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Fractional Young double‑slit 
numerical experiment 
with Gaussian wavepackets
Mahboubeh Ghalandari1 & M. Solaimani1*

In the present work, we consider the transmission properties of a Gaussian wavepacket when 
transmits through few double and multi‑slit systems in a fractional medium. For this purpose, we have 
solved the two‑dimensional fractional Schrodinger equation utilizing a split‑step Fourier method. 
Then, we have investigated the effects of different parameters such as the number of slits, slit width, 
barrier width, layer width, layer heights, fractional order, and wavepacket width on the transmission 
coefficient, and wavepacket evolution.

Young double-slit experiment (the heart of quantum physics as regarded by Richard  Feynman1 that is impossible, 
absolutely impossible, to explain in any classical way) is a famous interference one that is usually used to show 
the wave properties of particles. The quantum mechanical description of the double-slit experiment can change 
one’s ideas about different classical concepts such as waves, particles, movement, location, etc. In a double-slit 
experiment on 1909 by Taylor, a very dim light emits just a single photon at a time, led to Paul Dirac’s famous 
claim: each photon interferes only with  itself2.

Within a double-slit experiment, a monochromatic source S propagates light that passes through two slits  S1 
and  S2. These slits are then two sources of coherent light. Therefore, if these two slits have the same sizes, then 
the light waves emitted from these slits have the same amplitudes. This experiment leads to a fringe pattern 
that the fringes separation is inversely proportional to the slit separation. Slit diffraction has vast applications 
in holography, acousto-optics, spectroscopy, etc.3–5. These applications lead to the attraction of great interest to 
this field of study.

So far, in addition to fabrication double-slit-grating6, others fields such as double-slit like interference by a 
pseudocereal metamaterial  slab7, the double-slit experiment of surface Plasmon polaritons excited by mercury-
lamp light  source8,  laser9,10, and single  photons11, have been investigated. Besides, Young’s double nanoslit study 
with plasmon  hybridization12, Plasmonic wave plate based on subwavelength  nanoslits13, periodic metallic nano-
slits14, three-dimensional quantum slit  diffraction15, enhanced optical transmission of non-coaxial double-layer 
nano-slit with slanted sidewall  arrays16, double-slit phenomena by using near field imaging  technique10,14, off-
centered double-slit metamaterial for elastic wave polarization  anomaly17, interference of surface waves in a 
metallic  nanoslit18, etc. have thus far been considered. In double-slit diffraction experiments, loss of  coherence19, 
parameter estimation by  decoherence20, squeezing and slowed quantum  decoherence21, etc. are also investigated. 
From a geometric standpoint, the double-slits are the basic components of multi-slits. In this way, extraordinary 
optical transmission comprehension of 1D period nano-slits  arrays22 has been reported.

In the literature, diffraction experiments on the forming Young’s double-slit fringes pattern by individual 
 particles23–25 and single wave-driven  particles26 have also been reported. For example, double-slit experiments 
with  electron27,28, neutrons, atoms,  molecules29–33, small  clusters34, and even large molecules like  C60

35, have till 
now been considered. In addition to particles, the double-slit experiment with wavepackets is also possible. The 
double-slit experiment with Gaussian wave packets can include the three cases of plane waves, wave packets 
narrower than the slit size, and even the intermediate situations. One and two slits studies by Gaussian wave 
packets in the presence or absence of the interactions with the wall have previously been  studied36–38. Therefore, 
along with above-mentioned particles, diffraction of Gaussian wave packets by a single  slit39, effects of gravity 
and nonlinearity on dynamics of macroscopic wave packet passing through double-slits40, studying the two-
dimensional electron wave packet passing through a double-slit by finite difference solving of the time-dependent 
Schrodinger  equation41, near and intermediate fields of an ultra-short pulse transmitted through Young’s double-
slit  experiment42, have also been considered.

Leibniz proposed the generalization of differentiation to fractional  order43. Thereafter, the fractional calculus 
found different applications, including turbulence, complex networks, dielectric relaxations, phase transition, 
visco-elastic materials, control systems, etc.44.  Longhi45 proposed an application of the fractional Schrödinger 
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equation to the optics. In optics, the fractional Laplacian means a non-parabolic dispersion, i.e., the dispersion 
of the system directly changes. Although, in comparison to the standard Schrodinger equation, the fractional one 
just contains the fractional Laplacian operator instead of the common one, this change can lead to significant dif-
ferences in the wave function characteristics. In the space-fractional Schrödinger formalism, optical solitons, self-
focusing, and wave  collapse46, Hermite–Gaussian-like  solitons47, solitons in a 1D array of rectangular ferroelectric 
 nanoparticles48, nontrivial wave-packet collision and  broadening49, parity-time-symmetric lattice  potentials50, 
defect  modes51, modulation instability of Co-propagating optical  beams52, propagation characteristics of ring 
Airy  beams53, transmission through locally periodic  potentials54, localization and Anderson delocalization of 
 light55, quantum information  entropies56, etc. have thus far been studied.

In this work, we have considered the fractional Young double-slit experiment with incident Gaussian 
wavepackets in numerical treatment. We have solved the time-dependent nonlinear fractional Schrodinger 
equation by using a split step Fourier method. Then, we have studied the transmission of a Gaussian wavepacket 
through double and multi-slits as well as the wavepacket evolution in the fractional calculus formalism. In the 
available literature on the double slit studies, the researchers mainly investigated the diffraction pattern. However, 
there are a number of papers that they also studied the transmission  effect16,22,54. In our present study, in addition 
to the diffraction, we have also studied the transmission properties of multi-slit systems in the conventional and 
fractional mediums.

Formalism
The wavepacket propagation in the two-dimensional fractional Schrodinger equation formalism can be studied 
by using:

where α , β , and γ are the fractional derivative order, Laplacian coefficient, and nonlinear interaction strength, 
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where N, V0, and L are the number of wells, the potential height, and the system length, respectively. Also, i 
shows the i’th well or barrier. The potential term is the rigid-body potential which describes the slit  wall59. In 
the following, we assume the following initial Gaussian wave packet at t = 0,

where it represents a traveling Gaussian wave-packet. Here, ( x0 , y0 (, a and k indicate the center of the wave 
packet, width of the wave packet and wave packet wave vector, respectively. A schematic illustration of the initial 
condition, including the Gaussian wavepacket and the double-slit setup, is presented in Fig. 1. We use a split 
step Fourier  method60 to solve the Eq. (1) and to study the wave-packet evolution. Then, we use the following 
relations for reflection ( R ) and transmission coefficients ( T ). We calculated these quantities at an enough long 
time after the collision of the wave packet on the double or multi-slit  system61,62,

where

Results and discussions
In the current paper, we have simulated the double and multi-slits experiment in the fractional two dimensional 
Schrodinger equation formalism. We have used a split step Fourier method to solve the corresponding Schro-
dinger equation numerically. Then, by using a few integrations, we have evaluated the transmission coefficient 
when a Gaussian initial wavepacket impinges on the mentioned double and multi-slits systems. Thereafter, we 
have tried to evaluate the effects of different parameters such as slit width, slit height, wavepacket width, etc. 
on the wavepacket evolution and transmission characteristics. These geometrical parameters have also been 
illustrated in Fig. 1.

In the panel (A) of the Fig. 2, we have presented the variation of the transmission coefficient T as a function 
of the layer height for standard non-fractional Schrodinger equation with α = 2 and layer width = L/30. Panel 
(B) of this figure is also the same as the panel (A) but for three fractional orders α = 1.9, 1.6, and 1.3. In this 
figure, we assumed system length L = 45, initial Gaussian wave parameter a = 0.7, the number of slits = 2, the slit 
width = L/100, the barrier width = L/60, the Laplacian coefficient β = 0.5, and the nonlinearity strength γ = 0. As 
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Figure 1.  A schematic illustration of the initial condition including the Gaussian wavepacket and the double-
slit setup.
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this figure shows, by increasing the barrier height, the transmission coefficient decreases to the standard Schrod-
inger equation in the panel (A). However, this fact is consistent with our common physics insight. In this figure, 
increasing the layer height to 50 can decreases the transmission coefficient by 50%. Using a small decrease of 
the fractional parameter α  to 1.9 in the panel (B), we see that, the transmission coefficient again decreases when 
the layer height increases. But in this case, the amount of decreases in the transmission coefficient is very small 
compared to the standard Schrodinger equation in the panel (A). Also, by decreasing the fractional parameter α , 
we see that the transmission coefficient increases. In a strongly fractional Schrodinger equation with α = 1.3, the 
transmission coefficient at first decreases and then increases if layer height increases. This fact is not consistent 
with our common physical insight. Panel (C) of this figure shows the variation of the transmission coefficient T 
as a function of the layer width for standard non-fractional Schrodinger equation with α = 2 . Also, panel (D) is 

Figure 2.  Panel (A) Variation of the transmission coefficient T as a function of the layer height for standard 
non-fractional Schrodinger equation with α = 2 and layer width = L/30. Panel (B) The same as the panel (A) 
but for three fractional orders α = 1.9, 1.6, and 1.3. Panel (C) Variation of the transmission coefficient T as a 
function of the layer width for standard non-fractional Schrodinger equation with α = 2 . Panel (D) The same as 
the panel (C) but for three fractional orders α = 1.9, 1.6, and 1.3. In this figure, we assumed system length L = 45, 
initial Gaussian wave parameter ‘a’ = 0.7, number of slits = 2, slit width = L/100, barrier width = L/60, Laplacian 
coefficient β = 0.5, and nonlinearity strength γ = 0.

Figure 3.  The final shape of the Gaussian wavepacket at sufficiently large time in the panels (A–L) are plotted 
for (α, layer height) = (2, 5), (2, 25), (2, 50), (1.9, 5), (1.9, 25), (1.9, 50), (1.6, 5), (1.6, 25), (1.6, 50), (1.3, 5), (1.3, 
25), and (1.3, 50), respectively. Other parameters are the same as the panels (A) of the Fig. 2. In each panel, the 
wavepacket has moved downward.
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the same as the panel (C) but for three fractional orders α = 1.9, 1.6, and 1.3. In these two panels, we see that by 
increasing the layer width the transmission coefficient decreases. Also, by increasing the fractional parameter 
α , the transmission coefficient increases. In the strongly fractional systems with α = 1.3, the layer width is a less 
critical parameter in the transmission coefficient because in all of the studied layer widths, the transmission 
coefficient is approximately 100%.

Figure 4.  The final shape of the Gaussian wavepacket at sufficiently large time in the panels (A–L) are plotted 
for (layer width,α) = (L/10, 2), (L/30, 2), (L/60, 2), (L/10, 1.9 ), (L/30, 1.9), (L/60, 1.9), (L/10, 1.6), (L/30, 1.6), 
(L/60, 1.6), (L/10, 1.3), (L/30, 1.3), and (L/60, 1.3), respectively. Other parameters are the same as the panels (C) 
of the Fig. 2. In each panel, the wavepacket has moved downward.

Figure 5.  Panel (A) Variation of the transmission coefficient T as a function of the slit width for Schrodinger 
equations with α = 2 and 1.9. Panel (B) The same as the panel (A) but for three fractional orders α = 1.6and 1.3. 
Panel (C) Variation of the transmission coefficient T as a function of the slit width for Schrodinger equations 
with α = 2 . Here the effects of three different values of the barrier widths are compared. Panel (D) Variation 
of the transmission coefficient T as a function of the number of slits for Schrodinger equations with α = 2 . 
Panel (E) The same as the panel (D) but for three fractional orders α = 1.9, 1.6 and 1.3. We assumed the layer 
width = L/30. Panel (F) Variation of the transmission coefficient T as a function of the number of slits for 
Schrodinger equations with α = 2 . Here the effects of three different values of the Gaussian wave parameter ‘a’ 
are compared. In this figure, we assumed system length L = 45, Laplacian coefficient β = 0.5, and nonlinearity 
strength γ = 0.
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In the Fig. 3, we have presented the final shape of the Gaussian wavepacket after a sufficiently large evolu-
tion time. Panels (A) to (L) are plotted for ( α , layer height) = (2, 5), (2, 25), (2, 50), (1.9, 5), (1.9, 25), (1.9, 50), 
(1.6, 5), (1.6, 25), (1.6, 50), (1.3, 5), (1.3, 25), and (1.3, 50), respectively. Other parameters are the same as the 
panels (A) of the Fig. 2. In each panel, the wavepacket has moved downward. Here, the simulation of double-
slit experiment shows a few fringes. By passing the wavepacket through the double-slit system, some parts will 
split into two sections at the transmission region. Therefore, each slit behaves like a light-emitting source. Here, 
the diffracted wave packet in the Young double-slits experiment indicates the interferences with few visible 
peaks. The progression to a smaller fractional parameter α , generally speaking, shows a pattern of narrowing 
the intensity peaks. The pattern includes a series of dark and bright fringes. In a bright fringe, the constructive 
interference occurs while in a dark fringe, destructive interference occurs. In these panels, it is clear that, by 
increasing the layer height, the transmission coefficient decreases. Figure 4 also shows the final shape of the 
Gaussian wavepacket at a sufficiently large evolution time. The panels (A) to (L) are plotted for (layer width,α
) = (L/10, 2), (L/30, 2), (L/60, 2), (L/10, 1.9 ), (L/30, 1.9), (L/60, 1.9), (L/10, 1.6), (L/30, 1.6), (L/60, 1.6), (L/10, 
1.3), (L/30, 1.3), and (L/60, 1.3), respectively. Other parameters are the same as the panels (C) of the Fig. 2. In 
each panel, the wavepacket has moved downward. As these panels also show, by decreasing the barrier width, 
the transmission coefficient increases.

Now, in the panel (A) of the Fig. 5 we have plotted the variation of the transmission coefficient T as a function 
of the slit width for Schrodinger equations with α = 2 and 1.9. Panel (B) is also the same as the panel (A) but 
for three fractional orders, α = 1.6 and 1.3. Besides, in the panel (C), we also observe that increasing the barrier 
width the transmission coefficient decreases. Panel (C) of this figure, shows the variation of the transmission 
coefficient T as a function of the slit width for Schrodinger equations with α = 2 . Here the effects of three dif-
ferent values of the barrier widths are compared. In the panels of this figure, we assumed system length L = 45, 
Laplacian coefficient β = 0.5 , and nonlinearity strength γ = 0 . As the panels (A–C) show, by increasing the 
slit width, the transmission coefficient monotonically increases. Another interesting fact (an exception) is also 
the system with the fractional parameter  α = 1.6 in the panel (B), within which as the slit width increases, the 
transmission coefficient at first decreases and then increases. This is a nonlinear behavior, which, again is not 
consistent with our conventional physical insight. At the time, we do not know its reason. Also, for slit widths 
larger than 1, the transmission coefficient, roughly speaking, does not depend on the slit width variations. This 
fact is also true for all studied fractional parameters and the barrier widths. An interesting point in these panels 
is the quantization of the transmission coefficient for systems with small slit. The quantization of the transmission 
is an intrinsic effect that does not change by a fractional degree or barrier width changes. In the meantime, panel 
(D) presents the variation of the transmission coefficient T as a function of the number of slits for Schrodinger 
equations with α = 2 . Also, panel (E) is the same as the panel (D) but for three fractional orders α = 1.9, 1.6 
and 1.3. We assumed the layer width = L/30. Finally, the panel (F) illustrates the variation of the transmission 
coefficient T as a function of the number of slits for Schrodinger equations with α = 2 . Here the effects of three 
different values of the Gaussian wave parameter ‘a’ are compared. As the panels (D) and (E) show, as the fractional 
parameter α increases, the number of slits become less critical. Because, the variation of the slit number can make 
smaller changes in the transmission coefficient, and thus, the variation interval of the transmission coefficient 
becomes smaller. However, in the panel (F), we have not a common statement for variation of the transmission 
coefficient when the Gaussian wave parameter ‘a’ increases. In some slit number intervals the transmission 
coefficient increases if the Gaussian wave parameter ‘a’ increases and in some other intervals, the transmission 

Figure 6.  The final shape of the Gaussian wavepacket at sufficiently large time in the panels (A–L) are plotted 
for (slit width,α) = (L/450, 2), (L/200, 2), (L/10, 2), (L/450, 1.9), (L/200, 1.9), (L/10, 1.9), (L/450, 1.6), (L/200, 1.6), 
(L/10, 1.6), (L/450, 1.3), (L/200, 1.3), and (L/10, 1.3), respectively. Other parameters are the same as the panels 
(A) of the Fig. 5. In each panel, the wavepacket has moved downward.
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coefficient decreases if the Gaussian wave parameter ‘a’ increases. But, there is a common fact in the panels (D–F). 
In these panels, we have some flat transmission diagrams within which the transmission coefficient does not 
change when the number of slits increases. This means we have different choices for the number of slits to have 
a typical transmission coefficient. Also, it means that in these slit number intervals, the transmission coefficient 
is quantized concerning the number of slits variations, and this is true for different values of the Gaussian wave 
parameter ‘a’ and fractional parameter α.

Figure 6 shows the final shape of the Gaussian wavepacket at a sufficiently large time. The panels (A–L) are 
plotted for (slit width, α) = (L/450, 2), (L/200, 2), (L/10, 2), (L/450, 1.9), (L/200, 1.9), (L/10, 1.9), (L/450, 1.6), 
(L/200, 1.6), (L/10, 1.6), (L/450, 1.3), (L/200, 1.3), and (L/10, 1.3), respectively. Other parameters are the same 
as the panels (A) of the Fig. 5. In each panel, the wavepacket has moved downward. These final states show the 
probability density distributions and illustrate the position of the fringes. Comparing the panels (J), (K), and (L) 
of the Fig. 6 shows that, in strongly fractional systems with the fractional parameter α = 1.3 , the wavepacket can 
surprisingly transmit through small and extensive slit width systems with approximately the same probability. 
Also, Fig. 7 shows the final shape of the Gaussian wavepacket at a sufficiently large time. The panels (A) to (L) 
are plotted for (number of slits, α) = (10, 2), (30, 2), (50, 2), (10, 1.9), (30, 1.9), (50, 1.9), (10, 1.6), (30, 1.6), (50, 

Figure 7.  The final shape of the Gaussian wavepacket at sufficiently large time in the panels (A–L) are plotted 
for (number of slits,α) = (10, 2), (30, 2), (50, 2), (10, 1.9), (30, 1.9), (50, 1.9), (10, 1.6), (30, 1.6), (50, 1.6), (10, 1.3), 
(30, 1.3), and (50, 1.3), respectively. Other parameters are the as the panels (A) of the Fig. 5. In each panel, the 
wavepacket has moved downward.

Figure 8.  Variation of the transmission coefficient T as a function of the fractional orders αin fractional 
Schrodinger equation. The effects of five different incident angles are compared. In this figure, we assumed 
system length L = 100, initial Gaussian wave parameter a = 1.5, number of slits = 20, slit width = L/450, barrier 
width = L/70, layer width = L/150, layer height = 100, Laplacian coefficient β = 0.5, and nonlinearity strength γ = 0.
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1.6), (10, 1.3), (30, 1.3), and (50, 1.3), respectively. Other parameters are the same as the panels (A) of the Fig. 5. 
In each panel, the wavepacket has moved downward. The main phenomenon in these panels is the wavepacket 
reconstruction after transmission through the multi-slit systems. However, this reconstruction is more perfect 
in the systems with the larger number of slits.

In the following, the variation of the transmission coefficient T as a function of the fractional orders α in 
the fractional Schrodinger equation is presented in the Fig. 8. The effects of five different incident angles (with 
respect to the x-axis in the Fig. 1) are compared. In this figure, we assumed system length L = 100, initial Gaussian 
wave parameter a = 1.5, number of slits = 20, slit width = L/450, barrier width = L/70, layer width = L/150, layer 
height = 100, Laplacian coefficient β = 0.5 , and nonlinearity strength γ = 0 . As this figure shows, by increasing 
the fractional parameter, the transmission coefficient decreases. We see that, for the incident angels greater than 
π/4, the transmission coefficients are almost perfect for a large portion of the studied fractional parameters, and 
the transmission coefficient suddenly decreases at fractional parameters very close to α = 2 . However, for the 
incident angels smaller than π/4, the transmission coefficients can have values in the interval (0, 1) at all fractional 
parameter values. In Fig. 9, the final shape of the Gaussian wavepacket at a sufficiently large time for different 
values of the θ and α have also been illustrated.

Figure 9.  The final shape of the Gaussian wavepacket at sufficiently large time in the panels (A–L) are plotted 
for ( θ , α) = (pi/20, 2), (pi/4, 2), (pi/2, 2), (pi/20, 1.9), (pi/4, 1.9), (pi/2, 1.9), (pi/20, 1.6), (pi/4, 1.6), (pi/2, 1.6), 
(pi/20, 1.3), (pi/4, 1.3), and (pi/2, 1.3), respectively. Other parameters are the same as the panels (A) of the Fig. 8. 
In each panel, the wavepacket has moved downward.

Figure 10.  Panel (A) Variation of the transmission coefficient T as a function of the second slit width for 
standard non-fractional Schrodinger equation with α = 2 . Panel (B) The same as the panel (A) but for three 
fractional orders α = 1.9 and 1.6. In this figure, we assumed system length L = 45, initial Gaussian wave parameter 
a = 1.5, number of slits = 2, slit width = L/50, barrier width = L/70, layer width = L/30, layer height = 100, Laplacian 
coefficient β = 0.5, and nonlinearity strength γ = 0.
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We present the variation of the transmission coefficient T as a function of the second slit width for standard 
non-fractional Schrodinger equation with α = 2 in the panel (A) of the Fig. 10. Therefore, we study a double-slit 
that the sizes of the slits are not equal. Panel (B) also is the same as the panel (A) but for three fractional orders 
α = 1.9 and 1.6. In this figure, we assumed system length L = 45, initial Gaussian wave parameter a = 1.5, number 
of slits = 2, slit width = L/50, barrier width = L/70, layer width = L/30, layer height = 100, Laplacian coefficient 
β = 0.5 , and nonlinearity strength γ = 0 . Here also, for small values of the slit width and for fractional orders, 
α = 1.9 and 2, the transmission coefficient is quantized concerning it. An extraordinary fact in the panel (B) is 
also that the diagram of the transmission coefficient as a function of the slit width in a nonlinear one. Besides, 
for large values of the slit width that are greater than 3, all three diagrams saturate, and further increasing the 
slit width does not change the transmission coefficient any more. Also, the Fig. 11 shows the final shape of the 
Gaussian wavepacket at a sufficiently large time for different values of the second slit width and α . In this figure, 
we see that, in some situations such as in the panel (D), the wave function reconstruction can occur after the 
transmission of the wavepacket through the double-slit system. Considering the panels (G–I) also reveals that 
the wavepacket can transmit the systems with different small and large slit widths by approximately the same 
probability. According to the Fig. 10, these probabilities are in the interval (0.99, 1).

Figure 11.  The final shape of the Gaussian wavepacket at a sufficiently large time in the panels (A–I) are plotted 
for (the second slit width,α) = (L/400, 2), (L/100, 2), (L/10, 2), (L/400, 1.9), (L/100, 1.9), (L/10, 1.9), (L/400, 1.6), 
(L/100, 1.6), and (L/10, 1.6), respectively. Other parameters are the same as the panels (A) of the Fig. 10. In each 
panel, the wavepacket has moved downward.

Figure 12.  Panel (A) Variation of the transmission coefficient T as a function of Gaussian wave parameter a 
for standard non-fractional Schrodinger equation with α = 2 . Panel (B) The same as the panel (A) but for three 
fractional orders α = 1.9, 1.6, 1.3, and 1.1. In this figure, we assumed system length L = 45, number of slits = 2, 
slit width = L/50, barrier width = L/70, layer width = L/30, layer height = 100, Laplacian coefficient β = 0.5, and 
nonlinearity strength γ = 0.
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In the panel (A) of the Fig. 12, we have presented the variation of the transmission coefficient T as a function 
of Gaussian wave parameter ‘a’ for standard non-fractional Schrodinger equation with α = 2 . Panel (B) is also 
the same as the panel (A) but for three fractional orders α = 1.9, 1.6, 1.3 and 1.1. In this figure, we assumed system 
length L = 45, number of slits = 2, slit width = L/50, barrier width = L/70, layer width = L/30, layer height = 100, 
Laplacian coefficient β = 0.5, and nonlinearity strength γ = 0. Comparing the panels (A) and (B) shows that the 
behavior of the wavepacket in the standard Schrodinger equation is completely different from propagation char-
acteristics in the fractional system. In the panel (A), there are two characteristic wavepacket widths for them that 
the diagram of the transmission coefficient has a local minimum and a local maximum. The interesting region 
is the interval between these two characteristic wavepacket widths. In this region, by increasing the wavepacket 
widths, the transmission coefficient increases that is not consistent with our common physics insight. In the 

Figure 13.  The final shape of the Gaussian wavepacket at sufficiently large time in the panels (A–L) are plotted 
for (a,α) = (0.2, 2), (0.5, 2), (3.5, 2), (0.2, 1.9), (0.5, 1.9), (3.5, 1.9), (0.2, 1.6), (0.5, 1.6), (3.5, 1.6), (0.2, 1.3), (0.5, 
1.3), and (3.5, 1.3), respectively. Other parameters are the same as the panels (A) of the Fig. 12. In each panel the 
wavepacket has moved downward.

Figure 14.  Panel (A) Variation of the transmission coefficient T as a function of the Laplacian coefficient β 
for standard non-fractional Schrodinger equation with α = 2 . Panel (B) The same as the panel (A) but for 
three fractional orders α = 1.9 and 1.6. Panel (C) Variation of the transmission coefficient T as a function of 
nonlinearity strength γ for standard non-fractional Schrodinger equation with α = 2 . Panel (D) The same as the 
panel (C) but for three fractional orders α = 1.9, 1.6, 1.3 and 1.1. In this figure, we assumed system length L = 45, 
number of slits = 2, slit width = L/100, barrier width = L/60, layer width = L/30, and layer height = 100.
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panel (B), there is a similar behavior for the system with fractional orders α = 1.9 for wavepacket width smaller 
than 0.25. Another interesting fact is that for wavepacket width larger than 0.25, the transmission coefficient 
is 100% for the systems with the fractional orders α = 1.1. Figure 13 also shows the final shape of the Gaussian 
wavepacket at a sufficiently large time for different values of the Gaussian wave parameter ‘a’. A result in this figure 
is that the wave function is distributed in a larger spatial region for the wavepackets with larger widths. Besides, 
by decreasing the fractional parameter α , the wavepacket is localized within a smaller region.

Finally, in panel (A) of the Fig. 14, we have presented the variation of the transmission coefficient T as a 
function of the Laplacian coefficient β for the standard non-fractional Schrodinger equation with α = 2 . Panel 
(B) also illustrates the same as the panel (A) but for three fractional orders, α = 1.9 and 1.6. As we mentioned in 
the introduction section, the fractional Laplacian means a non-parabolic dispersion, i.e., the dispersion of the 
system directly changes. In the standard Schrodinger equation on the panel (A), the transmission coefficient 
varies monotonically in an increasing manner, when the Laplacian coefficient increases. However, in the stud-
ied diagrams in the panel (B), the transmission diagrams have a maximum value. This means there is a critical 
Laplacian coefficient that leads to the maximum transmission coefficient. Figure 15 illustrates the final shape 
of the Gaussian wavepacket at a sufficiently large time for different values of the Laplacian coefficient β . Other 

Figure 15.  The final shape of the Gaussian wavepacket at sufficiently large time in the panels (A–I) are plotted 
for (β, α) = (0.2, 2), (0.5, 2), (0.9, 2), (0.2, 1.9), (0.5, 1.9), (0.9, 1.9), (0.2, 1.6), (0.5, 1.6), and (0.9, 1.6), respectively. 
Other parameters are the same as the panels (A) of the Fig. 14. In each panel, the wavepacket has moved 
downward.

Figure 16.  The final shape of the Gaussian wavepacket at sufficiently large time in the panels (A–I) are plotted 
for (γ, α) = (0, 2), (0.5, 2), (1, 2), (0, 1.6), (0.5, 1.6), (1, 1.6), (0, 1.3), (0.5, 1.3), and (1, 1.3), respectively. Other 
parameters are the same as the panels (A) of the Fig. 14. In each panel, the wavepacket has moved downward.
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parameters are the same as the panels (A) of the Fig. 14. In each panel the wavepacket has moved downward. 
In these panels, we can see the wavepacket localization and its evolution. In the panel (C) we have shown the 
variation of the transmission coefficient T as a function of nonlinearity strength γ for standard non-fractional 
Schrodinger equation with α = 2 . Also, panel (D) is the same as the panel (C) but for three fractional orders 
α = 1.9, 1.6, 1.3 and 1.1. In this figure, we assumed system length L = 45, number of slits = 2, slit width = L/100, 
barrier width = L/60, layer width = L/30, and layer height = 100. When the nonlinearity strength γ increases, the 
transmission coefficient decreases. However, the fractional order α = 1.9 is an exception, and in this case, we have 
an increasing diagram. Finally, Fig. 16, presents the final shape of the Gaussian wavepacket at a sufficiently large 
time in the panels for different values of the nonlinearity strength γ.Other parameters are the same as the panels 
(A) of the Fig. 14. In each panel, the wavepacket has moved downward.

Conclusion
In the current work, we studied the transmission through double and multi-slits systems as well as wavepacket 
evolution in the fractional Schrodinger framework. We showed that, by increasing the layer height, the transmis-
sion coefficient decreases in the standard Schrodinger equation, but in strongly fractional Schrodinger equation, 
the transmission coefficient at first decreases and then increases if layer height increases. By decreasing the 
fractional parameter α the transmission coefficient increased. For systems with small slit, the transmission coef-
ficient was quantized when the slit width changed. By increasing the barrier width the transmission coefficient 
decreased. In some slit number intervals, the transmission coefficient was quantized concerning the number of 
slits variations and this was true for different values of the Gaussian wave parameter ‘a’ and fractional parameter 
α. In strongly fractional systems, the wavepacket could transmit through small and extensive slit width systems 
with approximately the same probability. We observed the wavepacket reconstruction after transmission through 
the multi-slit systems and this reconstruction was more perfect in the systems with a larger number of slits. For 
the incident angels greater that π/4, the transmission coefficients were almost perfect for many studied fractional 
parameters. For some values of the wavepacket widths, by increasing the wavepacket widths, the transmission 
coefficient increased. By decreasing the fractional parameter α, the wavepacket was localized within a smaller 
region. Finally, the double slit interference pattern exists for fractional cases, but by increasing the degree of 
fractionality (decreasing the fractional order α), the interference effect gradually vanishes.
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