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Exploring blood alterations 
in chronic kidney disease 
and haemodialysis using 
metabolomics
Yoric Gagnebin1,2,5, David A. Jaques 3,5*, Serge Rudaz1,2,4, Sophie de Seigneux3, 
Julien Boccard1,2,4,5 & Belén Ponte3,5

Chronic kidney disease (CKD) is characterized by retention of uremic solutes. Compared to patients 
with non-dialysis dependent CKD, those requiring haemodialysis (HD) have increased morbidity 
and mortality. We wished to characterise metabolic patterns in CKD compared to HD patients using 
metabolomics. Prevalent non-HD CKD KDIGO stage 3b–4 and stage 5 HD outpatients were screened 
at a single tertiary hospital. Various liquid chromatography approaches hyphenated with mass 
spectrometry were used to identify 278 metabolites. Unsupervised and supervised data analyses were 
conducted to characterize metabolic patterns. 69 patients were included in the CKD group and 35 in 
the HD group. Unsupervised data analysis showed clear clustering of CKD, pre-dialysis (preHD) and 
post-dialysis (postHD) patients. Supervised data analysis revealed qualitative as well as quantitative 
differences in individual metabolites profiles between CKD, preHD and postHD states. An original 
metabolomics framework could discriminate between CKD stages and highlight HD effect based 
on 278 identified metabolites. Significant differences in metabolic patterns between CKD and HD 
patients were found overall as well as for specific metabolites. Those findings could explain clinical 
discrepancies between patients requiring HD and those with earlier stage of CKD.

Metabolomics is a systems biology approach aiming at identifying and quantifying metabolites in a given biologi-
cal  sample1. As metabolites can be seen as final products of physiological homeostasis, metabolomics comple-
ments other “omics” techniques in an attempt to phenotypically characterize an entire biological  system1,2. The 
main analytical techniques used in chronic kidney disease (CKD) metabolomics are nuclear magnetic resonance 
spectroscopy (NMR) and mass spectrometry (MS) usually preceded by a separation technique such as liquid 
chromatography (LC–MS), gas chromatography (GC–MS) or capillary electrophoresis (CE-MS)3. Since no single 
approach can provide exhaustive metabolome coverage, new workflows combining different chromatographic 
separation modes have recently received strong  interest4. Most CKD metabolomics studies relied on reversed 
phase liquid chromatography (RPLC), which offers effective separation and retention for relatively non-polar 
metabolites 5,6. The exclusive use of this method however might introduce bias towards lipophilic metabolites to 
the detriment of polar metabolites of high significance, such as amino  acids7. Hydrophilic interaction chromatog-
raphy (HILIC) has recently become increasingly popular to analyse polar metabolites and several studies showed 
its potential to enhance metabolome coverage and its viability as a CKD chromatographic separation  mode3,7,8.

CKD is a worldwide health burden with an estimated global prevalence of 11% to 13% that is associated with 
an increased risk of all-cause and cardiovascular  mortality9,10. Small molecules that accumulate in CKD and 
exert detrimental biological activity are termed uremic toxins and are thought to contribute to  mortality11. Other 
characteristic features of CKD such as catabolism as well as disturbances in amino acid and lipid metabolism 
might also contribute to adverse  outcomes12–14. As a consequence of CKD, over two million patients are treated 
with haemodialysis (HD)  worldwide15. While HD is designed to restore solutes and volume homeostasis, mortal-
ity universally increases early after dialysis initiation and non-HD CKD patients maintain considerably lower 
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overall mortality risk compared to patients requiring  HD16,17. A global understanding of the impact of HD on 
the metabolic disarray characterising CKD is thus pivotal in order to fully characterise the clinical trajectories 
of those patients and potentially improve therapeutic strategies. However, while several metabolomics stud-
ies included HD patients, most did not analyse the impact of dialysis itself or did not describe CKD patients 
 concomitantly5,18–22. As such, the impact of HD on metabolic profiles in CKD patients has not been thoroughly 
described.

In the present study, we present an original metabolomics workflow based on a combination of RPLC and 
HILIC separation modes in order to enhance metabolome coverage. We apply this strategy to the study of CKD 
as well as HD patients. Our main goal was to characterise the impact of HD on blood metabolic patterns, while 
considering CKD patients not requiring dialysis as a reference point. We hypothesized that HD patients would 
present substantial differences in metabolic profiles as compared to non-HD CKD patients, thereby potentially 
explaining clinical specificities encountered in daily practice.

Materials and methods
Participants’ selection. We performed an observational monocentric study at a tertiary hospital (Geneva 
Univerisity Hospitals, Geneva, Switzerland). Participants were prevalent non-HD CKD patients (CKD group) 
followed by nephrologists at the hospital outpatient clinic as well as CKD patients undergoing chronic in-hospi-
tal HD (HD group). The aim was to include at least 50 + /− 10 patients in the CKD group and 30 + /− 5 patients 
in the HD group. Inclusion criteria were: age ≥ 18 years, able to provide informed consent, CKD KDIGO stage 
3b–4 (eGFR 44 —15 mL/min/1.73  m2) for the CKD group or stage 5 (< 15 mL/min/1.73 m2) currently on HD for 
the HD group. Patients in the HD group had to be on chronic HD for at least 3 months on a standard regimen of 
4 h, 3 times per week. For samples processing reasons, we only included patients dialysed in the morning shift. 
Incapacity to give consent and pregnancy were the only exclusion criteria. Patients in the CKD group have been 
explored in a previous manuscript describing the detailed analytical  protocol23.

Dialysis characteristics. All participants in the HD group received post-dilution haemodiafiltration with 
high-flux filters. Dialysate solutions were standard with isonatremic sodium concentration, ionized calcium of 
1.5 mmol/L, bicarbonate of 31 mmol/L and potassium of 3 mmol/L. The investigators did not interfere with 
dialysis prescription, and ultrafiltration was left to the clinician consideration.

Sample preparation and analysis. Clinical and demographic variables were collected at inclusion. All 
plasma samples were collected at the same time in the morning in fasting patients. For patients in the HD group, 
samples were drawn before (preHD group) and after (postHD group) dialysis in each participant on the mid-
week session. All samples were directly thawed, aliquoted and stored at − 80 °C. Samples were randomly ana-
lysed in 4 batches. A series of 15 quality control (QC) injections was carried out at the beginning of each batch 
for system conditioning. Solvent blanks were injected within each acquisition sequence to assess potential car-
ryover effects, while standard mixtures were used to ensure mass accuracy. QC and diluted QC (dQC) samples 
were injected for data filtering, analytical variability evaluation and normalization (1 injection every 6 samples). 
Creatinine levels were measured locally according to clinical need, on the same day as the other samples for 
metabolomic measurements. Glomerular filtration rate was estimated (eGFR) using Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI)  formula24.

Metabolomics analysis. A detailed description of the analytical protocol, which is briefly summarized 
here, was previously  published23. Sample preparation included protein precipitation carried out using cold meth-
anol spiked with isotopically labelled standards, and centrifugation. Chromatography was performed on a Waters 
H-Class Acquity UPLC system composed of a quaternary pump, a column manager and an FTN auto sampler 
(Waters Corporation, Milford, MA, USA). A Phenomenex Kinetex C18 column (150 × 2.1 mm, 1.7 µm), preceded 
by a SecurityGuard ULTRA pre-column, was used for RPLC separation. A Waters Acquity BEH Amide column 
(150 × 2.1 mm, 1.7 µm) preceded by a VanGuard pre-column was used for HILIC separation with amide-bonded 
stationary phase (aHILIC), while a Merck SeQuant Zic-pHILIC column (150 × 2.1 mm, 5 μm) and appropriate 
guard kit was applied for HILIC separation with polymeric zwitterionic stationary phase (ZICpHILIC). Samples 
were randomly analysed in 4 batches. QC and dQC samples were injected for data filtering, analytical variability 
evaluation and normalization (1 injection every 6 samples). The Waters H-Class Acquity UPLC system was 
coupled to a maXis 3G Q-TOF high-resolution MS (full sensitivity resolution of > 40,000) from Bruker (Bruker 
Daltonik GmbH, Bremen, Germany) with an electrospray ionization source working in positive (ESI+) or nega-
tive (ESI−) mode. Data between 50 and 1000 m/z were acquired in profile mode at a rate of 2 Hz.

Data processing and analysis. Data processing was performed using Progenesis QI 2.3 (Nonlinear 
Dynamics, Waters, Newcastle upon Tyne, UK). Data filtering was carried out by applying a threshold of the 
dQC/QC ratio relative standard deviation (RSD) of 50% and a dQC/QC ratio between 0.2 and 0.8. QC-based 
LOESS regression was used for intra- and inter-batch normalization. Metabolite identifications with the high-
est level of confidence (i.e. level 1) were achieved using an in-house library containing experimental data from 
more than 900 authentic standards acquired in the same chromatographic  conditions25,26. Level 1 annotation was 
obtained by comparing m/z values, retention times, and isotopic patterns, with confirmatory information from 
collisional cross-section values and MS/MS spectra. A score of analytical quality including intensity, peak shape, 
and retention time was used when a given metabolite was identified using more than one  technique27. This 
annotation workflow led to a dataset of 278 identified metabolites. Unit variance scaling was applied to stand-
ardize the dataset and avoid any influence of intensity range on the observed differences. Principal component 
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analysis (PCA) and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) models with 
unit variance scaling were computed using SIMCA-P 15.0 software (Umetrics, Umea, Sweden). The supervised 
analysis of independent observations collected from different patients was carried out using standard OPLS-DA. 
ANOVA multiblock OPLS (AMOPLS) analysis was computed for the supervised analysis of paired observa-
tions involving repeated measurements. In that context, a multilevel strategy was implemented to account for 
this aspect, by separating within- from between-individuals sources of  variability28. AMOPLS was computed 
after unit variance scaling as previously described under the MATLAB 8 environment (The MathWorks, Natick, 
USA)29. Random permutations of the response matrix were used to validate each model by simulating data 
under the null hypothesis (n = 1000). Models interpretation was based on scores to assess sample groupings and 
loadings to interpret directions of variation. Shared and Unique structure (SUS) plot was used to compare vari-
able loadings between OPLS and AMOPLS models. Leave-one-out cross-validation was carried out to assess the 
predictive ability of the models  (Q2).

Complementary univariate comparisons between preHD and postHD was carried out using paired t-test and 
the linear step-up procedure introduced by Benjamini and Hochberg was applied to estimate the Flase Discovery 
Rate for computing q-values30.

Ethical statement. All patients included in this study provided informed consent. This study was approved 
by the local ethics committee (Commission cantonale d’éthique de la recherche (CCER), Geneva, Switzerland) 
and performed according to the Declaration of Helsinki.

Results
We included 69 patients with CKD stage 3b or 4 (CKD group) and 35 on dialysis (HD group). As pre-sessional 
(preHD group) as well as post-sessional (postHD group) samples were drawn, 139 observations were obtained 
in total. Patients’ characteristics are described according to CKD versus HD group in Table 1. The median age of 
our population was 67.6 (58.1–75.0) years. Most patients were Caucasians (n = 82, 78.8%), males (n = 82, 78.8%) 
with cardiovascular risk factors such as diabetes (n = 51, 49.0%), hypertension (n = 89, 85.6%) and dyslipidaemia 
(n = 63, 60.6%). Characteristics were similar between CKD and HD patients, except for hypertension treatment, 
which was less prevalent in HD group. Median eGFR was 32.7 (18.3–46.8) mL/min/1.73m2 in CKD patients.

Sample collection was carried out under satisfactory conditions in terms of both quantity and quality, leading 
to a data matrix without any missing values or incomplete samples. The complete list of identified metabolites 
with descriptive statistics and biochemical information is provided as Supplementary Table S1.

Unsupervised analysis (PCA). As a first step, PCA was carried out on all 139 samples to gain an overview 
of the collected data. On a patient level, the PCA score plot (Fig. 1A) showed clear clustering of the three patient’s 
groups (CKD, preHD and postHD) according to the first two principal components  (t1 and  t2).  t1 explained 
22.9% of the total variability, mainly highlighting metabolic patterns differentiating preHD from the two other 
groups. Moreover, CKD and postHD patients were clearly separated according to  t2 explaining 7.3% of the total 
variability. The overall impact of considered clinical characteristics on the distribution of metabolic profiles was 
assessed using PCA and no significant trend was found (Supplementary Fig. S1).

The corresponding loading plot was investigated to assess metabolite contributions to the observed trends. 
Higher levels of most of the 278 identified metabolites were associated with large positive loading values on the 
first principal component  (p1), thus illustrating a marked trend of accumulation in preHD samples compared to 
the two other groups (Fig. 1B). Moreover, smaller subsets of metabolites associated with large positive or nega-
tive loading values on the second principal component  (p2) were highlighted. These compounds may constitute 
specific CKD or postHD patterns and further investigations were therefore carried out using supervised analysis 
to distinguish specific metabolic signatures associated with each group.

Supervised analysis (OPLS-DA and AMOPLS). A first supervised model was evaluated to assess meta-
bolic differences between CKD and preHD groups. Leave-one-out cross-validation showed the high prediction 
ability of the model  (Q2 = 0.89). Accordingly, the two groups were clearly separated on the score plot (Fig. 2A).

The HD effect was then specifically investigated using the subset of 70 samples collected from 35 HD patients 
before (preHD) and after (postHD) dialysis. For that purpose, AMOPLS was implemented using a response 

Table 1.  Participants characteristics. Continuous variables are presented as median (interquartile range) and 
non-parametric Mann–Whitney test was conducted for comparison. Categorical data are reported as numbers 
and proportions (%) and Fisher exact test was used for comparison. A threshold of p < 0.05 was considered 
statistically significant and indicated as bold value. CKD, chronic kidney disease; HD, haemodialysis.

Characteristics CKD (N = 69) HD (N = 35) P value

Age 67.1 (60.0–74.0) 70.0 (58.1–76.1) 0.55

Gender (Male) 57 (82.6%) 25 (71.4%) 0.21

Treated Dyslipidaemia 44 (63.8%) 19 (54.3%) 0.35

Treated Diabetes 31 (44.9%) 20 (57.1%) 0.30

Treated Hypertension 65 (94.2%) 24 (68.6%)  < 0.001

Body Mass Index 28.9 (24.5–32.9) 26.9 (22.1–30.8) 0.06
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design matrix involving (1) the Patient factor (35 levels), and (2) the Haemodialysis factor (2 levels). ANOVA 
decomposition revealed that inter-individual differences related to the Patient factor accounted for 57.8% of the 
total variability, metabolic alterations due to Haemodialysis for 22.2% and unexplained residuals for the remaining 
20%. Permutation tests confirmed the validity of an optimal AMOPLS model with three latent variables (p < 0.015, 
tp1 predictive of Haemodialysis, tp2 predictive of Patient and to summarizing orthogonal variability), while the 
two main effects were found significant (Patient p < 0.001 and Haemodialysis p < 0.001). Samples collected from 
HD patients before (preHD) and after (postHD) dialysis were clearly separated on  tp1 (Fig. 2B). Loadings associ-
ated with each metabolite with corresponding bootstrap 95% confidence intervals for the AMOPLS model are 
represented in descending order in Supplementary Fig. S2. As a complement, univariate comparisons between 
preHD and postHD were carried out and summarized using a Volcano plot in Supplementary Fig. S3.

Interpretation was then carried out by putting a specific focus on metabolites contributions using a SUS plot 
combining differences between (1) preHD and CKD groups as well as (2) preHD and postHD  groups28. For that 
purpose, loading values from both models were scaled as correlation coefficients (i.e. pcorr) and combined on 
X-axis and Y-axis, respectively. As such, common metabolic trends could be clearly visualized, while specific 
metabolite behaviours were also highlighted (Fig. 2C). Metabolites with comparable loading pcorr values in both 
models exhibited similar variations across considered disease states (shared structure on the [(− 1;− 1), (+ 1; + 1)] 
diagonal),while metabolites with different trends varied specifically to a given situation (unique structure out-
side the diagonal). Coordinates of individual identified metabolites on the SUS plot are given in Supplementary 
Table S1.

Individual metabolites description. Investigation of specific metabolites was then carried out to go 
beyond the overall description of these global patterns. Specific metabolites were selected for illustrative pur-
poses based on their position on the SUS plot (Fig. 2C) when considered clinically relevant. The latter offers a 
summary of differences observed between disease states (i.e. CKD, preHD and postHD). Selected metabolites 
accumulating in preHD compared to CKD and significantly cleared by HD are illustrated in Fig. 3. Selected 
metabolites with qualitatively distinct patterns regarding accumulation in preHD and clearance in HD are illus-
trated in Fig. 4.

Discussion
In this study, an original metabolomics workflow combining different chromatographic separation modes was 
implemented to characterise metabolic profiles of CKD patients as well as the effect of HD on those profiles. 
Using such an approach, metabolic alterations effectively discriminating CKD stages and highlighting various 
effects of HD treatment were described among profiles composed of 278 identified metabolites.

Severity of CKD represented the main source of variability in our dataset (Fig. 1A), with preHD patients 
clearly standing out from CKD and postHD patients. These results suggest that HD treatment effectively allows 
patients to recover a metabolic profile closer to that of earlier stage of renal disease. However, a specific shift of 
the metabolic profile was also observed after dialytic therapy that could not be found in endogenous alteration 

Figure 1.  Unsupervised PCA results based on 278 identified metabolites (N = 139). (A): Score plot of individual 
patients. (B): Loading plot of individual metabolites. Abbreviations: PCA, principal component analysis; CKD, 
chronic kidney disease; preHD, before haemodialysis; postHD, after haemodialysis.
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Figure 2.  Supervised analysis results based on 278 identified metabolites. (A): OPLS-DA results (N = 104). (B): 
AMOPLS results (N = 70). (C): SUS plot (N = 139). (1) 5′-methylthioadenosine, (2) creatinine, (3) arabinose, (4) 
formylmethionine, (5) n-acetylmethionine, (6) myo-inositol, (7) N-acetylleucine, (8) 5-hydroxytryptophan, (9) 
indoxyl sulfate, (10) kynurenic acid, (11) 5a-DHT-17b-glucuronide, (12) cortisol 21-acetate, (13) 1-oleoyl-rac-
glycerol, (14) gamma-linolenic acid, (15) biliverdin, (16) keto-isoleucin, (17) tryptophan, (18) guanidoacetic 
acid, (19) carnitine, (20) uric acid. Abbreviations: OPLS-DA, orthogonal projections to latent structures-
discriminant analysis; AMOPLS, ANOVA multiblock OPLS; SUS, shared and unique structure; CKD, chronic 
kidney disease; preHD, before haemodialysis; postHD, after haemodialysis.

Figure 3.  Box-plots of selected metabolites accumulating in preHD and significantly cleared by HD (N = 139). 
Abbreviations: preHD, before haemodialysis; CKD, chronic kidney disease; HD, haemodialysis; postHD, after 
haemodialysis.
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of kidney function. A first overall assessment of individual metabolites contribution (Fig. 1B) revealed that no 
uniform shift in concentration could explain differences between CKD and preHD states. On the contrary, some 
metabolites were found to be increased in preHD as compared to CKD, while the opposite was true for other 
metabolites. Globally, differences could thus be readily observed in dialytic compared to endogenous clearance 
of various molecules.

In order to characterise biological patterns associated with specific disease states, supervised models were 
compared (Fig. 2C). Similar to uremic solutes considered in clinical practice, most identified metabolites 
increased in preHD compared to CKD and were efficiently cleared in postHD. While creatinine was obviously 
found in this group, other metabolites of interest with a similar behaviour could also be highlighted (Fig. 3). 
As such, N-acetyl amino-acids (e.g. N-acetylmethionine and N-acetylleucine) also belonged to this group. A 
correlation between renal function and some amino-acids has been previously reported and our findings would 
globally reinforce the hypothesis of N-acetylation as a detoxification mechanism in  CKD31. Arabinose, 5′-meth-
ylthioadenosine, formylmethionine and myo-inositol have all previously been highlighted as uremic  solutes32. 
Finally, 5-hydroxytryptophan, an amino-acid derived from tryptophan and a direct precursor of serotonin, 
also showed a similar metabolic profile across disease states. Globally, on a clinical point of view, metabolites 
presenting such a pattern could potentially represent toxic uremic solutes while also being candidate to provide 
assessment of kidney function or dialysis dose.

Several metabolites presented other specific profiles across disease states of clinical interest. First, while 
indoxyl sulfate and kynurenic acid displayed a metabolic profile qualitatively similar to creatinine, important 
quantitative differences were highlighted, as HD was not merely able to restore concentrations comparable 
to those of CKD patients (Fig. 3). This pattern would imply that patients requiring HD have significantly and 
persistently higher concentrations of those molecules compared to patients suffering from earlier stage CKD. 
Indoxyl sulfate is synthetized in the liver from indole, which is produced by the intestinal flora as a metabolite 
of  tryptophan33. While being intrinsically a small molecular weight molecule, indoxyl sulfate is recognized as a 
protein-bound uremic  toxin34. This metabolite has been reported to promote endothelial dysfunction by induc-
ing oxidative stress in vitro35. It has also been shown to impair osteoblast function and promote abnormalities 
in bone  turnover36. Indoxyl sulfate also experimentally induces the progression of glomerular sclerosis and renal 
 failure37. Finally, this metabolite could play a role in the central nervous system dysfunction as it is thought to 
accumulate in the  brain38. The sustained high levels of indoxyl sulfate in HD patients could thus participate to 
typical complications of this population such as cardiovascular events, bone mineral disease, decline of residual 
kidney function and cognitive impairment. Kynurenic acid, a product of tryptophan metabolism, has also been 
recognized as a protein-bound uremic  toxin34. It is known to inhibit glutamatergic transmission in the mam-
malian brain and has neuroprotective and anticonvulsive properties in animal  models39. However, increased 
levels of kynurenic acid could underlie cognitive decline in certain conditions as increased metabolism of this 
molecule has been described in Alzheimer’s disease, Down’s syndrome and Huntington  disease39. Among HD 
patients, prevalence of cognitive impairment is extremely high and can reach 70%40. While microvascular disease 
is a major factor contributing to this phenomenon, it is also possible that retained uremic toxins contribute to 
this impairment, even in patients receiving adequate dialysis dose based on conventional urea kinetic  model40. 
As with indoxyl sulfate, persistent elevated concentrations of kynurenic acid despite adequate HD prescription 
could contribute to this clinical burden.

Figure 4.  Box-plots of selected metabolites with distinct patterns regarding accumulation in preHD and 
clearance in HD (N = 139). Abbreviations: preHD, before haemodialysis; HD, haemodialysis; CKD, chronic 
kidney disease; postHD, after haemodialysis.
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Other metabolites displayed patterns of interest (Fig. 4). Guanidoacetic acid is synthetized in the proximal 
convoluted tubule of the kidney by transaminidation from arginine to glycine prior to conversion into creatine 
in the liver and its concentration is consequently reduced in  CKD41. While highlighted as a component of human 
metabolism decades ago, guanidoacetic acid has regained attention in the past years as its supplementation 
was reported to favourably affect muscle health in rats as well as healthy volunteers and patients suffering from 
 CKD42,43. We found that the concentration of guanidoacetic acid further decreased after dialysis thus contribut-
ing to profound depletion in patients requiring renal replacement therapy, a population where muscle wasting 
notably contributes to frailty and  morbidity44. This highlights the non-selective dialytic removal of potentially 
useful biological compounds that may contribute to the high morbi-mortality of HD patients. Carnitine is 
crucial for energy production in tissues dependent on fatty acid oxidation such as cardiac and skeletal  muscle45. 
While it accumulates in CKD due to decreased renal clearance, most HD patients exhibit carnitine deficiency 
as a result of non-selective dialytic  losses45. Our results confirm a major impact of dialytic removal on carnitine 
levels as HD patients exhibited significantly lower concentrations than CKD patients, despite lower or abol-
ished kidney function. Carnitine depletion in chronic HD patient was thus linked to adverse manifestations 
and regular supplementation is often  advised45. As for carnitine, uric acid tends to accumulate in CKD to due 
reduced renal clearance but hyperuricemia is also thought to contribute to the development and progression of 
 CKD46. Our findings indicate a similar profile for uric acid compared to carnitine with efficient dialytic clear-
ance and decreased overall levels in HD compared to CKD patients. In contrast to carnitine metabolism, such a 
pattern could however prove beneficial in this case by mitigating the adverse consequences of elevated uric acid 
levels although evidences are  sparse46. The first rate-limiting step of the kynurenine pathway is the production 
of kynurenine from tryptophan by the enzyme indoleamine dioxygenase 1 (IDO1)47. IDO1 activity has been 
found to be increased in CKD leading to decreased levels of tryptophan in renal  disease48. As the kynurenine 
pathway is linked to systemic inflammation, a recent study found that reduced levels of tryptophan associated 
with incident cardiovascular disease in CKD patients even when adjusting for traditional risk  factors47. Moreo-
ver, it has been postulated that lower levels of tryptophan in CKD patients would decrease melatonin synthesis 
thus offering a plausible explanation to the poorly understood CKD-associated fatigue  phenomenon49. In our 
study, we show that tryptophan levels, while not lowered by dialysis itself, are further reduced in HD compared 
to CKD patients thus potentially contributing to explain the high cardiovascular risk of HD patients as well as 
the efficiency of melatonin to improve sleep disturbances in this  population50. Low protein diet combined with 
ketoacid analogues has been advocated to preserve renal function and reduce uremic toxins production in CKD 
 patients51. We show that keto-isoleucin, a typical compound of such supplements, is not depleted by dialysis but 
is still found in significantly lower amount in HD compared to CKD patients. Thus, while evidences are currently 
lacking, this would support an interesting role for ketoacid supplementation in HD patients. As a group, steroid 
glucuronides (e.g. 5α-DHT-17β-glucuronide) showed a distinctive pattern as they dramatically increased with 
decline in renal function but were not cleared by dialysis. This is in agreement with an accumulation of phase 
2 glucuronidated metabolites in renal  failure52. Other steroid compounds (e.g. cortisol 21-acetate) showed a 
similar profile. From a clinical standpoint, although inter-individual variation should be first characterized, 
metabolites with such a profile would constitute ideal candidates to estimated residual kidney function while 
on renal replacement therapy.

Based on our results, hypotheses regarding the impact of metabolites physicochemical properties on dia-
lytic removal can be formulated. As expected, molecules with low molecular weight (< 300 Da) and high water 
solubility (> 1 g/L) (e.g. 5′-methylthioadenosine, creatinine, arabinose, formylmethionine, N-acetylmethionine, 
myo-inositol, N-acetylleucine, 5-hydroxytryptophan, carnitine and uric acid) were efficiently removed by HD. 
Molecules with similar molecular weight but lower water solubility (< 1 g/L) and negatively charged (e.g. indoxyl 
sulphate and kynurenic acid) showed decreased removal during HD, potentially owing to higher volume of 
distribution and repulsive interaction with the negatively charged HD membrane  respectively53. The steroid 
5α-DHT-17β-glucuronide, characterized by a relatively higher molecular weight (> 450 Da), lower water solubil-
ity (< 0.5 g/L) and a negative charge was virtually not removed by HD. Unlike other amino acids, tryptophan is 
largely protein-bound in serum thus preventing efficient removal by HD, as seen in our study as well as previous 
 reports5,54. Finally, concentration of some metabolites increased after HD. Theoretically, ultrafiltration-induced 
haemoconcentration or intradialytic endogenous release could explain such a finding. As HD has long been 
recognized as a catabolic process, it is plausible that per-dialytic levels of metabolites such as 1-oleoyl-rac-
glycerol and keto-isoleucine increased as a result of activated catabolic pathways of lipids and amino-acids 
 respectively5,13,55. However, reliable differentiation and quantification between endogenous metabolism and 
extracorporeal clearance was not possible in our study as it would require controlled clinical conditions as well 
as profiling of spent  dialysates5.

Our study differs from previous publications in the field. While some reports included patients requiring HD, 
several provided preHD analysis  only22,34. While other considered preHD as well as postHD samples, healthy 
control participants were usually included for comparison  purposes5,18,20,21. We, on the other hand, have aimed 
at describing global metabolic alterations in patients requiring HD as compared to CKD patients not requiring 
renal replacement therapy in order to corroborate distinct observed clinical trajectories.

Our study has limitations. While, we were able to characterise metabolic alterations in a broad range of CKD 
severity, no patient was included with an eGFR > 45 mL/min and we could not identify early markers of kidney 
dysfunction. Moreover, being cross-sectional in nature, we were able to describe metabolic patterns associated 
with certain disease states. However, whether those patterns are linked to CKD progression remained unanswered 
and will need further prospective studies.
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Conclusion
In this cross-sectional study, a novel metabolomics framework combining RPLC and HILIC chromatographic 
separation modes was implemented to offer broad metabolome coverage in CKD. This methodology generated 
extended metabolic profiles that could readily discriminate different CKD stages and highlight the effect of HD 
based on 278 identified metabolites. Global differences in metabolic profile were described between patients 
requiring HD and those with earlier stage of CKD. Moreover, individual molecules displayed various patterns 
in regards to renal and dialytic clearances. Such differences could contribute to explain clinical discrepancies 
between patients requiring HD and those with relatively preserved kidney function.

Data availability
Data supporting the findings of this study are available from the corresponding author upon reasonable request.
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