation with bromohexyl-dione 3 in THF as the 
solvent afforded monomer 4 in 54% yield. ROMP of 4 using Hoveyda-Grubbs 2nd generation catalyst (HG2) 
afforded polymer P as light red solid in 74% yield. 1H NMR spectroscopy confirmed the full conversion of the 
monomer 4 to the polymeric material P, thus, the olefinic peaks of the monomer 4 at δ = 6.50 ppm were replaced 
by new signals at δ = 6.07 and 5.78 ppm correspond to the cis and trans olefinic double bonds of P. Number-
average molecular weight (Mn) and dispersity (Đ) of polymer P was measured via gel permeation chromatog-
raphy (GPC) in THF using polystyrene as a standard. Polymer P has a Mn of 913 Da and a polydispersity index 
of 1.28. Thermogravimetric analysis (TGA) confirmed that P has a thermal decomposition temperature (Td) at 
10% weight loss of 300 °C, and differential scanning calorimetry (DSC) under an inert atmosphere indicated the 
glass transition temperature (Tg) to be 146 °C, both techniques confirming the stability of P (Fig. SI 8).

Optical properties. Rhodamine derivatives are known to be notorious for binding to certain transition 
metal ions. Thus, we first turned our attention to examine the absorbance and fluorescence emission properties 
of probe 4 in the absence and presence of various metal ion, such as  Na+,  K+,  Mg2+,  Ca2+,  Ba2+,  Cu2+,  Ni2+,  Zn2+, 
 Cd2+,  Co2+,  Fe2+,  Cr3+,  Pb2+,  Al3+ and  Hg2+. UV–Vis and emission spectra of probe 4 and polymer P (10 µM) were 
recorded in aq. HEPES buffer (10 mM)–acetonitrile (1:1, v/v; pH 7.2) medium. The prepared stock solutions of 4 
and P did not induce any color changes for several weeks, thus suggesting that both materials are stable at room 
temperature. As depicted in Fig. 1, probe 4 did not show any UV–Vis or emission spectral band beyond 500 nm 
in absence of any metal ion.

This complete absence of any absorption or emission band in the visible region of the spectrum accounts for 
the colourless nature in the aqueous solution, hence, strongly confirming that probe 4 is solely in the spirolactam 
form at neutral condition. This was further confirmed by the 13C NMR spectrum, in which a peak appeared 
at  ~ 67.07 ppm corresponding to the tertiary C-atom of probe 4 (Fig. SI 9). Among the tested metal ions, probe 
4 exhibited a large spectral response upon binding with  Al3+. The UV–Vis spectra showed a distinct change 
with the appearance of a new absorption band at λmax = 563 nm with a visually detectable colour change from a 
colourless solution to a pink solution (Fig. 1a). The appearance of new band in the visible region demonstrates 
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the formation of xanthene framework spawned upon opening of the spirolactam ring due to the complex forma-
tion by metal ion chelation. This was confirmed by the 13C NMR spectrum, in which the peak at δ = 67.07 ppm 
corresponding to tertiary carbon signal had disappeared upon addition of  Al3+ to probe 4 in  CDCl3 solvent (Fig. 
SI 9). This signified the formation of the acyclic xanthene form. Selective binding of 4 to  Al3+ among other metal 
ions was investigated by using fluorescence spectroscopy (Fig. 1b). Among the tested metal ions, a new strong 
emission band λmax at 584 nm appeared only for  Al3+ upon excitation at λExt = 525 nm. Thus, the new emission 
band observed at 584 nm could be ascribed to the binding of  Al3+ to probe 4.

The binding behaviour of  Al3+ towards 4 was evaluated from the systematic UV–Vis and fluorescence titration 
experiments (Fig. 2). The Benesi‐Hildebrand (B-H) plot 1/(A –  A0) and or 1/(F –  F0) against 1/[Al3+] was linear 
(Fig. 2a,b inset), showing an  R2 value to be 0.9954,56. This linear fit confirms the 1:1 ratio binding stoichiometry 
between the probe 4 and  Al3+ and the associated binding constant for the formation of 4.  Al3+ concentration 
was evaluated from the data obtained from B-H plots of the systematic absorption to be Ka

Abs = 3.5 × 104 M−1 and 
emission Ka

Ems = 3.6 × 104 M−1 spectral titrations. In addition, the binding ratio was confirmed using the result 
from the Job plot obtained from the UV–Vis titration  experiments54.

Figure 3a illustrates the Job plot indicating the maximum mole fraction of Al(NO3)3 to be 0.5 and reveals the 
binding of probe 4 to  Al3+ in 1:1 stoichiometric ratio. The lower limit of detection (LOD) of probe 4 for  Al3+ [3σ/
slope] (using data obtained from fluorescence titration) was found to be 2.1 µM, which is lower than the value 
set by the World Health Organization (WHO) in drinking water of 200 μg L−1 (7.41 µM)7. To examine the role 
of probe 4 as a pH sensor, fluorescence spectra for probe 4 was recorded (λExt = 525 nm) at different pH ranges. 
The results of the study revealed that the spirocyclic form of probe 4 is relatively stable in the pH range 5.5 to 9.0 

Scheme 1.  Synthetic route to probe 4 and polymer P.

Figure 1.  Changes in (a) absorption and (b) emission spectra (λExt of 525 nm; slit = 2.5/2.5 nm) of the probe 
4 (10 µM) in the absence and the presence of different metal ions (0.9 mM).  (Mn+  = Na+,  K+,  Mg2+,  Ca2+,  Ba2+, 
 Cu2+,  Ni2+,  Zn2+,  Cd2+,  Co2+,  Fe2+,  Cr3+,  Pb2+,  Al3+ and  Hg2+) in aq. HEPES buffer-acetonitrile (1:1, v/v; pH 7.2) 
medium.
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(Fig. 3b). This further confirms that the luminescence in response to 584 nm is only due to the specific binding 
of the probe 4 to  Al3+. To have a better insight into the possible binding mechanism of probe 4 towards  Al3+, IR 
spectra was also recorded in absence and presence of  Al3+. Stretching frequencies for the C=O (imide) and C=O 
(amide) groups of probe 4 appeared at ~ 1692 and ~ 1676 cm−1. Upon addition of  Al3+, the band at 1676 cm−1 
corresponding to C=O (amide) disappeared and another band at ~ 1692 cm−1 remained almost invariant upon 
binding of  Al3+ to probe 4. This tend to leave us with an impression that C=O (imide) of the probe 4 was not 
involved in the coordination with  Al3+ (Fig. SI 11).

Next, we turned our attention to the sensing behaviour of polymer P, which was obtained from probe 4 via 
ROMP approach. The selective binding of the polymer P towards metal ions  Mn+  = Na+,  K+,  Mg2+,  Ca2+,  Ba2+, 
 Cu2+,  Ni2+,  Zn2+,  Cd2+,  Co2+,  Fe2+,  Cr3+,  Pb2+,  Al3+ and  Hg2+ was also investigated using UV–Vis and fluorescence 
studies (Fig. 4a,b). The spectra recorded for polymer P, and P + Mn+  (Mn+  = metal ions except  Al3+) did not show 
any change in the absorbance and fluorescence spectra at λExt = 525 nm.

In addition, the  Ru4+ metal in [HG2] complex did not induce spirolactam ring opening, it only played a cata-
lytic role in the ROMP reaction. To the best of our knowledge, this is first report in the literature that describes 
rhodamine B appended polymer synthesized via ROMP for sensing of  Al3+ ions. Similarly to probe 4, polymer P 
also illustrated sharp changes in the electronic and emission spectra in the presence of  Al3+ at λ = 563 and 584 nm, 
respectively. In addition, polymer P is also invariant to pH in the ranges of 5.5 to 9.0 (Fig. SI 12). Reversible bind-
ing of  Al3+ to polymer P was also established with the restoration of the original absorption or emission spectra 
of polymer P by treating solution P and  Al3+ with excess  Na2EDTA (Fig. SI 13).  EDTA2− is a strong chelating 
agent and known to have a much higher affinity (pKa = 23.6 in aq. medium) toward  Al3+. Addition of  EDTA-2 to 
the resulting P-Al3+ complex solution led to an immediate decrease in the intensity of absorption and emission 
band at 563 and 583 nm respectively, indicating the reversible binding nature of the sensor.

Interestingly, LOD of polymer P for  Al3+ detection was found to be 0.5 µM, which is four folds lower than that 
of probe 4. This confirms that polymer P has a higher sensitivity towards  Al3+ detection than probe 4. In addition, 
intervention studies in the presence of excess metal ions:  Al3+ (1:1) were carried out to ensure that both probe 
4 and polymer P have a stronger binding affinity towards  Al3+ even in the presence of higher concentrations of 
other competing metal ions (Fig. SI 17). Rhodamine derivatives are also acts as photoactivatable photochromic 

Figure 2.  Systematic changes in (a) absorption and (b) emission (λExt = 525 nm; slit width 2.5/2.5 nm) spectral 
patterns for 4 (10 µM) in the presence of varying  [Al3+] (0–80 µM); Inset Benesi-Hildebrand plot of 4 obtained 
from UV–Vis and fluorescence titration.

Figure 3.  (a) Job plot between 4 and  Al3+ confirmed 1:1 adducts. (b) Fluorescence response of 4 (10 µM) as a 
function of pH in acetonitrile-aqueous buffer (1: 1, v/v).
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systems under certain light conditions after being complexed with certain metal  ions57,58. In this system, we did 
not observe any color change after addition of metal ions to the solutions of 4 and P under day light conditions 
for few days except for  Al3+ ion. Suggests that spirolactum ring of 4 and P are in closed form.

After confirming in fact that the both 4 and P have a stronger binding specificity to  Al3+ in comparison to the 
other metal ions, we next evaluated the distribution and behaviour of probe 4 in three different cell lines: human 
embryonic kidney cells (HEK 293), a breast cancer cell line (MCF-7) and a cervical cancer cell line (HeLa). Cells 
were loaded with 25 μM of probe 4 and then washed to remove the excess probe.

Cells were then either left untreated or further treated with  Al3+ (50 µΜ) to assess whether the probe can 
detect  Al3+ in vivo. Intracellular emission of probe 4 was visualized on a scanning confocal platform using the 
λExt = 561 nm laser line for excitation. Interestingly, all cell lines showed bright red intracellular emission even 
in absence of  Al3+ (Fig. 5a). Furthermore, no changes in emission was observed for 4 after  Al3+ addition (not 
illustrated). These observations argue that the emission detected in cells is not due to the binding of  Al3+, espe-
cially since the levels on free intracellular  Al3+ are not expected to be high and that the affinity of 4 towards  Al3+ 
is relatively low. This argues that the basal labelling of intracellular organelles is not  Al3+ dependent but rather 
is an inherent property of the probe 4. The organelle labelling was distinct from that expected for the endoplas-
mic reticulum or mitochondria and was rather more indicative of lysosomes in all three-cell lines (Fig. 5a). To 
directly test whether the probe localizes specifically to lysosome, we labelled the cells with the probe 4 and 0.5 μM 
of Lysotracker Blue DND-22, a specific probe for the lysosome. As illustrated in Fig. 5b the same intracellular 
structures were labelled by probe 4 and by the lysosomal indicator.

This confirmed that probe 4 specifically labels lysosomes. Following these findings, we next assessed the 
behaviour of polymer P in a cellular environment. As illustrated in Fig. 6a, the staining pattern observed for P 
was very similar to probe 4 showing a dotted/vesicular pattern that colocalizes with the lysosomal marker. We 
quantified this colocalization by measuring the Pearson’s correlation coefficient (PCC, Fig. 6b) among the probes, 
specific staining of the nuclei (Hoechst) and of the lysosome (Lysotracker). Both probes show no colocalization 
(PCC values close to 0 or in the negative range) with the nuclei marker while having significant and comparable 
colocalization values with the lysosomes (PCC = 0.45 ± 0.04 for probe 4 and 0.42 ± 0.05 for P, mean ± S.E.M, 
n = 10)59. By using a lambda scan (sliding emitted wavelength window of 9 nm from 550 to 695 nm), we measured 
the emission intensity of probe 4 and P in vivo under excitation at 561 nm. As indicated in Fig. 6c there was no 
measurable difference in the optical properties of the two probes. We also measured the decay of fluorescence 
intensities for both probe 4 and P by treating with UV flash (5 s) during cell imaging experiments (Fig. SI 18).

Lysosomes are characterized by a low intraluminal pH about pH 4.5 to 5.0, as compared to the more neutral 
cytoplasmic pH. Given the known pH sensitivity of 4 we reasoned that probe 4 could be labelling lysosomes 
specifically because it has inherent pH sensitivity that stimulates its fluorescence. As shown in Fig. 3b, emission 
intensity of 4 increased dramatically at pH values ≤ 5.0, which is the typical lysosomal pH range (~ 4.5–5.0). These 
results confirm that probe 4 functions as a lysosomal marker with good cellular permeability. In these cellular 
labelling studies 5–25 µM of probe 4 were used to label the cells, those concentrations were well tolerated by the 
cells and displayed no obvious cellular toxicity.

Conclusions
In summary, oxo-norbornone monomer bearing rhodamine B group 4 was synthesized and characterized. 
ROMP of 4 afforded polymer P in good yields. Both 4 and P demonstrated their selectivity for  Al3+ over other 
metal ions. The UV–Vis and luminescence properties of 4 and P in solution were evaluated in detail. We have 
also evaluated the distribution and behaviour of probe 4 in three different cell lines: human embryonic kidney 
cells (HEK 293), a breast cancer cell line (MCF-7) and a cervical cancer cell line (HeLa). In addition, the staining 
pattern observed for P was very similar to probe 4 showing a dotted/vesicular pattern that colocalizes with the 
lysosomal marker. Intracellular emission of 4 and P was visualized on a scanning confocal platform using the 
λ = 561 nm laser line for excitation. Interestingly, all cell lines showed bright red intracellular emission even in 

Figure 4.  Changes in (a) absorption and (b) emission spectra (λExt of 525 nm; slit = 2.5/2.5 nm) of P (5 µM) in 
absence and presence of different metal ions (0.45 mM).
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absence of  Al3+. The UV sensitivity of both molecules suggest that they can be used to track single particles in 
the cells following photo-activation to reveal the spatiotemporal dynamics of lysosomes.

Received: 10 September 2020; Accepted: 28 October 2020

Figure 5.  (a) Labelling of three cell types (HEK293, MCF-7 and HeLa, indicated on the left) by 25 µΜ of probe 
4. The overall structure of the cell is illustrated on the left using scattered laser light to generate a bright field 
image (BF), the fluorescence emitted by probe 4 is shown in red and the nuclei stained with Hoechst in blue. (b) 
Co-staining of HeLa cells with probe 4 (5 µΜ, red) and Lysotracker (0.5 µΜ, green). The yellow pattern in the 
merged image illustrates the co-localization of the two dyes.
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