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Improving single pixel imaging 
performance in high noise 
condition by under‑sampling
Fangyuan Sha1, Sujit Kumar Sahoo1,2, Huy Quoc Lam3, Beng Koon Ng1 & Cuong Dang1*

Single‑pixel imaging could be a superior solution for imaging applications where the detector 
array is very expensive or not even available. Sampling order, sampling ratio, noise and type of 
transforms affect the quality of the reconstructed image. Here, we compare the performance of 
single pixel imaging (SPI) with Hadamard transform (HT) and discrete cosine transform (DCT) in 
the presence of noise. The trade‑off between adding image information and adding noise in each 
coefficient measurement results in an optimum number of measurements for reconstruction image 
quality. In addition, DCT shows higher image quality with fewer measurements than HT does. 
We then demonstrate our SPI with optimum sampling strategy for a large set of images and lab 
experiments and finally put forward a quality control technique, which is corroborated by the practical 
experiments. Our results suggest a practical approach for SPI to improve the speed and achieve the 
highest possible image quality.

Digital imaging has been based on a 2D detector array (or a 2D pixel array) that samples the intensity of the 
field at a regular interval in  space1,2. Recently, there has been a rapid development of single-pixel imaging (SPI) 
 technology1,3–24 which uses only one detector to sample the intensity of the field  sequentially17. The sampling 
mechanism can be at the illumination side, while the detection measures the response of the scene for each illu-
mination pattern, which is often referred to as computational ghost imaging. Another approach is to sample the 
image at the imaging plane using programable masks. The two schemes are mathematically the same and have 
been developed  parallelly25. The cost reduction for detectors becomes obvious, especially in the case of imaging 
in ultraviolet or infrared spectrum where a detector array is very costly or even not available. Because a single 
bucket detector only measures the sum of light intensity, the signal can be very strong and the measurement can 
tolerate even highly scattering media between the patterned illuminated field and the  detector18.

Because of the sequential sampling mechanism, we need a good solution to reduce time for measurement 
and calculation, which are all scaled by the resolution requirement (total pixel number) of the final  image12,26. 
A straightforward way is to increase the sampling speed, which was demonstrated successfully with structured 
illumination using a high-speed LED  array27. Different approaches have been also proposed to reduce the num-
ber of measurements. One can simply do under-sampling; and others do compressive sensing or even adaptive 
sensing. Compressive sensing uses random-based patterns to illuminate the object while the other approaches 
utilize orthogonal-based patterns. Significant achievements have been reported on reduction of measurements, 
shorter computational time, and improved imaging  quality5,8,12,14,22,28–32. However, compressive sensing or adap-
tive sensing requires complicated algorithms which could cost even longer computational time than actual 
measurement time, and hence apparently is unacceptable in live high-speed  imaging8,12,14,22,32. In addition, these 
algorithms are more sensitive to measurement noise. On the other hand, the calculation time for the under-
sampling method is negligible. We can get comparable performance to compressive or adaptive sensing, and 
even better performance when we consider them in the same imaging time (measurement time + computational 
time). More importantly, by controlling the sampling ratio in the under-sampling approach, the quality control 
strategy for the SPI technique can be made a  priory3,18,19,33,34.

Currently, orthonormal transforms used for under-sampling are usually Fourier transform (FT) and HT. 
Zhang and colleagues have given a comparison between HT and  FT19. FT single-pixel imaging is more efficient for 
the under-sampling approach than HT single-pixel imaging (HT-SPI) because more signal energy concentrated 
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at low frequency patterns for most images in real life. FTs generate complex coefficients, which leads to doubling 
the number of measurements. The image quality of the FT comes at the cost of significantly long measurement 
time and ruins the advantages of under-sampling. In contrast, DCT as an alternative to FT, is also introduced in 
 SPI23,35–43. Similar to HT, DCT generate real coefficients, reducing the number of measurements significantly. A 
detailed comparison between HT and DCT for SPI in terms of image quality, noise robustness and the efficiency 
of measurement becomes important for real applications.

In this paper, we discuss the SPI technique in practical applications where the effects of noise and the illumi-
nation pattern’s bit-depth are present. When the signal to noise ratio (SNR) of each measurement is low, some 
of the measurements will add more noise than information for reconstruction. In this situation, it is unwise 
to improve the quality of a reconstructed image simply by increasing the amount of measurement until full 
 sampling13,17. More specifically, we present a comparison between HT-SPI and DCT-SPI in terms of reconstruc-
tion image quality, noise robustness by both simulation analysis and lab demonstration. We also put forward a 
quality control method to increase efficiency of measurements, thus, reducing the measurement time without 
compromising the computational time.

Single‑pixel imaging with HT and DCT
Here we analysed SPI with HT and DCT by consideration of practical applications where illumination patterns, 
their bit-depth and measurement noise play important roles. For realistic pattern illumination (non-negative 
intensity), we add 1 in the transform basis. The inverse transform patterns can be generated by the following 
equation:

D−1 is the inverse transform and δD suits Eq. (6):

Sources of noise could be from environment, detectors and illumination sources affecting the signal quality 
directly. The bit-depth of illumination patterns indicates how precise the illumination source is in displaying the 
grey-scale patterns. Obviously, low bit-depth of illumination patterns would reduce the imaging quality of the 
DCT-SPI, while the HT-SPI based on binary patterns is immune to this effect. The bit-depth of analog to digital 
conversion (ADC) in the detector would play an important role in SPI as well; however, current technology can 
easily access very good detectors (more than 10-bit ADC). Here, we do not discuss the quantization of the detec-
tor and 12-bit and 10-bit ADCs are used in our simulation and lab demonstration, respectively.

Quantization of illumination patterns. While HT only needs 1-bit for illumination patterns, DCT 
requires more bits because poor quantization will affect the orthogonality of the DCT patterns, leading to low 
reconstruction quality. Figure 1a shows the patterns of a typical DCT displayed by a projector at different quan-
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Figure 1.  (a) Quantized patterns of DCT-SPI at different bit-depth level of 1, 2, 4, 12, 16 bits (b) SSIM as 
a function of sampling ratio at different quantization levels with measurement SNR of 40 dB. (c) SSIM at 
100% number of measurements as a function of illumination pattern’s bit-depth (d) SSIM at 50% number of 
measurements as a function of illumination pattern’s bit-depth.
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tization levels (from 1 to 16 bits). The higher the bit-depth is, the closer the pattern is to the expected DCT. The 
patterns for HT are always binary images, which are displayed similarly to the 1-bit pattern in Fig. 1a. We use the 
SSIM (structural similarity index) to describe the quality of the reconstructed image with respect to the original 
one (the ground truth)44. The value of 1 implies complete similarity or best reconstruction image. To make sure 
of the practicability of simulation, we add low noise with an SNR of 40 dB into the measurement signal. In addi-
tion, to having an accurate quality assessment of the reconstruction images, we select 12 images randomly from 
the USC-SIPI image database, convert to 64 × 64 pixel resolution as ground truth images for the experiment; 
then the SSIM scores of all reconstructed images are averaged.

Figure 1b shows the performance of HT-SPI and DCT-SPI at different quantization levels. For 64× 64 reso-
lution, the full sampling number is 4096. The sampling process acquires the transform coefficients from low 
to high frequency patterns in sequence as more energy of natural images is concentrated in the low-frequency 
bands. When the bit-depth is too low (≤ 2 bits), the pattern digitalization noise dominates the information 
contribution of high frequency patterns, creating low quality images. With higher bit-depth (≥ 3 bits), the SSIM 
increases monotonically with a greater number of samples. Figure 1c presents the maximum SSIM of DCT-SPI 
as a function of the illumination pattern’s bit-depth in comparison to HT-SPI. With patterns of less than 3 bits, 
the maximum SSIM of DCT-SPI is lower than 0.8. Current display technology can easily achieve 8-bit grey scale 
display, for which the maximum SSIM for DCT-SPI could reach unity with full sampling number, similar to HT-
SPI. However, as presented in Fig. 1b, the SSIM of DCT-SPI increases faster than that of HT-SPI at low frequency, 
i.e. the DCT-SPI achieves higher quality images than HT-SPI does at a low number of samples (sub-sampling). 
This implies that the DCT concentrates more information of an image than the HT does in low frequency pat-
terns; while more information can be extracted with the HT for high frequency patterns. Figure 1d presents 
SSIM with only 50% sampling as a function of illumination pattern’s bit-depth. DCT-SPI has apparently higher 
SSIM as long as the pattern bit-depth is at least 4.

Effect of noise and under‑sampling solution for SPI. Current 8-bit display technology can solve the 
digitalization noise of illumination patterns and allows DCT-SPI to achieve image quality equivalent to HT-SPI, 
which is immune from this noise. It is worth investigating the performance of SPI with other types of noise, 
which affect both HTs and DCTs. Figure 2 presents the image SSIM for both DCT-SPI and HT-SPI as a func-
tion of sampling ratio. Here, we use 8 bits for DCT illumination patterns. For high SNR (30–40 dB), the image 
information carrying in each illumination pattern will enhance image quality and the SSIM reaches maximum at 
full sampling for both DCT-SPI and HT-SPI. However, larger system noise (low SNR, typically less than 30 dB) 
has a more serious effect on the high frequency patterns where the noise can dominate the image information 
carried in each pattern.

Initially, measurements for low frequency patterns capture more information about image information; there-
fore, the SSIM sharply increases at first. Then it reaches a plateau, or even decrease for lower SNR. This implies 
that the measurements with high frequency patterns cannot capture more image information than noise. This 
observation is consistent in both DCT-SPI and HT-SPI. Therefore, we should take a lower number of measure-
ments (under-sampling) for optimal image quality, which is an important contribution for practical applications.

However, because the DCT concentrates more image information in low frequency patterns, as discussed in 
Fig. 1b, we expect superior performance in low SNR compared to HT. Figure 3a shows the relationship between 
the system SNR and maximum SSIM, which is the highest SSIM of corresponding curve in Fig. 2. It is obvious 
for both DCT and HT that increasing SNR of measurement, the reconstruction quality will be better, resulting 
in higher achievable SSIM. When the noise is super-high (SNR < − 40 dB), both the DCT and HT do not really 
reconstruct the image, i.e. SSIM ~ 0. At the other extreme (noise level is very low, i.e. SNR > 10 dB), we do not 
see a noticeable difference of maximum SSIM between DCT-SPI and HT-SPI. In the low SNR region (from – 40 

0 50 100
Sampling Ratio (%)

0

0.2

0.4

0.6

0.8

1

SS
IM Discrete Cosine

Transform

0dB
10dB
20dB

30dB
40dB

0 50 100
Sampling Ratio (%)

0

0.2

0.4

0.6

0.8

1

SS
IM Hadamard

Transform

0dB
10dB
20dB

30dB
40dB

(a) (b)

Figure 2.  The quality of reconstructed images by DCT-SPI (a) and HT-SPI (b) as a function of the sampling 
ratio at different SNR.
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to 10 dB), the best achievable SSIM for DCT-SPI is slightly higher than that for HT-SPI. However, the most 
significant advantage of DCT-SPI is the sampling ratio that obtains the maximum reconstruction SSIM.

Figure 3b shows the sampling number to get the best reconstruction SSIM as a function of the system SNR. 
It is remarkable that the DCT requires less samples to get the best reconstruction performance compared to the 
HT for SPI for SNR ranging from – 20 to 40 dB. In other words, the DCT is more efficient in sample utilization 
than the HT. An important conclusion here is that DCT-SPI can reconstruct higher quality images with a fewer 
number of measurements in comparison with HT-SPI, especially for noisy conditions. This is a crucial point for 
SPI in gaining both image quality and frame rate.

Validation of the under‑sampling solution. Here, we would like to demonstrate our under-sampling 
strategy with SPI for a larger set of new images. We randomly selected 300 images from DIP4E Global Student 
Support  Package45 for the test. Each image is sampled by the DCT and the HT at full sampling and optimum 
sampling with three different levels of SNR (0 dB, 5 dB and 10 dB). The optimum sampling number (474, 824, 
1284 samples for DCT; 666, 1115, 1742 samples for HT) for each corresponding SNR (0 dB, 5 dB and 10 dB) is 
obtained from Fig. 3b. We show the cumulative relative frequency of SSIM by HT-SPI and DCT-SPI in Fig. 4. 
Apparently, SPI with optimum sampling numbers provides more images at higher SSIM than SPI with full sam-
pling; and DCT-SPI at optimum sampling provides more images at higher SSIM than HT-SPI at optimum sam-
pling. Beside the quality improvement, the advantage of frame rate is also obvious with optimum sampling 
compared to full sampling.

Figure 3.  Performance of SPI with DCT and HT at different noise levels. (a) The dependence of maximum 
reconstruction SSIM on system SNR. (b) Sampling ratio to get the best reconstruction SSIM as a function of 
SNR.

0 0.2 0.4 0.6 0.8 1
SSIM

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

R
el

at
iv

e
Fr

eq
ue

nc
y (a)

Predicted at 0dB Full Sampling at 0dB Predicted at 5dB
Full Sampling at 5dB Predicted at 10dB Full Sampling at 10dB

0 0.2 0.4 0.6 0.8 1
SSIM

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

R
el

at
iv

e
Fr

eq
ue

nc
y (b)

Figure 4.  Cumulative relative frequency of SSIM by (a) DCT-SPI and (b) HT-SPI for different SNR.
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Lab demonstration
Here, we demonstrate the SPI with a projector and a photodetector in the lab. The signal from the photodetec-
tor is read by the data acquisition card (DAQ) and synced with the displayed images (Fig. 5). It is worth noting 
here that the commercial projector (EPSON LCD 430) is set with specific gamma curves from manufacturer to 
enhance displayed colours and contrast for human vision. Our displayed patterns are recalibrated to correct this 
gamma curve and achieve linearity for our SPI. After correction, our projector can display images at about 7-bit 
grey scale, which is sufficient for DCT-SPI to achieve image quality as good as HT-SPI.

After displaying each illumination patterns, we measure 3200 data points of scattered light intensity. Averaging 
all 3200 data points, we have the best measurement (i.e. the highest SNR:  SNR0) for each illumination pattern. 
With full sampling (4096 measurements) and the highest SNR, we achieve the best reconstruction image which 
is considered as the ground truth for subsequence SSIM calculation. The image quality for DCT and HT is iden-
tical in this high SNR scenario; therefore, the calculated SSIM results do not depend on whether DCT or HT 
reconstruction result is chosen as the ground truth. We now randomly select N data points from 3200 original 
ones (N < 3200) for averaging then do image reconstruction. Because the SNR is proportional to  N0.5, we can 
report image quality (SSIM) at different SNR relative to the  SNR0 by choosing different values of N.

Table 1 shows the comparison results for DCT-SPI and HT—SPI with the real objects. The SSIM results are 
presented as the averaging SSIM for 10 different experimental objects, while the images are shown for a hipbone 
model. We can see that only 100 samples (2.5% full sampling number) can give the basic structure of an object for 
DCT-SPI, while HT-SPI needs at least 400 samples to visualize the object structure. At the same under-sampling 
conditions, the image reconstructed by DCT is better with higher SSIM than that by HT. DCT-SPI generates 
smoother images, while HT-SPI generates more-pixelated images as the results of binary illumination patterns. 
For high SNR such as  SNR0 and  SNR0–9, the images become better with increasing sampling number and both 
SPI methods reconstruct equivalently high image quality at full sampling of 4096 samples. However, in the low 
SNR scenario, the image quality does not always increase with more (or full) samplings. For example, at  SNR0–12, 
the SSIM reaches the limit at around 1280 samples for DCT-SPI, the balance between gaining information and 
adding noise makes the image SSIM stable at approximately 0.61 for any greater numbers of sampling. While 
SSIM for HT-SPI monotonically increases with the sampling number. At  SNR0–15, the SSIM is maximum at 
about 1130 samples for DCT-SPI and at about 2670 samples for HT-SPI, then drops at higher sample numbers 
because adding noise is more than gaining information for higher frequency patterns. The experimental results 
are consistent with our simulation results in Fig. 3. In such low SNR scenario, SPI could get the best results and 
highest frame rate by utilizing DCT with only 1000–1200 measurements.

Conclusion. We present a detailed comparison between the DCT and HT for SPI technique in both simula-
tion and experiments. Quantization bit-depth is unique to DCT illumination patterns, which would cause some 
adverse effects if the bit-depth is less than 6 bits. However, current display technology with at least 8-bit grey 
scale does not affect the performance of DCT-SPI. The advantages of DCT-SPI are more obvious in the case of 
low SNR where the competition between imaging information and noise power in each illumination pattern 
plays the key role in image quality. The key message of this work is that the highest image quality does not nec-
essarily need full sampling. The DCT is more efficient than the HT in carrying low frequency image patterns. 
DCT-SPI can achieve higher image quality with a smaller number of samples than HT-SPI, which is especially 
important for SPI performance for a low SNR system. More interestingly, our results suggest an optimum sam-
pling number achieves the best image quality for a specific system SNR. This can save data acquisition (therefore 
increasing the imaging frame rate) and simultaneously produces the best SSIM.

Figure 5.  Experimental setup for SPI in the lab for real object imaging. Inset: The object is illuminated by a 
Hadamard pattern.
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