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Diagnostic accuracy 
of deep‑learning with anomaly 
detection for a small amount 
of imbalanced data: discriminating 
malignant parotid tumors in MRI
Hidetoshi Matsuo1*, Mizuho Nishio1, Tomonori Kanda1, Yasuyuki Kojita1, Atsushi K. Kono1, 
Masatoshi Hori1, Masanori Teshima2, Naoki Otsuki2, Ken‑ichi Nibu2 & Takamichi Murakami1

We hypothesized that, in discrimination between benign and malignant parotid gland tumors, 
high diagnostic accuracy could be obtained with a small amount of imbalanced data when anomaly 
detection (AD) was combined with deep leaning (DL) model and the  L2‑constrained softmax loss. 
The purpose of this study was to evaluate whether the proposed method was more accurate than 
other commonly used DL or AD methods. Magnetic resonance (MR) images of 245 parotid tumors 
(22.5% malignant) were retrospectively collected. We evaluated the diagnostic accuracy of the 
proposed method (VGG16‑based DL and AD) and that of classification models using conventional 
DL and AD methods. A radiologist also evaluated the MR images. ROC and precision‑recall (PR) 
analyses were performed, and the area under the curve (AUC) was calculated. In terms of diagnostic 
performance, the VGG16‑based model with the  L2‑constrained softmax loss and AD (local outlier 
factor) outperformed conventional DL and AD methods and a radiologist (ROC‑AUC = 0.86 and 
PR‑ROC = 0.77). The proposed method could discriminate between benign and malignant parotid 
tumors in MR images even when only a small amount of data with imbalanced distribution is available.

Most parotid tumors are benign, but a small number of malignancies can  occur1. Malignant parotid tumors have 
diverse histological characteristics, and therefore an accurate diagnosis by imaging alone is difficult. In addition, 
the accuracy of benign/malignant discrimination using fine-needle aspiration cytology is  low2 and involves the 
risk of tumor  seeding3. Thus, further improvement of imaging diagnosis is desired.

In recent years, it has been reported that the diagnostic ability of artificial intelligence (AI) systems, such as 
deep neural networks, that is, deep learning (DL), is comparable to or exceeds that of specialists in several medi-
cal  fields4,5. Even though DL models constructed using a large amount of data have achieved promising results, 
it is difficult to obtain an accurate AI model through DL using small or imbalanced datasets. Generally, medical 
image data are difficult to handle owing to the protection of personal information. Furthermore, collecting a 
sufficient number of cases requires a considerable amount of time, resulting in small datasets. Therefore, it is 
difficult to construct an accurate DL model for clinical images of parotid tumors.

We hypothesized that this issue could be resolved by combining feature extraction through DL with anomaly 
detection (AD), which is often used for imbalanced datasets. In addition, to ensure robustness, non-medical 
images were used to train a DL model. The purpose of this study was to differentiate magnetic resonance (MR) 
images of benign/malignant parotid tumors using DL with AD.

Our contributions of this study are summarized as follows. We examined a combination of DL and AD for a 
relatively small dataset with a highly imbalanced distribution. As an example of a small dataset with imbalanced 
distribution, we used a relatively small dataset of MR images to discriminate between benign and malignant 
parotid tumors. To construct a robust and reliable DL model using the dataset, the  L2-constrained softmax loss 
was used for the optimization target. In addition, non-medical images were used for data augmentation. These 
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techniques prevented the model from overfitting in the small dataset. In this method, graphics processing unit 
(GPU) acceleration was not used, and the training of the model was completed in a reasonable amount of time.

Theoretical framework
Diagnostic accuracy equivalent to that of dermatologists was achieved by using a convolutional neural network 
for the classification of skin  cancer5. The application of DL to histopathological tissue samples has been advanced, 
and DL was used for the discrimination of malignant  lymphoma6 and breast  cancer7. Although the detection of 
malignant thyroid and salivary gland tumors using DL has already been reported for histopathological  samples8, 
there have been no reports on DL for the discrimination of parotid gland tumors using MRI images, except for 
reports on texture  analysis9,10.

Training a conventional machine learning algorithm using a small amount of data has achieved promising 
 results4. However, there are only a few reports on  DL11. It is generally known that a large amount of training data 
can lead to better performance, whereas training a DL model on a small amount of data may be difficult. Johnson 
et al. investigated the use of DL in a large amount of highly imbalanced  data12. However, the application of DL 
to a small amount of highly imbalanced data is still unknown.

Materials and methods
This study was conformity with the Declaration of Helsinki and Ethical Guidelines for Medical and Health 
Research Involving Human Subjects in Japan (https ://www.mhlw.go.jp/file/06-Seisa kujou hou-10600 000-Daiji 
nkanb oukou seika gakuk a/00000 80278 .pdf). The requirement to obtain informed consent was waived because 
of the retrospective design. This study was approved by the Kobe University Ethical Committee (Permission 
number: B190167) and carried out according to the guidelines of the committee.

Sample. Magnetic resonance images (T1- and T2-weighted images) of 245 parotid tumors obtained between 
April 2010 and March 2019 were retrospectively collected in a single center. Patient age ranged from 11 to 
86 years (with a median of 56 years). A total of 122 cases were male, and 123 were female. Tumor histopathology 
was confirmed by surgery, whereby 190 (77.6%) tumors were classified as benign, and 55 (22.4%) as malignant 
(Table 1).

The main parameters of MR imaging were as follows: The magnetic field strength was primarily 1.5 and 3 T 
(data distribution is shown in Table 2), slice thickness was 1.5–10 mm, and the matrix size was ranged from 
256 × 256 to 960 × 960. For each case, T1- and T2-weighted grayscale images were cropped by a board-certified 
radiologist (17 years of experience), resulting in images with the largest axial cross-section of the tumor. To 
obtain input to the DL model from the MR images, the cropped T1- and T2-weighted grayscale images were fed 
to the blue and green channels of a pseudo-color image (RGB image), respectively. The red channel was empty. 
Thereby, 245 pseudo-color images were obtained from the MR images, and they were scaled to fit the input size 
of the DL model (Figs. 1 and 2).

The dataset consisting of these pseudo-color images was randomly divided into the training (60%), validation 
(20%), and test set (20%). In the three sets, benign and malignant images were distributed in equal proportions.

Table 1.  Subtypes of parotid tumors and data distribution of the train, validation, and test sets.

Pathological type Training Validation Test Total

Benign tumor 116 38 36 190

Pleomorphic adenoma 81 25 26 132

Warthin’s tumor 18 6 5 29

Other benign tumors 17 7 5 29

Malignant tumor 35 10 10 55

Mucoepidermoid carcinoma 13 3 3 19

Acinic cell carcinoma 5 2 1 8

Malignant lymphoma 5 1 1 7

Other malignant tumors 12 4 5 21

Total cases 151 48 46 245

Table 2.  Magnetic field strength of the MRI equipment.

Magnetic field strength (T) Cases

1.5 204

3.0 35

Others 6

Total cases 245

https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000080278.pdf
https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000080278.pdf
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Data analysis procedures. In this study, a two-stage model was used: The first stage involved a classi-
fication model using a deep convolutional neural network (DCNN), whereas in the second stage, an outlier 
detection method was employed for AD. In the former, a DCNN based on  VGG1613 was used for classification, 
and transfer learning was  performed14. Then, the output of the DCNN before the final output layer (feature 
descriptors) was fed to the local outlier factor (LOF), which was used for outlier  detection15. The LOF classified 
the DCNN feature descriptor as normal (corresponding to benign) or abnormal (corresponding to malignant) 
(Fig. 3).

We used VGG16 attached to Keras (https ://githu b.com/fchol let/keras ) as a DCNN classification model, as 
suggested by the Visual Geometry Group at the University of Oxford in ILSVRC2014. We changed the input 
image size of VGG16 to 100 × 100 pixels, and the loss function was the  L2-constrained softmax, as described in the 
below. The  L2-constrained softmax loss forces the length of feature descriptors x to be a pre-specified constant ( α):

All processing was performed on a PC without a discrete GPU (Core i5 5257U CPU at 2.7 GHz, RAM 8 GB). 
Python (version 3.6.8) (https ://www.pytho n.org) was used as the programing language, and Keras (version 2.1.6) 
and TensorFlow (version 1.13.2) (https ://tenso rflow .org/) were used as the deep learning framework. Adam, 

feature descriptors x →
αx

�x�
.
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Figure 1.  Generation of pseudo-color image from MR images. For each case, T1- and T2-weighted grayscale 
images with the largest axial cross-section of the tumor are cropped. To obtain input to a DL model from 
the MR images, the cropped T1- and T2-weighted grayscale images are fed to the blue and green channels, 
respectively, of a pseudo-color image (RGB image). The red channel of the pseudo-color image is empty.
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Figure 2.  Examples of MR images of benign and malignant tumors. Original MR images (T1- and T2-weighted 
images) and their pseudo-color images of benign and malignant tumors.

https://github.com/fchollet/keras
https://www.python.org
https://tensorflow.org/
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with a learning rate of 1.0 × 10–5, was used as the  optimizer16. Transfer learning was performed by freezing the 
trainable parameters of 10 layers in VGG16, including the convolutional layer. The network was trained using a 
batch size of 1 and up to 500 epochs. The training stopped when the loss of the validation set was not improved. 
In each epoch, all the pseudo-color images of training set as well as the non-medical images from the CUReT 
dataset were processed. The details of the CUReT dataset are described in the following paragraph. The execution 
of all training processes on the PC required approximately half a day.

It is well known that the softmax loss is effective on high-quality datasets with small data variation. However, 
when the data are imbalanced and of poor quality, performance degradation occurs. On the other hand, the 
 L2-constrained softmax loss is known to be effective even for low-quality data with strong  imbalance17. Spe-
cifically, on a hypersphere, minimizing the  L2-constrained softmax loss is equivalent to maximizing the cosine 
similarity for the same category pairs, and minimizing it for different category pairs, thus strengthening the 
feature verification signal. Moreover, the  L2-constrained softmax loss can better classify extreme and difficult 
images because all the feature descriptors have the same  L2-norm17. The  L2- constrained softmax loss is given by

where xi is the input image in a batch of size M , yi is the corresponding class label, and f (xi) is the feature 
descriptor obtained from the penultimate layer of the DCNN classification model. C is the number of classes, 
and W and b are the weights and bias, respectively, for the last layer of the network, which acts as a classifier. In 
the proposed model, M = 1 , C = 3 , and α was set to 80.

In this study, the output of the classification model of a DCNN with the  L2-constrained softmax loss before 
the final output layer (feature descriptor) was fed to the LOF (an abnormality detection method) to classify MR 
images into two groups: normal (benign) and abnormal (malignant). The LOF is an unsupervised AD method 
that computes the local density deviation of a given data point with respect to its  neighbors15. Implementation 
of Scikit-learn was used for the LOF in this  study18. The brute-force search method was used to compute the 
nearest neighbors, and the squared Euclidean distance was used for the distance computation. The local density 
is required to calculate the LOF. The details of the local density are as  follows15:

where lrd
(

p
)

 is the local density of object p ( p ) is represented by the feature descriptor obtained from the DCNN), 
Nk

(

p
)

 is the k-distance neighborhood of p , and d
(
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)

 is the distance between objects p and q in the specified 
space (in this study, the squared Euclidean distance). Using lrd

(

p
)

 , the LOF of p is defined as follows:

where k was set to 5 in this study. The output LOF value was used to determine whether p (tumor) was normal 
(benign) or abnormal (malignant) (Fig. 4).

To improve the robustness of feature extraction in the DCNN classification model, images from the Colum-
bia–Utrecht reflectance and texture database (CUReT)19, which is often used as an artificial texture library, were 
used as a third class in addition to benign and malignant tumors (Figs. 3 and 5). This technique can be regarded 
as data augmentation by adding a non-medical image dataset to a medical image dataset.
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Figure 3.  Scheme of the proposed DCNN classification model (VGG16). Regarding the pseudo-color 
MR image, the categories corresponding to benign and malignant tumors are 0 and 1, respectively. The 
category corresponding to CUReT images is 2. Training is performed as three-class classification using the 
DCNN classification model based on VGG16; its output is the probability of category 0 (benign), category 1 
(malignant), or category 2 (CUReT). DCNN deep convolutional neural network, CUReT Columbia–Utrecht 
reflectance and texture database.
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A combination of conventional augmentation (vertical and horizontal flip, rotation by − 180° to + 180°), ran-
dom  erasing20, and mix-up21 were also performed in every training epoch in the proposed method.

In addition to the proposed method, we evaluated the performance of several DL models and other AD meth-
ods, such as the DCNN classification model alone, a combination of the DCNN classification model and the other 
AD method (one-class support vector machine (OCSVM)), and convolutional variational autoencoder (CVAE)22. 
CVAE is a type of autoencoder used for AD. In addition to  VGG1613, we used  MobileNet23 and  ResNet5024 as 
DCNN classification models. They were included in Keras, and their input image sizes were modified in the 
current study. In addition to the  L2-constrained softmax loss, the conventional softmax loss was also used in the 
DL models. After the output of the DCNN classification model was obtained as a feature descriptor,  OCSVM25, 
which is commonly used for AD, was also evaluated instead of the LOF. As shown, in addition to benign and 
malignant images, images from the CUReT dataset were used as a third class in the proposed method. For com-
parison, the results of training DL models without the CUReT dataset were also evaluated.

Measures. Using the test dataset, we evaluated the diagnostic accuracy of the proposed DL with AD, con-
ventional two-categorical DCNN classification models, and CVAE. In addition to the radiologist who cropped 
the images, another board-certified radiologist with 18 years of experience evaluated his diagnostic accuracy by 
using a 5-point scale: 1 (definitely benign) to 5 (definitely malignant). Receiver operating characteristic curve 
(ROC) analysis and precision-recall (PR) analysis were performed, and the area under the curve (AUC) was 
calculated for the results by the models and by the radiologist. The sensitivity and specificity values were cal-
culated using the threshold obtained by the Youden index. The 95% confidence interval (95%CI) of sensitivity, 
specificity, and PR-AUC was calculated by the bootstrap method. The 95%CI of ROC-AUC was calculated by 
the Delong method.

Results
The diagnostic accuracy of the models evaluated in this study is shown in Table 3. The VGG16-based model with 
the  L2-constrained softmax loss and LOF exhibited the highest diagnostic performance (ROC-AUC = 0.86 and 
PR-ROC = 0.77) (Fig. 6). The combined use of the CUReT dataset,  L2-constrained softmax loss, and LOF resulted 
in the highest diagnostic performance among all DCNN classification models. In VGG16, the addition of the 
CUReT dataset resulted in an evident improvement of the diagnostic performance, whereas changing the loss 
function to the  L2-constrained softmax loss resulted in a reduction. However, the combined use of the CUReT 
dataset with AD further improved the performance (Table 3). For ResNet50 and MobileNet, a slight improve-
ment by the addition of the CUReT dataset was observed. Table 3 also shows that in each of the three models, 
the combination of the LOF and AD yielded better results than the combination of OCSVM. The combination of 
the LOF and CUReT yielded better results than the addition of the CUReT dataset alone. The VGG16 network 
tended to yield better results than MobileNet and ResNet50 (Fig. 6). The radiologist performed better than CVAE, 
but worse than the VGG16-based model with the  L2-constrained softmax loss and LOF (Fig. 6).

Benign
Inside of the circle

Malignant
Outside of the circle

LOF

plot of feature descriptors feature descriptor classification using LOF

Figure 4.  Schematic illustration of  L2-constrained softmax and LOF. For each case, a feature descriptor is 
obtained from the DCNN. The left part shows a plot of the feature descriptors. LOF can be used to determine 
the threshold of benign tumors (inside the circle) based on the local density of the training dataset, and 
discriminate whether the test dataset are normal (benign) or abnormal (malignant). LOF local outlier factor.

Figure 5.  Example images from CUReT dataset. For DCNN training, the center of the CUReT image is 
cropped to fit the input size of the DCNN.
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Discussion
Two-category classification has often been used for classifying objects into two groups (e.g., benign and malig-
nant). However, training DCNN classification models on two categories using a small dataset is known to lead 
to overfitting. In the present study, even though only a small amount of training data could be used, a significant 
performance improvement was obtained by including images from the CUReT dataset as a third category, in 
addition to the data augmentation. This is because the addition of the CUReT dataset facilitated the extraction 
of general visual patterns and reduced the overfitting caused by the small number of images.

In this study, we used the  L2-constrained softmax loss, which was demonstrated to be superior to the categori-
cal softmax loss in extracting features from small and imbalanced datasets. By training the DCNN classification 
model using this loss function, the feature descriptors of less diverse and more numerous benign tumors were 
dense in the feature space, and those of more diverse and less numerous malignant tumors were sparse and far 
from benign tumors. These characteristics of the feature descriptors suggest that the use of the LOF and AD 
based on local density and distance is quite effective. Accordingly, it may be possible to improve the accuracy of 
DL by combining AD techniques (LOF) with DCNNs.

In this study, we did not use GPUs, which are commonly employed in training DL models; rather, we used 
CPUs, which are commonly employed in general applications, for DL training and evaluation. Nevertheless, the 
results demonstrated that the diagnostic accuracy of the proposed model was at least comparable to that of the 
radiologist. The computational performance was improved owing to the smaller resolution of the input images 
resulting from cropping only tumor images, the use of a relatively small DCNN, and the smaller number of 
input images. Among the DCNN classification models, VGG16 generally performed better than MobileNet and 
ResNet50. This was inconsistent with the number of modifiable parameters (VGG16, 138,357,544; MobileNet, 
4,253,864; and ResNet50, 25,636,712)27, and with the ImageNet-based evaluation (Top1 accuracy VGG16, 0.713; 
MobileNet, 0.665; and ResNet50, 0.759)27. On the other hand, the performance excellence of VGG-16 is attrib-
uted to the fact that the architecture depth of VGG-16 is optimal to learn from the dataset of the current study. 
Optimal DCNNs for medical images characterized by low-resolution and imbalanced datasets should be inves-
tigated in future work.

The accuracy of benign/malignant discrimination using ultrasound is reportedly low, even with pulsed Dop-
pler and color Doppler sonography (sensitivity 72%; specificity 88%)28. It has been reported that no clear cor-
relation between malignancy and the characteristics of MR images has been found in non-contrast MR imaging. 
Moreover, the use of dynamic MR images and the apparent diffusion coefficient improved the accuracy of benign/
malignant discrimination (sensitivity, 86%; specificity, 92%)29. Our results indicate lower diagnostic values, with a 
sensitivity of 75% and a specificity of 82%. Diagnostic accuracy is affected by the pretest probability of the disease 
in the studies; thus, it is not easy to compare only the values themselves among different studies. To resolve this 

Table 3.  Classification results of different networks (N = 46). ROC-AUC  area under the curve of receiver 
operating characteristic curves, PR-AUC  area under the curve of precision-recall curves, DCNN deep 
convolutional neural network, CUReT Columbia-Utrecht Reflectance and Texture Database, OCSVM one class 
support vector machine, LOF local outlier factor, CVAE convolutional variational autoencoder. a The radiologist 
was board-certified.

Network model Sensitivity Specificity ROC-AUC PR-AUC 

Classification model of DCNN

VGG16

Conventional 0.42 (0.17–0.75) 0.82 (0.68–0.94) 0.64 (0.45–0.84) 0.50 (0.25–0.78)

 + CUReT 0.67 (0.42–0.92) 0.94 (0.91–0.97) 0.81 (0.65–0.98) 0.75 (0.52–0.97)

 + CUReT + L2-constrained softmax loss 0.58 (0.25–0.83) 0.94 (0.85–1.00) 0.70 (0.47–0.93) 0.68 (0.45–0.92)

 + CUReT + L2-constrained softmax loss + OCSVM 0.58 (0.33–0.83) 0.94 (0.85–1.00) 0.77 (0.57–0.97) 0.71 (0.50–0.94)

 + CUReT + L2-constrained softmax loss + LOF 0.75 (0.50–1.00) 0.82 (0.68–0.94) 0.86 (0.73–0.99) 0.77 (0.57–0.98)

MobileNet

Conventional 0.50 (0.25–0.83) 0.91 (0.82–1.00) 0.60 (0.38–0.83) 0.50 (0.24–0.77)

 + CUReT 0.67 (0.42–0.92) 0.65 (0.47–0.79) 0.70 (0.52–0.88) 0.52 (0.30–0.76)

 + CUReT + L2-constrained softmax loss 0.41 (0.17–0.67) 0.85 (0.73–0.97) 0.57 (0.34–0.79) 0.48 (0.24–0.72)

 + CUReT + L2-constrained softmax loss + OCSVM 0.66 (0.42–0.92) 0.88 (0.76–0.97) 0.79 (0.63–0.95) 0.63 (0.40–0.89)

 + CUReT + L2-constrained softmax loss + LOF 0.66 (0.42–0.92) 0.85 (0.74–0.97) 0.80 (0.65–0.96) 0.70 (0.49–0.93)

ResNet50

Conventional 0.67 (0.53–0.82) 0.68 (0.53–0.82) 0.51 (0.29–0.73) 0.38 (0.14–0.56)

 + CUReT 0.56 (0.38–0.71) 0.83 (0.58–1.00) 0.74 (0.58–0.90) 0.47 (0.24–0.77)

 + CUReT + L2-constrained softmax loss 0.58 (0.33–0.83) 0.68 (0.50–0.82) 0.51 (0.29–0.73) 0.31 (0.14–0.56)

 + CUReT + L2-constrained softmax loss + OCSVM 0.91 (0.75–1.00) 0.50 (0.32–0.68) 0.70 (0.54–0.86) 0.42 (0.22–0.72)

 + CUReT + L2-constrained softmax loss + LOF 0.92 (0.75–1.00) 0.59 (0.44–0.73) 0.75 (0.59–0.90) 0.47 (0.26–0.78)

CVAE 1.00 (1.00–1.00) 0.38 (0.24–0.56) 0.68 (0.52–0.84) 0.39 (0.20–0.67)

Radiologista 0.83 (0.58–1.00) 0.56 (0.38–0.71) 0.74 (0.58–0.90) 0.51 (0.29–0.76)
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issue, in the present study, the diagnostic accuracy of the radiologist was evaluated using image-interpretation 
experiments, and it was demonstrated to be lower than that of the proposed DL model.

Generally, the construction of DL models with high diagnostic performance requires a large amount of image 
data. The use of a small or imbalanced dataset may be considered a challenging task for constructing robust and 
reliable DL models. The results of this study demonstrated that the proposed technique enabled the construction 
of a DL model in the case of a small number of images. In the medical field, as it is often difficult to collect big 
and balanced data for rare diseases, the proposed technique may facilitate the construction of a robust DL model 
with high diagnostic performance. In addition, even though we only used a CPU without a GPU, we obtained 
satisfactory results. The proposed method has a relatively low computational cost and may therefore be easier to 
implement than complex and large DCNN models.

ROC curves

Figure 6.  ROC Curves (N = 46). The top shows a comparison between the proposed model, a radiologist, and 
CVAE. The middle shows the comparison between the three methods using VGG16 as a DCNN. The bottom 
shows a comparison between the three DCNN models using LOF for AD. L2 loss  L2-constrained softmax loss, 
CVAE convolutional variational autoencoder.
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Limitations and conclusion
Our study has several limitations. Specifically, the pseudo-color images were created by selecting only the slice 
containing the maximum diameter of the tumor, and this slice may not best represent the characteristics of 
the tumor. The most important aspect in the actual MRI diagnosis is the invasiveness of the surrounding area 
observed in malignant  tumors1. In this study, however, such invasiveness was not necessarily included in the 
evaluation slice, and thus the diagnostic accuracy might differ from that of a clinical diagnosis. Furthermore, 
although 3D data may improve diagnostic accuracy, we only constructed a 2D artificial intelligence model, as a 
3D model would require extensive image processing. Finally, the CUReT dataset, which is often used in texture 
analysis, was used as the non-medical image dataset in this study. It is necessary to investigate whether other 
non-medical images can be used to prevent overfitting in small datasets.

In conclusion, the proposed method (i.e., a combination of DL with AD) could discriminate between benign 
and malignant parotid tumors in MR images even though the DL training data consisted of a small number of 
images with strongly imbalanced distribution. Among the various DL models and AI techniques, the VGG16-
based model with the  L2-constrained softmax loss, LOF, and CUReT datasets exhibited the highest diagnostic 
accuracy. As a potential application of the proposed method, it may be possible to obtain an accurate and robust 
DL model in diseases for which it has been difficult to construct a DL model due to a small amount of data with 
imbalanced distribution.
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