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Defectors’ intolerance of others 
promotes cooperation 
in the repeated public goods game 
with opting out
Vlastimil Křivan1,3* & Ross Cressman2

The theoretical and experimental research on opting out (also called conditional dissociation) in 
social dilemmas has concentrated on the effect this behavior has on the level of cooperation when 
used against defectors. The intuition behind this emphasis is based on the common property of social 
dilemmas that individuals are worse off the more their opponents defect. However, this article shows 
clearly that other opting out mechanisms are better at increasing cooperative behavior. In fact, by 
analyzing the stable Nash equilibria for the repeated multi-player public goods game with opting out, 
our results provide a strong argument that the best opting out rule is one whereby the only groups 
that voluntarily stay together between rounds are those that are homogeneous (i.e., those groups 
that are either all cooperators or all defectors), when these groups stay together for enough rounds. 
This outcome emerges when defectors are completely intolerant of individuals who cooperate (e.g., 
defectors exhibit xenophobic behavior toward cooperators) and so opt out whenever their group has 
a cooperator in it. The strong preference by defectors to be with like-minded individuals causes all 
heterogeneous groups to disband after one round.

In the classic single-round public goods game (PGG) where groups consist of m players, contributing nothing to 
the public good (i.e., defecting) is the only Nash equilibrium (NE)1,2. Thus PGG provides a well-known example 
of a social dilemma in that groups are best off (i.e., receive the highest payoff) if all members contribute their 
entire endowment E (i.e., cooperate) rather than defect. By backward induction, the same result holds for the 
repeated version of PGG when the number of rounds played by all groups is the same3,4. One way to resolve this 
dilemma is to assume that, in a given round, each group disbands with a certain probability 0 < ρ < 1 , in which 
case it is only the expected number of rounds 1/ρ played by all groups that is the same. Then other NE outcomes 
emerge including all individuals cooperating or all individuals contributing some of their endowment to the 
public good, especially if there is a mechanism for players to punish defectors or to not participate in the game5–7.

Here, we explore another way to promote cooperative behavior in the repeated PGG whereby members are 
allowed to opt out of their group depending on the total amount contributed by group members. In fact, we 
consider a simplified set of strategies where each individual is either a Defector or Cooperator for the entire 
game. In particular, an individual’s action (i.e., Defect or Cooperate) in a given round cannot depend on what 
actions were taken by group members in previous rounds, thereby considerably reducing the number of strate-
gies often used in repeated games8. In our simplified game, the decision whether to opt out is then a function of 
the number of Cooperators in their group. If any group member opts out in a given round, the group disbands. 
Otherwise, the group disbands with probability 0 < ρ < 1 . All individuals from disbanded groups form new 
m-player groups at random and join the continuing groups for the next round.

As we will see, opting-out influences expected payoffs individuals receive through its effect on group distribu-
tions and consequently the game’s expected outcome. Opting out (also called conditional dissociation,9) against 
Defectors, that leads to a positive assortment of Cooperators, is known to promote cooperation in the two-player 
repeated Prisoner’s dilemma (PD) game (e.g.,10–15) and in the repeated two-player PGG16. On the other hand, it 
is also known that individuals who are cooperative in PD games may not be so in PGG17.

The questions of most interest to us are whether opting out continues to promote cooperation in the m-player 
repeated PGG and, if so, what opting out rules accomplish this and why individuals adopt them.
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Results
First, we briefly summarize the simplified version of the single-round PGG. Let E be each player’s endowment in 
the single round where all groups consist of m players ( m ≥ 2 ). The two strategies are to Defect (D) and Cooper-
ate (C) by contributing 0 and E respectively to the public good. In a group of k Cooperators, the single-round 
payoffs to a Cooperator and a Defector are

where r > 1 is the enhancement factor and k = 0, . . . ,m . (Technically, πC(k) is undefined for k = 0 and πD(k) is 
undefined for k = m ). If r < m , then it is always better for a focal individual to play D than C when the strategies 
of the rest of the group members are fixed (i.e., in a group consisting of k Cooperators it pays off for a Cooperator 
to switch to defection because its payoff in the group with the remaining k − 1 Cooperators will then be higher 
as πD(k − 1) > πC(k) for all 1 ≤ k ≤ m ). Then all D is the only NE (i.e., all group members contribute nothing 
to the public good). In the classic (single-round) PGG, it is typically assumed that 1 < r < m as this leads to a 
conflict between maximizing total group payoff and NE behavior (i.e., optimizing individual payoff). Indeed, 
since r > 1 , payoffs to the all C group is higher than to the all D group (i.e., πC(m) > πD(0) ) and, since r < m , 
the only NE for the game is all D. In fact, all D is a strict NE since every member of the all D group receives higher 
payoff playing D than switching to C. It is well-known18 that all D is then a stable outcome under standard game 
dynamics such as the replicator equation. On the other hand, if r > m , then it is always better to play C than D 
(i.e., πD(k − 1) < πC(k) ) and so the NE is all C. Finally, if r = m , then there is no single NE since every group 
composition of Cooperators and Defectors is a NE.

In our repeated PGG game, where each individual is either a Cooperator or a Defector for the entire game, 
each individual has an opting out rule that depends on the number of Cooperators in this player’s group. We 
further simplify our repeated PGG game by assuming that all Cooperators have the same opting out rule for the 
entire game as do all Defectors. Our m-player PGG with opting out then has two (pure) strategies, C along with 
its opting out rule and D along with its opting out rule. In this repeated game, either at least one group member 
opts out after the first round (in which case, the group disbands) or the group plays for an expected number 
τ = 1/ρ of rounds. That is, for each number of Cooperators in the group, k = 0, . . . ,m , the expected number 
of rounds τk played by this group is either 1 or τ . Thus, there are 2m+1 possible m-player PGG with opting out 
corresponding to all combinations of {τ0, . . . , τm} where τk is either 1 or τ for k = 0, . . . ,m . The classic repeated 
PGG that corresponds to {τ0, . . . , τm} = {τ , . . . , τ } is also considered to be a PGG with opting out by allowing 
the case where individuals never opt out. There may be more than one choice of opting out rules for C and D 
that generate the same PGG with opting out. For example, with m = 2 , if only Cooperators opt out and this 
occurs if and only if their group has 1 Cooperator, then τ0 = τ2 = τ , τ1 = 1 . The same game is generated if only 
Defectors opt out and this occurs if and only if their group has 1 Cooperator.

To complete the description of our m-player PGG with opting out, the payoff structure of the game must be 
specified. In this repeated PGG, players receive payoffs given by (1) in each round that their group has k Coopera-
tors. For fixed population size N > 0 , where N is taken as a large multiple of m, individual fitness for a Cooperator 
(respectively, Defector) is their expected payoff per round �C (respectively, �D ) evaluated at the equilibrium 
group distribution. Here we define fitness as the individual’s payoff in our repeated game. We avoid labelling 
this as payoff so as not to confuse this term with payoff in the single-round game. This fitness, that depends on 
both m and τ through the group distributions given by the opting out rule, is then a function of the total number 
NC and ND of Cooperators and Defectors, respectively, where N = NC + ND (see “Methods” section). In fact, 
our results do not depend on the value of N (see subsection Fitness functions in “Methods” section). The two 
strategies (C, D) together with these two fitness ( �C , �D ) functions define an m-player symmetric two-strategy 
evolutionary (population) game. There is at least one NE in each such game (i.e., one of the two pure strategies 
or a mixture of them that is a best reply against itself). We are particularly interested in those NE that are stable 
(in the sense that nearby trajectories of standard evolutionary dynamics such as the replicator equation converge 
to this NE) since unstable NE are not expected to correspond to the game’s outcome (see subsection Numerical 
methods when m > 2 in “Methods” section).

This same approach has been used to analyze the two-player Prisoner’s dilemma (PD) game12,15 with opt-
ing out. Here, if players opt out whenever their opponent defects, defect remains a (strict) NE. However, stable 
coexistence of cooperators and defectors also emerges when ρ is sufficiently small (i.e., when the maximum 
expected number of rounds played by a group is sufficiently large). In fact, as ρ approaches 0, this coexistence 
outcome converges to all C and attracts almost all initial population configurations under standard evolutionary 
dynamics. As we will see, similar results occur for the multi-player PGG.

We note that other theoretical studies have examined the evolutionary stability of opting out rules by incor-
porating several of them into a single multi-strategy game. These include a three-strategy repeated PGG with 
opting out where Cooperators have two different opting out rules19 and a multi-strategy repeated PD game with 
opting out where individual choices in later rounds depend on what group members have already played in 
previous rounds20 (see also9). A stable NE of our simplified game need no longer be stable (or even a NE) when 
the strategy set is enlarged in these ways. Such considerations are beyond the scope of this article.

In our repeated PGG games, all D and all C are strict NE if and only if this is also the case for the single-round 
PGG (see subsection Analytic methods when m = 2 in “Methods” section). That is, all D (respectively, all C) 
is a strict NE if and only if r < m (respectively, r > m ). In particular, in the case of most interest for PGG (i.e., 
r < m ), the undesirable result that all D is a stable NE remains as a dilemma in our simplified repeated PGG. 

(1)
πC(k) =

krE

m

πD(k) = E +
krE

m
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Furthermore, we cannot get all C as the NE as is possible in the typical repeated PGG when individual strategies 
can depend on actions taken by group members in previous rounds or on the group’s size21. Since we cannot 
achieve complete cooperation when r < m , of more interest is the existence and stability of NE where there is 
coexistence of Cooperators and Defectors. Also of interest are the opting out rules that generate coexistence NE 
and the level of cooperation attainable at them. The following two subsections provide results on this for the 
m-player PGG with opting out when m = 2 and m > 2 respectively.

Before doing so, we note that the two extreme opting out rules to always opt out and to never opt out gener-
ate the single-round PGG and two-strategy classic repeated PGG respectively. That is, the expected number of 
rounds each group plays is one and τ rounds respectively. Since both these games have the same fitness functions 
(see subsection All groups play the same expected number of rounds in “Methods” section), their only NE is all 
D (respectively, all C) if r < m (respectively, r > m ). This result for PGG with never opting out contrasts with 
those of the classic repeated PGG where cooperative behavior emerges in experiments22 as well as in theoretical 
models7. The reason no NE includes Cooperators in our model is that it is based on only two strategies whereas 
the typical repeated PGG allows individual choice in later rounds of the same group in the repeated game to 
depend on what strategies were played by group members in earlier rounds (e.g.,7).

Opting out in the two‑player public goods game.  The two-player game has been solved analytically 
by Křivan and Cressman12 (see also23) for arbitrary single-round payoffs and arbitrary number of rounds τk , 
k = 0, 1, 2 . Of particular interest for social dilemmas is the emergence of cooperative behavior. Indeed, for the 
two-player repeated PD where Cooperators give benefit b to their opponent at a cost c to themselves ( b > c > 0 ), 
Křivan and Cressman12 (see also15) show that, when players opt out if and only if their opponent Defects (i.e., 
τ0 = τ1 = 1, τ2 = τ ), stable cooexistence of defection and cooperation emerges when two Cooperators expect to 
play sufficiently many rounds τ (specifically, for τ > ( b+c

b−c )
2 ). When this same opting out rule is applied to PGG 

with r < m = 2 , stable coexistence again emerges for τ > ( 1
r−1 )

2 (see subsection Analytic methods when m = 2 
of “Methods” section and Fig. 1B).

One motivation of this rule for PD and PGG is based on their single-round payoff matrices. For both games, 
all players prefer to play against Cooperate. For instance, in the single-round payoff matrix for PGG given by

C has higher payoff paired with C than with D (i.e., rE > 1
2 rE ) as does D (i.e., E + 1

2 rE > E ). Players then opt 
out against Defect in the hope of being paired with Cooperate in the next round. Indeed, as confirmed by (8) in 
Section Analytic methods when m = 2 , this rule does lead to positive assortment among Cooperators when there 
is a mixture of Cooperators and Defectors in the population (i.e., there are more Cooperator pairs than without 
opting out for a fixed population distribution) since τ0τ2 > τ 21  . Furthermore, there is also positive assortment 
among Defectors. This increase in CC and DD pairs increases the fitness of Cooperators and decreases the fitness 
of Defectors, resulting in a stable coexistence NE when r < 2 and τ > ( 1

r−1 )
2.

However, this positive assortment is also a consequence of the counterintuitive rule that opts out if and only 
if the opponent Cooperates (i.e., τ0 = τ , τ1 = τ2 = 1 ). Indeed, these two games are identical (i.e., they have the 
same fitness functions and so the same stable NE) as illustrated in Fig. 1, where panels A and B are the same as 
panels E and F, and verified in the “Methods” section. The counterintuitive rule is difficult to justify based on 
payoffs. It is as if the players are in a parallel universe where individuals prefer to be with a Defector. In fact, 
results from game experiments15 show that participants seldom opt out against Cooperate compared to their 
propensity to do so against Defect when they know their opponent’s behavior (C or D) and the consequent payoffs 
in the current round. On the other hand, the fact that this counterintuitive rule also promotes cooperation means 
that we need to consider other opting out rules as well that may have better justifications based on individual 
behavior. Some of these rules are actually bad for cooperation. For example, opting out if your opponent exhibits 
your behavior (i.e., τ0 = τ2 = 1, τ1 = τ ) generates a PGG with opting out where the only NE for all τ ≥ 1 is all 
D when r < 2 (Fig. 1C,D). Note that here, and elsewhere, the pronoun “you” refers to a focal individual in the 
population. For example, “opting out if your opponent exhibits your behavior” is then a more convenient way to 
say that an individual opts out if his/her opponent exhibits the same behavior as this focal individual.

The emphasis in this article is on PGG with opting out when r < m since this is the typical assumption for 
PGG. On the other hand, our analysis also provides results for r > m . For instance, if r > m = 2 , opting out if 
your opponent does not exhibit your behavior promotes defection (Fig. 1C). That is, without opting out, the only 
stable NE is all C whereas, with this opting out, an interior stable NE emerges for 2 < r < 6.

From Methods, one rule of particular importance when r < 2 is to opt out if and only if the opponent does 
not play your strategy (i.e., τ0 = τ2 = τ , τ1 = 1 ). From Fig. 1G, the coexistence of Cooperate and Defect emerges 
for smaller r under this rule than for opting out against Defect (Fig. 1A) and for smaller τ (cf. panel H vs. B). In 
fact, this rule is the best among the 23 = 8 PGG with opting out at promoting cooperative behavior according 
to the following criteria (see subsection Analytic methods when m = 2 ): 

(1)	 For fixed τ , it has the lowest value of r at which the stable interior NE begins to appear.
(2)	 For fixed r, it has the lowest value of τ at which the stable interior NE begins to appear.
(3)	 For fixed τ and r for which a stable interior mixed NE exists for some other opting out rule, it has a larger 

domain of attraction (i.e., the set of initial points whose trajectory converges to this NE is a larger interval).

[ C D

C rE 1
2 rE

D E+ 1
2 rE E

]
, (2)
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(4)	 For fixed τ and r for which a stable interior mixed NE exists for some other opting out rule, it has a higher 
individual fitness and higher level of cooperation.

Moreover, it is the best rule in comparison with any choice of 1 ≤ τk ≤ τ for k = 0, 1, 2 . Although these games 
cannot be generated by opting out rules unless all τk equal 1 or τ , they could be enforced by an exogenous agency 
whose goal is to promote cooperative behavior.

In summary, in order to have the most cooperation possible in the two-player PGG with opting out, it is best 
for players to ignore the single-round payoffs when deciding whether to opt out and base this decision instead 
on the homogeneity of their current pair (i.e., opt out if and only if your group is heterogeneous). This opting 
out rule can be understood as translating a preference to be paired with like-minded individuals (i.e., individu-
als who play the same strategy). In this regard, it is well-known24,25 that individual behavior may result from 

Figure 1.   NE of the simplified repeated two-player ( m = 2 ) PGG with opting out where the expected number 
of rounds τ when players do not opt out is 5 (respectively, τ > 1 ) in the left (respectively, right) panels. Solid 
lines denote stable NE, dashed lines denote unstable NE. The four rows starting at the top correspond to the 
four rules: opt out if your opponent defects; opt out if your opponent plays the same strategy; opt out if your 
opponent cooperates; opt out if your opponent plays opposite strategy. Other parameters: N = 100 , E = 1 , 
τ = 5 in left panels and r = 1.5 in right panels.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19511  | https://doi.org/10.1038/s41598-020-76506-3

www.nature.com/scientificreports/

other preferences than that based exclusively on payoff. Other opting out behaviors also generate this PGG that 
is best at promoting cooperation. For instance, this outcome occurs if Cooperators never opt out but Defectors 
are intolerant of Cooperators to such an extent that they refuse to play another round in a group that contains 
a Cooperator (e.g., Defectors display xenophobic behavior toward Cooperators). The result is reflected in the 
article’s title and its extension to multi-player PGG is examined in the following section.

The result also raises the question whether previous studies on opting out promoting cooperation (many 
of them based on the two-strategy repeated PD game) should have concentrated to such an extent on doing 
so against Defect (e.g.,9–15) rather than on some other attribute of individual behavior. In this regard, it is well-
documented that certain types of individuals are intolerant of others. For instance, conservatives (right-wing 
individuals) are more intolerant of liberals (left-wing individuals) than of conservatives (e.g.,26,27) and also tend 
to be less cooperative than liberals (e.g.,28,29). If these tendencies manifest themselves through opting out behavior 
and interactions among liberals and conservatives are modelled as a public goods game (in particular, liberal 
and conservative strategies correspond to Cooperate and Defect respectively), we have a situation where the 
attributes of conservatives that are not based on payoff considerations lead to more cooperation in the popula-
tion. We return to this point in the final Discussion section.

Opting out in the multi‑player ( m > 2 ) public goods game.  When m > 2 , the number of PGG with 
opting out grows exponentially in terms of group size, making the mathematical analysis more complex. Moreo-
ver, far worse from a theoretical perspective, the game cannot be solved analytically when m > 2 and coexistence 
NE have to be determined numerically (see subsection Numerical methods when m > 2 ). Here, we restrict our 
discussion for the most part to four-player PGG (i.e., m = 4 ) with opting out since the number of such games 
(i.e., 25 = 32 ) remains manageable. Another reason is that most game experiments on PGG (e.g.,30–32) assume 
a group size of four.

First, suppose that opting out is based on single-round payoff. It is then intuitively appealing to consider 
those opting out rules based on a threshold level of Cooperators in your group19. Specifically, suppose that if an 
individual opts out when in a group with k Cooperators, s/he will also opt out when in a group with k − 1 Coop-
erators since an individual’s single-round payoff increases as the number of Cooperators in the group increases. 
Under our assumption that all Cooperators use the same opting out rule as do all Defectors, there then exists 
a threshold k∗ such that the group with k Cooperators disbands after the first round if and only if k < k∗ (i.e., 
τk = 1 and τk = τ if k < k∗ and k ≥ k∗ respectively).

The NE of the resulting games for m = 4 are provided in Fig. 2 for threshold values k∗ = 4 (panels A, B), 
k∗ = 3 (panels C, D), k∗ = 2 (panels E, F) and k∗ = 1 (panels G, H). In contrast to the results for two-player 
games in the previous section, stable coexistence may emerge in the same game for both r < m and r > m 
(specifically when k∗ = 3 or k∗ = 2 in Fig. 2 panels C and E respectively). Moreover, the two interior NE (when 
they exist) are no longer symmetric about NC = N/2 . More importantly, it is no longer clear which opting out 
rule among these four based on single-round payoffs is the best at promoting cooperation. For instance, the rule 
with threshold k∗ = 4 (i.e., the group disbands after the first round unless all members Cooperate) has the lowest 
value of both r (Fig. 2 panel A compared to C, E and G) and τ (Fig. 2 panel B compared to D, F and H) where a 
stable coexistence NE exists. This rule also has the highest level of cooperation. On the other hand, threshold 
k∗ = 4 does not always have the largest domain of attraction for a stable interior NE. The domain of attraction 
for a stable interior NE in Fig. 2 (when this NE exists for a given τ and r < m ) is the vertical interval from the 
unstable interior NE (i.e., the dashed curve) to NC = 100 . For instance, as determined numerically by compar-
ing the top four left panels of Fig. 2, the largest domain of attraction (for the parameters used in Fig. 2 for the 
four-player PGG) is in panel E ( k∗ = 2 ) when 3.11 < r < 4 , it is in panel C ( k∗ = 3 ) when 2.88 < r < 3.11 and 
it is in panel A ( k∗ = 4 ) when 2.57 < r < 2.88.

Second, when opting out is not generated by preferences based on single-round payoffs, other opting out 
rules are possible. For example, in the parallel universe where individuals prefer to be with Defectors, they might 
opt out when the number of Defectors is below the threshold k∗ . For m > 2 , such an opting out rule no longer 
generates the identical game as the corresponding rule that applies this threshold to the number of Cooperators. 
However, there is a symmetry between these two games’ fitness functions and interior NE given by the following 
general result (proved in the electronic supplement) that holds for all m ≥ 2.

Theorem 1 

(a) Given NC , ND and {τ0, τ1, . . . , τm} , suppose that nk is the equilibrium group distribution. Then n′k ≡ nm−k 
is the equilibrium group distribution given N ′

C ≡ ND , N ′
D ≡ NC and {τ ′0 ≡ τm, τ

′
1 ≡ τm−1, . . . , τ

′
m ≡ τ0} . Fur-

thermore, �′
C = (r + 1)E −�D and �′

D = (r + 1)E −�C at these two distributional equilibria.
(b) If NC , ND is an interior NE for {τ0, τ1, . . . , τm} , then N ′

C ≡ ND , N ′
D ≡ NC is an interior NE for 

{τ ′0 ≡ τm, τ
′
1 ≡ τm−1, . . . , τ

′
m ≡ τ0} . Furthermore, the stability at these two NE is opposite (i.e., if the interior 

original NE is stable, the primed one is unstable).

The symmetry contained in this Theorem is illustrated in Fig. 2 where interior NE in panels I, J for 
τ0 = τ , τ1 = ... = τ4 = 1 are the reflection (in NC = N/2 ) of those in panels A, B for τ0 = ... = τ3 = 1, τ4 = τ . 
We see that these have interior NE for the same values of r (left panels) and for the same values of τ (right panels). 
Which opting out rule is better is debatable since opting out if there is a Defector in the group (panel A) has a 
higher level of cooperation at the stable interior NE but opting out if there is a Cooperator (panel I) has the larger 
domain of attraction. It should also be noted that there are opting out rules not shown in the figure (e.g., opt out 
if there are an odd number of Cooperators in your group) for which there are four interior NE (two stable and 
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Figure 2.   NE of the simplified repeated PGG with opting out for groups of four players ( m = 4 ) where the 
expected number of rounds τ when players do not opt out is 5 (respectively, τ > 1 ) in the left (respectively, right) 
panels. Solid lines denote stable NE, dashed lines denote unstable NE. For the first four rows starting at the top, 
the group disbands if and only if it has fewer that k∗ Cooperators in it where k∗ = 4 in panels A and B, k∗ = 3 in 
panels C and D, k∗ = 2 in panels E and F, k∗ = 1 in panels G and H. Row five (panels I and J) assumes that the 
group disbands if and only if it contains at least one Cooperator. Row six (panels K and L) assumes the group 
disbands if and only if it is heterogeneous. Other parameters used in simulations: N = 100 , E = 1 , τ = 5 in left 
panels and r = 3 in right panels.
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two unstable) for some r < m = 4 . The unstable NE and endpoints then partition the vertical axis into intervals. 
The domain of attraction of a stable NE is then the interval containing it in this partition.

Based on the above comparisons of opting out rules corresponding to a threshold level of Cooperators, it 
appears unlikely that PGG games generated by a single opting out rule can always outperform all others at pro-
moting cooperation. By extensive numerical calculations, we examined PGG with opting out for groups of size 
m = 2, 3, . . . , 10 and maximum number of rounds played by a group fixed at τ = 5 . For example, when m = 10 , 
there are 211 = 2048 such PGG games opting-out. Table 1 summarizes, for each of these group sizes, the best 
opting out rule(s) in the sense that they have the minimum enhancement factor r at which a stable coexistence 
NE appears. For m = 2, 3, 4 , opting out if and only if some member of your group does not play your strategy out-
performs all other opting out rules. As indicated in Table 1, this rule generates the PGG game where τ0 = τm = 5 
and τk = 1 for k = 1, 2, . . . ,m− 1 . These games correspond to Figs. 1G and 2K for m = 2 and m = 4 respectively 
where all groups disband immediately (i.e., after one round) unless all group members are cooperating, or all 
are defecting. For m ≥ 5 , there are two games, which are symmetric versions of each other, that provide the 
minimum enhancement factor (see Table 1). Again, homogeneous groups do not disband voluntarily. However, 
there is also a threshold level where heterogeneous groups disband immediately if the number of Cooperators 
is below this threshold (or above a threshold in the symmetric case). For example, when m = 5 , heterogeneous 
groups with fewer than 4 Cooperators disband immediately under the opting out rule 511155.

We also calculated numerically the best opting out rule when τ varies. For each group size m = 2, 3, . . . , 6 , 
a minimum level exists for τ given in Table 2 for which the best rule is to opt out if and only if some member 
of your group does not play your strategy whenever τ is at or above this minimum. Since τ ≥ 2 in our repeated 
PGG games, this rule is best for all τ when m = 2, 3 as indicated in Table 2. On the other hand, when m = 4, 5, 6 , 
below the minimum given in Table 2, there are again two best opting out rules (that depend on τ ), which are 
symmetric versions of each other, analogous to Table 1 with 5 replaced by τ for m ≥ 5 . That is, if groups that do 
not disband voluntarily are expected to stay together for sufficiently many rounds, PGG games generated by 
opting out if and only if the group is heterogeneous outperform all others at promoting cooperation.

Methods
Fitness functions.  To determine fitness functions in the classic single-round PGG with strategy set {C,D} , 
groups of size m are assumed to form at random from a large pool of individuals. The probability that a group has 
k Cooperators is then given by the binomial distribution with respect to the frequencies of C and D in the pool. 

Table 1.   The best opting-out rules for emergence of cooperation when the maximum number of rounds is five 
(i.e., τ = 5).

Group size m Best opting-out rule(s) Minimum enhancement factor r

2 515 1.2

3 5115 1.5

4 51115 2

5
511155 2.43

551115

6
5111555 2.88

5551115

7
51115555 3.34

55551115

8
511155555 3.80

555551115

9
5111555555 4.26

5555551115

10
51115555555 4.72

55555551115

Table 2.   The minimum number of rounds τ for which the best opting out rule has the form τ , 1, . . . , 1, τ , as a 
function of the group size m.

m Minimum τ

2 2

3 2

4 5

5 17

6 50
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From this distribution, the expected payoffs to C and D (i.e., their fitnesses) are determined as functions of these 
frequencies. Since the payoff to D is always greater than the payoff to C (since the enhancement factor is assumed 
to be smaller than the number of players in the group, i.e., r < m ), the game solution is all D.

To analyze our m-player two-strategy game, these steps must be generalized to repeated games where the pool 
of individuals forming new groups depends on the number of rounds groups with k Cooperators are expected to 
play. When m = 2 , this has been done by Křivan and Cressman12 (see also12,33–36) through introducing and ana-
lyzing the pair formation dynamics. To extend their method to our m-player game, assume there is a population 
of Cooperators and Defectors of total size N where N ≫ m is very large (so that finite population effects can be 
ignored) and a multiple of m. There are then N/m groups. A group with k Cooperators plays an average τk rounds 
( τk ≥ 1 ) before disbanding following a Poisson process. That is, on average, nk/τk of these groups disband after a 
given round where nk is the number of groups in the current round with k Cooperators. Thus, there are, on aver-
age, nC ≡ n1

τ1
+ 2 n2

τ2
+ · · · +mnm

τm
 single Cooperators and nD ≡ mn0

τ0
+ (m− 1) n1

τ1
+ (m− 2) n2

τ2
+ · · · + nm−1

τm−1
 sin-

gle Defectors at the end of the current round. These singles immediately form new groups of m players at random.
Thus, the number of new groups with k Cooperators in the next round will be pk( n0τ0 + n1

τ1
+ n2

τ2
+ · · · + nm

τm
) 

where pk is the binomial distribution, i.e.,

Furthermore, the number of groups with k Cooperators in the next round n′k is then given by the following 
discrete-time distribution dynamics (called the group formation dynamics)

Our repeated PGG is then defined at fixed population size N by (pure) strategy space {C,D} and an individual’s 
fitness given by his/her expected payoff per round at the equilibrium distribution of (4). Fitness is then a func-
tion of the total numbers NC and ND of Cooperators and Defectors, respectively, where NC + ND = N is fixed. 
In fact, since the binomial distribution (3) depends only on the frequencies of single Cooperators and single 
Defectors, the equilibrium distribution is actually a function of the frequency of Cooperators and Defectors (i.e., 
it only depends on the population size N through a multiplicative factor). For example, let us consider a focal 
Cooperator. Since there are knk Cooperators in groups with k Cooperators, the probability that a Cooperator is 
in a group of k Cooperators is knkNC

 (where NC = �m
i=0ini ) and this Cooperator receives payoff πC(k) . That is, the 

fitness �C of a Cooperator defined as the average payoff is

where nk is at the equilibrium distribution of (4) for the total numbers NC and ND of Cooperators and Defec-
tors. We note that �C in (5) is indeterminate when NC = 0 . In this case, we define �C as the invasion fitness of 
a Cooperator in a population of all Defectors. This is given by πC(1) = rE

m  and is also equal to limNC→0 �C . The 
invasion fitness of D in an all C population is �D = πD(m− 1) = (1+ r)E − rE

m  . Similarly, the fitness �D of a 
focal Defector is

since there are (m− k)nk Defectors in groups with k Cooperators.

All groups play the same expected number of rounds.  When all τk are equal to τ ≥ 1 as in the typical 
repeated PGG, then the unique equilibrium of (4) as a function of NC and ND is the binomial distribution scaled 
by the number of groups. That is,

To see this, note that n0
τ0

+ · · · + nm
τm

= N
mτ

 , the number of single Cooperators nC = NC
τ

 and the fraction of 
single Cooperators among all singles nC

nC+nD
= NC

N  . Then, at the equilibrium of (4), nk = pk
N
m . Thus, since the 

equilibrium distribution is independent of τ , the fitness functions are the same as those of the single round PGG 
(i.e., τ = 1 ) and so their stable NE are also the same.

Analytic methods when m = 2.  For m = 2 we can calculate the interior NE analytically. When 
τ 21 − τ0τ2 = 0 the distribution of pairs at the equilibrium of (4) is given by the Hardy–Weinberg proportions

and the difference �C −�D reduces to 12E(r − 2) . This implies that the only NE is all D (respectively, all C) when 
r < 2 (respectively, r > 2 ), and the whole vertical segment 0 ≤ NC ≤ N is a set of NE when r = 2.

(3)pk =
(
m

k

)(
nC

nC + nD

)k( nD

nC + nD

)m−k

.

(4)n′k = nk −
nk

τk
+ pk

(
n0

τ0
+ · · · +

nm

τm

)
, k = 0, . . . ,m.

(5)�C =
1

NC

m∑

k=0

knkπC(k) =
1∑m

i=0 ini

m∑

k=0

knkπC(k)

(6)�D =
1

ND

m∑

k=0

(m− k)nkπD(k) =
1∑m

i=0(m− i)ni

m∑

k=0

(m− k)nkπD(k)

nk =
N

m

(
m

k

)(
NC

N

)k(ND

N

)m−k

.

(7)n0 =
(N − NC)

2

2N
, n1 =

NC(N − NC)

N
, n2 =

N2
C

2N



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19511  | https://doi.org/10.1038/s41598-020-76506-3

www.nature.com/scientificreports/

When τ0τ2  = τ 21  , there exists a unique group distribution equilibrium

When τ0τ2 > τ 21  , it is straightforward to show that n0 and n2 in (8) are larger than the Hardy-Weinberg pro-
portions in (7). That is, there is positive assortment of Cooperators and of Defectors. Similarly, there is negative 
assortment when τ0τ2 < τ 21  . Interior NE exist and are given by

when τ0τ2 > τ 21  (respectively, τ0τ2 < τ 21  ) if and only if

From (8) and (9), we observe that the equilibrium group distribution and the NE depend on τ0 and τ2 only 
through their product τ0τ2 . In particular, since τ0τ2 = τ and τ1 = 1 for opting out if your opponent Defects (i.e., 
the group disbands if at least one member Defects) as well as for opting out if your opponent Cooperates, these 
two PGG are identical games (i.e., they have the same fitness functions and NE). Furthermore, for these two 
games, the interior NE emerges when 1+ 1√

τ
< r (i.e., when τ > ( 1

r−1 )
2 ) if r < 2.

From (10), we also observe that the minimum (respectively, maximum) value of r for which the interior NE 
exists is achieved when τ1 = 1 (respectively, τ1 = τ ) and τ0 = τ2 = τ (respectively, τ0 = τ2 = 1 ). Criterion (1) 
and Criterion (2) follow from this minimum value. From (9), the domain of attraction of the stable interior NE 

is the open interval 12N
(
1−

√
(r−1)2τ0τ2−τ 21
(r−1)2(τ0τ2−τ 21 )

)
< NC < N  . Criterion (3) follows from the strict inequality 

√
(r−1)2τ0τ2−τ 21
(r−1)2(τ0τ2−τ 21 )

<

√
(r−1)2τ 2−1
(r−1)2(τ 2−1)

 which holds unless  τ0 = τ2 = τ  and τ1 = 1 .  Final ly,  s ince 

1
2N

(
1+

√
(r−1)2τ0τ2−τ 21
(r−1)2(τ0τ2−τ 21 )

)
< 1

2N
(
1+

√
(r−1)2τ 2−1
(r−1)2(τ 2−1)

)
 unless τ0 = τ2 = τ and τ1 = 1 , opting out if your group 

is not homogeneous has the higher level of cooperation at the stable interior NE (Criterion (4)).
Note that, when r = 2 , there are no interior NE if τ0τ2  = τ 21  (Fig. 1, left panels). To see this, we observe that

Then �C  = �D if NC and ND = N − NC satisfy 0 < NC ,ND < N since

which is equivalent with 4N2
C

(
τ 21 − τ0τ2

)2
(NC − N)2/N2 > 0. On the other hand, all D is a NE since 

then �D = πD(0) = E and the invasion fitness of C is �C = πC(1) = rE
m = E . All C is also a NE since 

�D = πD(m− 1) = (1+ r)E − rE
m = 2E and �C = πC(m) = 2E . Neither of these are strict NE since �C = �D 

at all D and at all C. This same argument shows that all D (respectively, all C) is a strict NE if and only if r < m 
(respectively, r > m ) when m = 2.

Numeric methods when m > 2.  When m > 2 , neither the equilibrium group distribution of (4) 
nor coexistence NE can be calculated analytically. Since these NE satisfy �C = �D where �C and �D are 
given by (5) and (6), respectively, together with equations describing the equilibrium group distribution 
nk
τk

= pk(
n0
τ0

+ · · · + nm
τm

), k = 0, . . . ,m (see subsection Fitness functions in “Methods” section), we solve 
these equations numerically in Mathematica37 assuming total population size N = 100 . In particular, plots in 
Fig. 2 for m = 4 were obtained by solving these equations for unknowns r, n0 , n1 , n2 , n3 , n4 for each NC between 
0 and 100, with step 1 (i.e., NC = 0, 1, 2, 3, 4, 5, 6, ...., 100 ). Figures 1 and 2 show that there can be several NE for 
a given enhancement factor r. However, only those corresponding to the solid line are stable with respect to evo-
lutionary dynamics. For fixed r and τ , these NE satisfy the condition that �C > �D for NC slightly below the NE 
and �C < �D for NC slightly above since nearby trajectories of the evolutionary dynamics then converge to such 
a NE. Based on these stability conditions, stable NE can be determined analytically for m = 2 . When m > 2 , the 
fitness differences �C −�D are examined numerically instead.

(8)

n0 =
τ 21 (N − 2NC)+ 2τ0τ2 (NC − N)+

√
τ 41 (N − 2NC)2 + 4NCτ0τ2τ

2
1 (N − NC)

4
(
τ 21 − τ0τ2

) ,

n1 =
Nτ 21 −

√
τ 41 (N − 2NC)2 + 4NCτ0τ2τ

2
1 (N − NC)

2
(
τ 21 − τ0τ2

) ,

n2 =
τ 21 (2NC − N)− 2NCτ0τ2 +

√
τ 41 (N − 2 NC)2 + 4NCτ0τ2τ

2
1 (N − NC)

4
(
τ 21 − τ0τ2

) .

(9)NC =
1

2
N

(
1±

√
(r − 1)2τ0τ2 − τ 21

(r − 1)2(τ0τ2 − τ 21 )

)

(10)1+
τ1√
τ0τ2

≤ r < 2

(
respectively, 2 < r ≤ 1+

τ1√
τ0τ2

)
.

�C −�D =
E

(
4(N − NC)NC

(
τ 21 − τ0τ2

)
− 2N

(
Nτ 21 −

√
τ 41 (N − 2NC)2 + 4NCτ0τ2τ

2
1 (N − NC)

))

4 (N − NC)
(
τ 21 − τ0τ2

) .

4(N − NC)NC(τ
2
1 − τ0τ2) > 2N

(
Nτ 21 −

√
τ 41 (N − 2NC)2 + 4NCτ0τ2τ

2
1 (N − NC)

)
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To generate Table 1, we also calculated the minimum enhancement factor r at which the interior NE occurs 
for all PGG with opting out and at most five rounds in a game for each group size m = 3, . . . , 10 . For example, 
when m = 4 , the minimum r was calculated numerically over NC = 0, . . . , 100 for all combinations of τ0, . . . , τ4 
where τi ∈ {1, 5} , i = 0, . . . , 4.

Discussion
We conclude that, to promote cooperation in the PGG when the expected time a group remains together depends 
on the number of Cooperators in the group, it is best if players base their decision to opt out on the homogene-
ity of their current group in order that the group disbands after one round if and only if it is heterogeneous. In 
particular, players then resist the appeal of basing their decision to opt out on single-round payoffs since this 
approach suggests they should be more prone to opt out as the number of Defectors in their group increases. 
Although there is evidence that players in game experiments on social dilemmas9,15 do opt out more against 
Defectors, there are also instances where intolerance to individuals who are not like-minded is an important 
aspect of individual behavior. For example, Aksoy38 found that the level of cooperation with a like-minded 
individual (called an in-group member) was higher than with an out-group member. Similarly, Koger et al.29 
analyzed cooperation between party factions in the United States, finding that there was a considerable amount 
of cooperation among different factions of the Democratic Party and, to a lesser extent, among different factions 
of the Republican Party.

To continue the left-right analogy started at the end of Section Opting out in the two-player public goods 
game, suppose that, for the sake of argument, the two types of behaviors are called left and right and that they 
correspond to Cooperate and Defect respectively in an m-player PGG. That is, an individual on the right does 
better than one on the left when the right-left distribution of other group members is fixed while the group does 
best if it consists of all left individuals. Then, if the expected time that a group stays together does not depend 
on its distribution of right-left individuals, the right wins (i.e., the stable NE is that all individuals become right) 
and everyone does poorly. On the other hand, individuals on the right often prefer like-minded individuals. For 
example, Altemeyer39 shows that Republicans exhibit the traits of right-wing authoritarians much more that 
Democrats and, according to Wikipedia40, such authoritarians are “hostile and punitive” towards people who, 
unlike them, do not adhere to societal norms. Our results show that such a preference may lead to a stable mixture 
of left and right individuals in the population. In fact, suppose this preference is so strong that right-minded 
individuals will force the group to disband if it contains any left members. This intolerance of the left overrides 
payoff consequences for these individuals in that their payoff would be higher if they were part of a group that 
contains some left members. Then the left can actually win, especially if right groups tend to stay together for a 
long time τ , in that the population evolves to most individuals becoming left (Figs. 1F,H, 2J,L). This conclusion 
does not depend on whether the left opts out (specifically, it is independent of the expected number of rounds 
an all left group stays together). That is, intolerance of the right leads to its downfall. This Achilles heel of the 
right is even more pronounced if individuals on the left also prefer to be with like-minded individuals (compare 
Fig. 1 panel F to H and Fig. 2 panel J to L) since the left then wins for smaller values of τ.

Interestingly, the left also wins if they are intolerant (i.e., left individuals force their group to disband if it 
contains any right individuals) independent of whether right individuals opt out. In fact, for two-player PGG, 
the same outcome occurs when it is only all left groups that stay together (Fig. 1A,B) as when it is only all right 
groups (Fig. 1E,F). On the other hand, for four-player PGG, the invasion of the all D population configuration 
by the left occurs more readily when only the all right group stays together (Fig. 2J) compared to when only the 
all left group stays together (Fig. 2B).

Our analysis of the effects of opting out in the repeated PGG has concentrated on examining the NE structure 
of two-strategy games where each player is either a Cooperator (i.e., plays C for the entire game) or a Defector 
(D) and all Cooperators have the same opting out rule as do all Defectors. We are particularly interested in how 
these rules affect the level of cooperation at the stable NE of these games. For two-player PGG (i.e., m = 2 ), our 
analytic results show that opting out against Defect leads to stable coexistence of C and D in the population. This 
outcome is similar to previous theoretical and empirical studies for the repeated Prisoner’s dilemma (PD) game 
(e.g.,9–12,15) and consistent with the finding that group partners are more cooperative when committed to each 
other in two-player repeated PGG16. On the other hand, it is also shown that opting out if your partner does not 
share your strategy leads to the highest possible level of cooperation due to the increased positive assortment 
of CC and DD pairs.

Our extensions of these results to multi-player (i.e., m > 2 ) PGG, where analytic methods are no longer pos-
sible, are of equal or greater importance. As shown by extensive numerical calculations, when groups that do not 
disband immediately are expected to stay together for a large number of rounds, the repeated PGG game with 
opting out that best promotes cooperation now emerges when all heterogeneous m-player groups immediately 
disband, an outcome that occurs if Defectors are completely intolerant of Cooperators. As far as we are aware, 
this theoretical prediction has not been tested either in game or other social experiments and we hope this article 
will motivate researchers to do so.
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