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Epstein–Barr virus peptides derived 
from latent cycle proteins alter 
NKG2A + NK cell effector function
Berenice Mbiribindi1, Josselyn K. Pena1, Matthew P. Arvedson1, Claudia Moreno Romero1, 
Sarah R. McCarthy1, Olivia L. Hatton2, Carlos O. Esquivel1, Olivia M. Martinez1 & 
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Natural killer (NK) cells control viral infection through the interaction between inhibitory receptors 
and human leukocyte antigen (HLA) ligands and bound peptide. NK cells expressing the inhibitory 
receptor NKG2A/CD94 recognize and respond to autologous B cells latently infected with Epstein–
Barr virus (EBV). The mechanism is not yet understood, thus we investigated peptides derived from 
seven latent proteins of EBV in the interaction of NKG2A and its ligand HLA-E. Functional analysis 
demonstrated that EBV peptides can bind to HLA-E and block inhibition of NK cell effector function. 
Moreover, analysis of DNA from 79 subjects showed sequence variations in the latent protein, LMP1, 
which alters NK responses to EBV. We provide evidence that peptides derived from EBV latent cycle 
proteins can impair the recognition of NKG2A despite being presented by HLA-E, resulting in NK cell 
activation.

Epstein–Barr virus (EBV) is a ubiquitous γ-herpesvirus that persists as a chronic, asymptomatic infection in over 
90% of the adult human population. EBV infections in young children are mainly asymptomatic and the infection 
subsides due to a vigorous host T cell response with the virus subsequently transitioning to latency in a subset of 
memory B  cells1,2. In adolescents, EBV infection can manifest as glandular fever, lymphadenopathy, and a sore 
throat, termed infectious mononucleosis (IM)3. IM is associated with a transient proliferation of EBV-infected 
B cells and is typically self-limiting with the virus ultimately persisting into a latent phase in infected B cells. The 
latency phase of EBV infection is marked by the expression of a specific set of latent cycle proteins leading to 3 
distinct types corresponding to latency I, II and III. Type I latency is limited to the expression of Epstein–Barr 
virus nuclear antigen 1 (EBNA-1). EBNA-1 is a critical regulator of transcription of host cell genes and enhances 
survival of latently infected  cells4. In addition to EBNA-1, type II latency also includes the expression of latent 
membrane protein 1 and 2 (LMP1 and LMP2). LMP1 and LMP2 provide relevant signals to promote the sur-
vival of the infected B cell. LMP2 mimics B cell receptor (BCR) signaling while LMP1 mimics CD40  signaling5. 
Additionally, both LMP1 and LMP2 jointly contribute to oncogenic mechanisms by modulating DNA  repair6. 
Type III latency is characterized by the co-expression of EBNA-1, EBNA-2, EBNA-3ABC, LMP1, LMP2A/B, 
EBNA-LP. EBNA-2 is first expressed after infection and has a crucial role in virus-mediated transformation. 
EBNA-3 proteins demonstrate redundant biological roles, and genetic studies using recombinant viruses show 
that only EBNA-3A and -3C, but not -3B, are essential for B-cell transformation in  vitro7–10. EBNA-3A has been 
demonstrated to play a role in the regulation of cell survival in B cells immortalized by  EBV11. Together, EBV 
proteins provide a variety of functions in the infection, replication, transformation, growth, and survival of 
infected  cells12,13.

Failure to control latent EBV infection can result in a variety of EBV-associated malignancies, including lym-
phoproliferative diseases (EBV-LPD)14, particularly in immune-suppressed or immune-deficient  individuals15–17. 
Several lines of evidence suggest that innate immune responses including natural killer (NK) cells are critical 
in host defense against EBV. NK cells play an important role in protection against viruses and tumor growth. 
Numerous studies in both animals and humans suggest that NK cells are critical in the host defense against 
EBV. It has been demonstrated that NK cell depletion in humanized mouse models correlates with exacerbated 
infectious mononucleosis ( IM ) and favors EBV-associated  tumorigenesis18,19. Additionally, in vitro studies 
clearly have shown killing of EBV infected B cells by primary human NK  cells20,21. During IM, NK cells eliminate 
infected B cells and augment the antigen-specific T cell response via release of immunomodulatory  cytokines22,23 
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and NK cell deficiency leads to severe complications. Patients with X-linked lymphoproliferative syndrome 
and X-linked immunodeficiency with Mg2 + defect or neoplasia (XMEN) have NK deficiencies and suffer life-
threatening complications of EBV  infection24. Thus, NK cells are regarded as critical in the early immune response 
to EBV primary infection, but their role in controlling expansion of latently infected B cells is not yet clear.

NK cells display a heterogenous group of activating and inhibitory receptors on their cell surface which 
regulate effector function, central to which are the Killer Ig-like Receptors (KIR) as well as the C-lectin-like 
receptors (NKG2A, -C and -D)25,26. Previous studies from our group and others demonstrated that NK cells 
expressing NKG2A respond to autologous latently-infected B  cells27 and proliferate when cultured with EBV-
infected B  cells28, supporting a role for NK cells in the response to latent EBV. NKG2A dimerizes with CD94 
and recognizes the non-classical class I major histocompatibility complex (MHC-I) molecule human leukocyte 
antigen (HLA)-E29. Contrary to classical MHC-I molecules, HLA-E displays limited polymorphism. To date only 
two alleles are described as functionally relevant. The peptide-binding groove of HLA-E is usually occupied by 
nonameric peptides derived from the signal sequence of certain HLA-A, -B, -C, and -G  molecules30. Here, we 
combined in silico analysis of HLA-E binding peptides from EBV with experiments using a reductionist model 
and we demonstrated that peptides derived from EBV latent cycle proteins can be presented by HLA-E and alter 
NKG2A + NK cell functions.

Results
In silico analysis of EBV peptides. Previous studies have demonstrated that NKG2A + NK cells, but 
not NKG2C + NK cells, respond to B cells latently infected with EBV. NKG2A is an inhibitory receptor which 
normally prevents NK cell effector function when bound to HLA-E. To determine if peptides from the latent 
proteins of EBV bind to HLA-E*0101 allele, we used the UniProt database and NetMHCpan server pipeline to 
identify peptides from EBV-latent proteins (LMP1, LMP2, EBNA1, EBNA 2 and EBNA 3A-C) while taking into 
account endoplasmic reticulum (ER) processing when predicting peptides (Fig. 1a and Figures S1 a-b). This 
computational analysis of latent cycle proteins generated 61 peptides with the potential to bind to HLA-E (Fig. 
S1b). Subsequent alignment using GibbCluster demonstrated a distinct sequence motif (Figs. 1b,c). This analysis 
clearly showed that most of the sequences (n = 50) have a leucine (L) at position 9 (p9), the HLA-E main anchor 
 residue31. Results obtained from the in silico experiments suggest that EBV latent proteins encode for peptides 
that could bind to and be presented by HLA-E*0101.

Peptides derived from EBV latent proteins bind to HLA-E. TAP-deficient 721.174 cells do not 
express the TAP proteins required for peptide loading onto the MHC-I  molecules32,33. Therefore, 721.174 cells 
have a markedly low level of MHC-I at their cell surface, which can be upregulated by exogenous peptide load-
ing. We utilized this characteristic to determine the extent to which peptides from EBV latent proteins could 
bind to HLA-E and stabilize its surface expression on 721.174 cells. For each of the 61 peptides identified in our 
in silico analysis, we pulsed target cells with 200 µM peptide and HLA-E surface expression was quantified by 
flow cytometry. HLA-E binders (Fig. 2, black bars, and Fig. S2) were defined by having an MFI greater than the 
mean value plus 1.5 standard deviations of the “No Peptide” condition. Two peptides that have been previously 
shown to bind HLA-E were used as a positive control for HLA-E binding: the HLA-A03 leader peptide (white 
filled bar)34 and the BZLF1 peptide from an EBV lytic protein (checkered bar)35 (Fig. 2a–c). Seventeen peptides 
encoded by LMP1 and LMP2 (Fig. 2a), six peptides from EBNA1 and EBNA2 (Fig. 2b), and sixteen peptides 
from EBNA-3A, and -3C (Fig. 2c) bound to HLA-E. All peptides were titrated over a range of 0–400 µM, a subset 
of the peptides is shown in Fig. S2d. Taken together, we identified thirty-nine EBV peptides from latent cycle 
proteins that can bind to HLA-E and stabilize surface expression.

Peptides from EBV latent proteins affect NK cell function. To determine if peptides from EBV latent 
proteins can alter NKG2A + NK cell function, we performed NK cell degranulation assays focusing only on those 
peptides that bound to HLA-E. Donor PBMC were isolated and co-cultured with peptide-pulsed 721.174 target 
cells at an effector:target (E:T) ratio of 5:1. NKG2A + NK cell degranulation marked by CD107a expression was 
assessed by flow cytometry. After gating on lymphocytes, singlets and live cells, NK cells were identified as the 
CD56 + CD3-population (Fig. 3a). The HLA-A03 leader peptide (blue outlined bar) and BZLF1 peptide (red 
outlined bar) resulted in low (inhibition) and high (no inhibition) NKG2A + NK cell degranulation, respectively 
(Figs. 3b,c). Each individual peptide from our panel was investigated (Fig. S3a). Our data showed a subset of 
non-inhibitory peptides that significantly increased degranulation of NKG2A + NK cells when compared to the 
leader peptide control (blue outlined bar) and were mainly derived from LMP1 and LMP2 proteins (Fig. 3b and 
Fig. S3a). A second subset of peptides did inhibit NK cell function similar to the leader peptide control and were 
mainly derived from EBNA proteins (Fig. 3b and Fig. S3a). The function of NKG2A- NK cells, however, was not 
significantly altered by these peptides (Fig. 3c and Fig. S3b). Additional studies were performed with primary 
NK cells and their autologous lymphoblastoid cell line (LCL) (Fig. S4). HLA-E expression was poorly stabilized 
in autologous LCL likely due to high basal HLA-E expression (Fig. S4a). As a result, NK cell degranulation was 
not altered by the presence of the peptides presumably due to this lack of robust presentation by HLA-E (Fig. 
S4b-d).

These results suggest that some EBV latent peptides did alter NKG2A + NK cell inhibition against peptide-
pulsed target cells. We determined that peptides encoded by LMPs tended to favor NK cell degranulation while 
peptides from EBNAs were inhibitory.

Naturally occurring sequence variations of LMP1 protein prevent NKG2A + NK cell inhibi-
tion. EBV is associated with several malignancies including B cell lymphomas, especially in pediatric recipi-
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ents of cellular or solid-organ transplants. Analysis of LMP1 sequencing data of a cohort of pediatric transplant 
recipients revealed amino acid variations within the sequence of Peptide 12 (GGDPHLPTL). We sequenced 
amino acid 192 to 386 of the cytoplasmic domain of LMP1 of EBV from blood samples obtained from 79 pediat-
ric transplant recipients. The exact nine amino sequence (GGDPHLPTL) that corresponded to Peptide 12 which 
was found in our in silico analysis, was present in 82.2% (65/79) of the samples (Fig. 4a). The remaining 14 sam-
ples displayed one of six variations of the sequence. We synthesized all seven sequences detected in the patient 
samples and tested them in vitro using assays previously described. We assessed whether these sequence varia-
tions influence HLA-E stabilization and NKG2A + NK cell function. Two peptides [GGDPHVPTL (GGD_VP) 
and GIDPHLPTL (GID)], which were identified in 2.6% of the samples, demonstrated stabilization of HLA-E 
comparable to the original peptide, while three other peptides [GGDPPLPT (GGD), GCDPHLPTL (GCD), 
GDDPHLPTL(GDD) and GTDPHLPTL(GTD) ], which were detected in 15.2% of samples, did not stabilize 
HLA-E (Fig. 4b). The two HLA-E binding peptide variants and the original Peptide 12 (shown by the black 
arrows in Fig. 4b) were subsequently used to investigate their impact on NK cell function (Fig. 4c,d and Fig. S5a-
b). Although GGD, GDD, GCD and GTD peptides did not bind to HLA-E, they were included in the degranula-
tion assays and showed the effect of non-binders on NK cell degranulation. Peptide 12 (GGD_LP) binds HLA-E 
(Figs. 2a and 4b) and significantly increased degranulation of NKG2A + NK cells as compared to the HLA-A03 
leader peptide. (Fig. 3b). The GGD_VP and GID variations did also induce degranulation of NKG2A + NK cells.

As expected, there was no difference in levels of degranulation with NKG2A- cells with all tested peptides 
since there is no inhibitory signaling through NKG2A and HLA-E (Fig. 4d and Fig. S5b). Overall, we observed 
that some, but not all, variations of the GGDPHLPTL peptide did bind to HLA-E, thus stabilizing HLA-E expres-
sion. Similar to the GGDPHLPTL peptide, they also prevented NKG2A + NK cell inhibition. Further studies 

Figure 1.  In silico analysis reveals HLA-E binding peptides derived from EBV latent cycle proteins. (a) Peptide 
sequence identification pipeline. (b) Gibbs clustering and Sequence logo of HLA-E peptides binders using the 
Gibb Cluster method. (c) Results are displayed in a Seq2Logo. At each position symbols represent the amino 
acids. Large symbols represent frequently observed amino acids, large stacks represent conserved positions and 
small stacks represents variable positions. Seq2Logo shows less variability at P9.
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are necessary to determine if there is an association between LMP1 sequence variations and NK cell mediated 
killing of B cells latently infected with EBV.

EBV peptides render target cells susceptible to NKG2A + NK cell killing. To investigate the abil-
ity of primary NK cells to kill peptide-loaded target cells, we performed cytotoxicity assays. As HLA-E also 
recognizes NKG2C which is an activating  receptor30,36, sorted NKG2A + 2C- NK cells were used to confirm 
that NKG2A + NK cells mediate killing of peptide pulsed target cells. NK cells were enriched by magnetic sepa-
ration (purity range of 78.3 – 96.6%) prior to sorting for NKG2A + 2C- cells (purity range of 95.9 – 98.1% 
NKG2A + NKG2C-) (Fig. S6a-b). As CMV infection increases the frequency of NKG2C expressing NK  cells37, 
we selected CMV-negative donors for our experiments to ensure a higher yield of NKG2A + 2C- NK cells. Cell 
Trace Violet labelling of the target cells allowed us to separate our unlabeled effectors from the target cells (Fig. 
S6c).

Three non-inhibitory peptides, Peptides 9, 12 and 19, which bound HLA-E (Fig. 2a) and allowed NKG2A + NK 
cell degranulation (Fig. 3a) were tested in the cytotoxicity assay. HLA-E upregulation was assessed in parallel 
with the killing assay (Fig. 5a). As expected, the HLA-A03 leader peptide inhibited NKG2A + NK cell killing as 
compared to the BZLF1 peptide control (Fig. 5b left). Cytotoxicity exceeded 80% ± SEM for all three peptides. 
This indicates that despite binding HLA-E, these peptides do not inhibit killing mediated by NKG2A + NKG2C- 
NK cells. NKG2A-NKG2C- NK cells did not mediate any specific cytotoxicity when we compared the different 
conditions (Figs. 5b, right and 5c).

EBV peptide sequences impact the recognition of NKG2A/CD94 receptor and lead to the 
absence of inhibition despite the presence of HLA-E at the cell surface. Previous binding stud-
ies have shown that the two most critical peptide contact points for human NKG2x/CD94 with HLA-E peptide 
complex are positions 5 (p5) with an invariant arginine (R), and 8 (p8) with a variable hydrophobic residue in 
class I  leaders31,38,39. Kaiser et al. reported the crystal structure of a complex between NKG2A/CD94 and HLA-
E40 and we utilized this crystal structure (PBD ID: 3CDG) to model our peptides [Peptide 12, non-inhibitory 
(Fig. 6a) and Peptide 29, inhibitory (Fig. 6b)] in order to appreciate their conformation in the peptide groove and 
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Figure 2.  EBV derived peptides upregulate HLA-E surface expression. (a) LMP1 and LMP2, (b) EBNA-1 and 
ENBA-2, (c) EBNA-3A, -3B and -3C encoding peptides were pulsed onto target cells. HLA-E expression was 
assessed the following day. Peptides that bound HLA-E induced upregulation of HLA-E (mean fluorescence 
intensity (MFI) values) surface expression, which is shown as relative mean fluorescence intensity (RFI) as 
compared to HLA-E expression in absence of peptide (No Peptide). Endogenous peptide, HLA-A03 leader 
peptide (white filled bar) and viral peptide, BZLF1 (checkered bars) derived from EBV were used as positive 
controls. The dashed grey line represents the background expression in absence of peptide (cut-off set by No 
Peptide) and the black dashed line represents the cut-off for the peptides considered HLA-E binders. Peptides 
represented by black bars were considered as binders and peptides in grey bars non-binders. Mean ± SEM of two 
independent experiments.
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how their conformation influences binding to the NKG2A/CD94 receptor. We also modelled the two peptide 
controls used in this study [BZLF1 peptide (Fig. 6a) and HLA-A03 leader peptide (Fig. 6b)]. Different confor-
mations for inhibitory peptides and non-inhibitory peptides were observed, with a wider distance between p5 
and p8 for the non-inhibitory peptides (residues pointed by the arrows). These observations suggest that a non-
inhibitory peptide will not favor the heterodimerization of NKG2A with its co-receptor CD94, thus impairing 
the function of the receptor complex. These generated models suggest that EBV peptide sequences presented by 
HLA-E impact recognition of the NKG2A/CD94 receptor, leading to the absence of inhibition despite the pres-
ence of HLA-E at the cell surface.

Discussion
We identified several HLA-E epitopes from EBV latent proteins, and we provided functional evidence dem-
onstrating that a subset of these EBV-derived peptides presented by HLA-E can prevent inhibition of primary 
NK cell resulting in killing activity. Our previous work has shown that NKG2A + NK cells can recognize and 
kill latently infected EBV + B  cells27. This was striking considering that EBV + B cells expressed MHC class I, 
specifically HLA-E, and that the presence of peptide-loaded HLA-E on cells is canonically thought to serve as an 
inhibitory signal for NK cells through NKG2A. We demonstrate that EBV peptides derived from latent proteins 
can negate inhibition of NKG2A thus allowing NK-mediated killing.

Viral peptides presented by HLA-E have been shown to modulate immune responses. HLA-E can bind and 
present viral peptides such as AISPRTLNA from HIV  (HIVp2414–22) and induce HLA-E upregulation on CD4 
expressing T cells, resulting in an increase of NK cell inhibition through  NKG2A41,42. Further, the peptide SQA-
PLPCVL from EBV BZLF1 protein residues 39–47  (EBVbzlf39–47) has been shown to bind to HLA-E to prevent 
NK cell  inhibition35,43. Thus, the contribution of specific viral peptides in the modulation of the immune response 

Figure 3.  EBV peptides trigger NKG2A + NK cell degranulation. (a) Gating strategy for the identification of 
NKG2A + and NKG2A−NK cells within PBMC. (b) Comparison of NKG2A-positive NK cell degranulation 
against target cells loaded with EBV peptides. Peptides were individually tested using 721.174 cells. HLA-A03 
leader peptide and BZLF1 peptides were respectively used as controls for inhibition and no inhibition. All 
values have been normalized to “No Peptide”. One-way ANOVA showed significance when compared the leader 
peptide condition with the others, p < 0.05. (c) Comparison of NKG2A-NK cell degranulation against target 
cells loaded with EBV peptides. The same controls were used as in panel A and all values have been normalized 
to “No Peptide”. No significant differences were observed between the different conditions. Data shown is 
representative of 4 donors.
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Figure 4.  EBV peptide sequence variations alter NKG2A + NK cell effector function (a) Naturally occurring 
sequence variation (highlighted in bold) in the LMP1 transmembrane domain detected in 79 pediatric 
transplant recipients. (b) HLA-E expression by cells pulsed with LMP1 peptide variants. Numbers represent 
MFI. Peptides that did bind to HLA-E are shown with the black arrows. On the left panel, HLA-E mean 
fluorescence intensity (MFI) values are shown as relative mean fluorescence intensity (RFI) as compared 
to HLA-E expression in absence of peptide (No Peptide). The dashed red line marks the absence of HLA-E 
upregulation. (c) NKG2A + NK cell degranulation against target cells loaded with LMP1 peptide variants. 
Peptides were individually tested using 721.174 cells as target cells (black bars). HLA-A03 and BLZF1 peptides 
(white filled and checkered bars, respectively) were used as negative (inhibition) and positive (no inhibition) 
controls. All values have been normalized to “No Peptide.” Data shown is representative of 5 donors. One-
way ANOVA was used to compare the leader peptide pulsed condition to others. **p < 0.01, *** p < 0.001 and 
****p < 0.0001. (d) Comparison of NKG2A-NK cell degranulation against target cells loaded with EBV peptides. 
The same controls were used as in panel C and all values have been normalized to “No Peptide”. One-way 
ANOVA test showed no significance differences between the leader peptide pulsed condition and others.
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Figure 5.  EBV peptides induce specific killing by NK cells expressing NKG2A. (a) HLA-E stabilization after peptide loading. 
(b) Comparison of target cell killing when loaded with EBV peptides at E:T ratios of 3:1. HLA-A03 leader peptide and BLZF1 
peptide were used as controls. The percentage of cytotoxicity after co-culture of 721.174 cells loaded with EBV peptides and sorted 
NKG2A + /-NKG2C- cells was calculated with the following formula: [(Control − Test)/Control] × 100 = % of Cytotoxicity. Data shown 
is representative of 3 donors. One-way ANOVA comparing HLA-A03 leader peptide with all different conditions (***p = 0.0001, 
****p < 0.0001). No significant differences were observed in the NKG2A-2C-cells. (c) Gating strategy allowing the distinction between 
live cells (Live/Dead negative) and dead cells (Live/Dead negative).
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Figure 6.  Comparison of presentation of the peptide/HLA-E complex and its recognition by NKG2A/CD94 
receptor complex (PDB ID:3CDG). Modelling of individual peptides with P5 and P8 residues identified by black 
arrows in the HLA-E peptide complex and labelled in the peptide structure. (a) Panel of non-inhibitory peptides 
(BZLF1 peptide and Peptide 12). (b) Panel of inhibitory peptides (HLA-A03 leader peptide and Peptide 29).
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is important. Recent studies have demonstrated that blocking the interaction between HLA-E and its receptor 
NKG2A can enhance NKG2A-bearing NK cell or T cell  responses44,45. Using reverse immunology, we identified 
peptides that bind to HLA-E and stabilize HLA-E expression at the surface of a TAP-deficient cell. Functional 
assays further support that a subset of these EBV peptides do allow NKG2A + NK cell mediated effector functions 
against EBV peptide presenting cells. Additionally, sequence analysis of the LMP1 peptide GGDPHLPTL from 
a cohort of pediatric transplant recipients at risk for EBV-associated disorders demonstrated that the majority 
encode a peptide capable of binding HLA-E yet allowing NK cell killing of infected cells. However, some subjects 
do express LMP1 with sequence variations that do not allow binding to HLA-E, suggesting clearance of latently 
infected EBV + B cells could be hindered. Additional studies are necessary to address the relationship between 
sequence variations in LMP1 with EBV disease.

Studies have demonstrated that the NKG2A and NKG2C receptors recognize mostly overlapping, but partially 
distinct, epitopes on HLA-E36. For our cytotoxicity assays, we sorted NKG2A + NKG2C- cells to eliminate any 
involvement of NKG2C in response to peptide loaded target cells. Our findings indicate that NKG2A + NKG2C- 
cells did kill target cells that present non-inhibitory peptides. Results confirmed that the presented peptide is 
interfering with the role of NKG2A receptor in mediating NK cell inhibition.

Peptide sequences from EBV latent proteins may be impairing the recognition of the NKG2A/CD94 heter-
odimer by impacting key residues at positions 5 (p5) and 8 (p8) based on modeling using PyMOL. Indeed, the 
structure of NKG2A/CD94 in complex with HLA-E loaded with a leader sequence has been  determined40,46 and 
has revealed that NKG2A and CD94 interact with the α1 and α2 helices of the peptide-binding region of HLA-
E, respectively, with charge  complementarity47. Most importantly, crystal structures also revealed that CD94 
mainly recognized HLA-E and the peptide, as compared to NKG2A. Investigations showed that arginine (R) 
at p5 and phenylalanine (F) at p8 are key residues within the peptide sequence that contribute to the binding. 
Changing the nature of these residues can therefore alter the interaction between the ligand and its receptor. The 
importance of these residues is reinforced by the fact that they are commonly conserved in most of the leader 
peptide sequences and their replacement by unsuitable residues leads to the dramatic reduction or abrogation 
of the binding of the ligand to its receptor. NKG2A/CD94 binds HLA-E by a lock-and-key mechanism and the 
binding restrains both the entire complex. The CD94 component is mainly responsible for the interaction, while 
the NKG2A element of the receptor complex transmits the signal intracellularly.

Recent studies in both human and mouse have shown that blocking NKG2A enhances both T and NK cell 
effector function leading to an efficient anti-tumor effect. André et al. described a novel checkpoint inhibitory 
mechanism by targeting NKG2A + NK and T cells in combination with anti-EGFR or anti-PD-x antibodies 
and thus improving patients’ immunotherapy  treatment44. Besides, improved NK cell effector function against 
tumors was also shown in mice with blocked expression of  NKG2A45. In the context of viral infections such as 
HIV, elevated levels of HLA-E/NKG2A interactions have been shown to reduce HIV-infected target cell clearance 
by NK  cells48, suggesting that blocking the interaction will unleash NK cell killing and emphasizing a role for 
this in novel therapeutics. Utilizing peptides from EBV latent cycle proteins represent a more specific target to 
alter the HLA-E/NKG2A axis. This approach may limit potential non-specific effects and could be particularly 
important in immunocompromised patients susceptible to infectious complications.

Using a reductionist system with cells lacking normal levels of HLA, we demonstrated that peptides derived 
from EBV latent proteins can bind to the HLA-E molecule and alter NK cell functions. Our data provide the first 
evidence that peptides derived from EBV latent cycle proteins can impair the recognition of NKG2A despite being 
presented by HLA-E, leading to NKG2A + NK cell activation, and suggest that blocking the NKG2A-HLA-E axis 
would be an effective strategy to eliminate EBV + B cell lymphomas.

Materials and methods
In silico analysis. The protein sequences of the EBV latent proteins LMP1, LMP2, EBNA-1, EBNA-2, EBNA-
3A, EBNA-3B and EBNA-3C from the B95.8 laboratory strain of EBV were retrieved using the UniProtKB data-
base (https ://www.unipr ot.org/). FASTA sequences are listed in the supplementary information (Fig.  S1). To 
predict the binding of peptides to HLA-E, we used the NetMHC pan server (https ://www.cbs.dtu.dk/servi ces/
NetMH Cpan-3.0/), which uses artificial neural network (ANNs) for the  predictions49–51. HLA-E has two alleles 
(HLA-E*0101 and HLA-E*0103) which differ by one amino acid at position 107, and the HLA-E*0101 allele was 
used for this study. All sequence alignments and SeqLogo representation were generated using the GibbsCluster 
program (https ://www.cbs.dtu.dk/servi ces/Gibbs Clust er/).52,53 GibbsCluster is a server for unsupervised align-
ment and clustering of peptide sequences. The program clusters a list of peptide sequences into meaningful 
groups.

Cells lines, PBMC and cell culture. 721.174 cells are transporter-associated with antigen processing 
(TAP) deficient  cells54 and permit exogenous peptide loading. PBMC from twelve healthy donors, after informed 
consent, were used as source of NK cells (effector cells) during degranulation and cytotoxicity assays. All human 
experimental protocols were approved by the Panel On Medical Human Subjects – Stanford University.

Cells were all cultured in R10 medium [RPMI 1640 medium (Lonza, Basel, Switzerland) supplemented with 
1% penicillin/streptomycin (Invitrogen, Carlsbad, USA) and 10% FBS (Sigma Aldrich, Saint Louis, USA)]. All 
cells were maintained in culture at 37 °C, 5%  CO2 and in humidified atmosphere.

Peptides. HLA-E restricted peptides from EBV latent cycle proteins were synthetized and purchased from 
GenScript (New Jersey, USA). High Performance Liquid Chromatography (HPLC) and Mass Spectrometry (MS) 
confirmed their identities and the purity was greater than 95%. Peptides were dissolved in DMSO at 20 mM and 
stored in − 80 °C.

https://www.uniprot.org/
https://www.cbs.dtu.dk/services/NetMHCpan-3.0/
https://www.cbs.dtu.dk/services/NetMHCpan-3.0/
https://www.cbs.dtu.dk/services/GibbsCluster/)
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Peptide stabilization. To determine if EBV peptides stabilize HLA-E on the cell surface, 721.174 cells 
(2 × 105/well) or autologous LCL were incubated overnight at 26 °C, 5%  CO2 in R10 alone or in R10 medium 
containing 0–200 μM of the specified peptide. After incubation with the peptides, cells were washed twice with 
wash buffer (PBS 1X/ 1% BSA/ 0.1%  NaN3) and re-suspended in blocking buffer (wash buffer + 10% human AB 
serum) then incubated for 30 min at 4 °C. Cells were then incubated at 4 °C for 30 min with an anti-HLA-E 
antibody conjugated to PE (clone 3D12, BioLegend, San Diego, USA). After two washes, cells were re-suspended 
in fixing buffer [PBS 1X/1% PFA (Santa Cruz, Santa Cruz, USA)] and analyzed on a BD LSRII Flow Cytometer 
using BD Diva Software (BD Biosciences, San Jose, USA). Results were analyzed using FlowJo software and 
Mean Fluorescence Intensity (MFI) values plotted using GraphPad Prism, version 7.04.

Degranulation assay. Human PBMCs were isolated from the blood of four healthy donors using Hypaque-
Ficoll (GE Healthcare, Chicago, USA) density centrifugation. PBMCs (3 × 105/well) were stimulated overnight 
with 1 ng/mL recombinant human IL-15 (R&D Systems, Minneapolis, USA). Peptide-pulsed 721.174 target cells 
or autologous LCL were prepared as for the stabilization assays. Target cells were resuspended with PBMCs at 
an effector-to-target (E:T) ratio of 5:1 in fresh R10 medium containing peptide and anti-CD107a-efluor-660 
antibody (Clone eBioH4A3, eBioscience, Santa Clara, USA). Cells were incubated for 1 h at 26 °C, 6 µg/mL 
Golgi-Stop (BD Biosciences, San Jose, USA) was added, and the cells were incubated for a further 4 hr at 26 °C. 
Cells were washed in wash buffer (PBS 1X/ 1% BSA/ 0.1%  NaN3) and blocked with blocking buffer (10% human 
serum in wash buffer) for 30  min and then stained with the following antibodies: anti-CD3-PerCP (clone 
UCHT1, BioLegend, San Diego, USA), anti-human CD56- FITC (Clone HCD56, BioLegend, San Diego, USA), 
anti-human NKG2A-PE (Clone Z199, Beckman Coulter, Brea, USA) and anti-human NKG2C-AF700 (clone 
#134,591, R&D systems, Minneapolis, USA). Cells were fixed in 1% PFA and staining were analyzed on a BD 
LSRII Flow Cytometer with BD Diva Software (BD Biosciences, San Jose, USA).

Killing assay and peptide stabilization. NKG2A + and NKG2A − NK cells were purified from NK 
cells after NK cells isolation using an NK Isolation Kit (Miltenyi) and cultured in RPMI complete with 200 U/
ml IL-2 overnight. NK cells were then stained with NKG2A-PE (Clone Z199, Beckman Coulter, Brea, USA), 
NKG2C-APC (clone REA205, Miltenyi, San Diego, USA) CD3-PerCP-Cy5.5 (clone UCHT1, BioLegend, San 
Diego, USA), CD56-FITC (Clone HCD56, BioLegend, San Diego, USA), and Fixable Viability Dye eFluor 780 
(eBioscience, Santa Clara, USA) and sorted for live CD3 − CD56 + and NKG2A ± on a BD FACSAria (BD Bio-
sciences, San Jose, USA). Sorted cells were rested in RPMI complete with 200 U/ml IL-2 (NIH Reagent Program) 
overnight at 37 °C, 5%  CO2 before the start of the killing assay. Peptide pulsed target cells were counted and then 
seeded in a 96 U-bottom well plate with 200 µM peptide in a final volume of 100 µL. The next day, target cells 
were labeled with 5 µM CellTrace Violet (Invitrogen, Carlsbad, USA) for 20 min at 26 °C, then washed twice with 
RPMI complete. Target cells (1 × 105) were cocultured with 3 × 105 sorted NKG2A + or NKG2A − NK cells for 5 h 
in at 26 °C at a 3:1 E:T ratio. At the end of the co-culture, cells were stained for viability using Fixable Viability 
Dye eFluor 780 [(eF780) at the manufacturer’s recommended concentration for 20 min at 4 °C. Cells were then 
washed and fixed before analysis. The percentage of cytotoxicity after co-culture of 721.174 cells loaded with 
EBV peptides and NK cells was calculated with the following formula: [(Control – Test)/Control] × 100 = % of 
Cytotoxicity.

eF780− Control = n live cells/total target cells in absence of effector cells (spontaneous death).
eF780− Test = n live cells/total target cells in presence of effector cells.
Additionally, peptide loaded target cells were also analyzed for their HLA-E expression as described above 

(see “Peptide stabilization” section).

LMP1 sequencing. Samples. Patient samples were obtained from the NIH-funded Clinical Trials in Or-
gan Transplant in Children (CTOTC-06) study. Whole blood from 79 pediatric recipients of kidney, liver, heart 
and intestinal allografts were obtained following Institutional Review Board (IRB) approval and all methods 
were performed in accordance with the relevant guidelines and regulations. For participants under the age of 
18 years, informed consent have been obtained from a parent and/or legal guardian. The mean age at transplant 
was 6.7yrs (range < 1-21 yr) and the subjects were 54% male and 46% female. Whole blood (500 μl) was added 
to 1.3 µl of RNA-Later (Thermofisher, Waltham, MA) and stored at -80° C. Genomic DNA was isolated from 
thawed blood using the Purelink Genomic DNA Mini Kit (Invitrogen, Carlsbad, CA, USA) and the protocol was 
modified to account for presence of RNA-Later. These modifications included increasing the amounts of Pro-
teinase K and RNAse A added to 100 µl, as well as the amounts of Lysis/Binding Buffer and 100% ethanol during 
lysis and loading steps to 600 μl. Quality and purity of DNA isolates was assessed through A260/A280 and A260/
A230 ratios. DNA was stored in Ultra-pure DNAse-free water and stored at -20° C.

PCR amplification. Nested polymerase chain reaction (nested-PCR) was performed to amplify the C-terminal 
region of LMP1. Two rounds of PCR were completed for each sample, with a third round being completed if 
no amplification was detected following the second round of nested PCR. Reactions were carried out in a total 
volume of 50 µl, with all rounds containing 75 mM Tris–HCl, 20 mM (NH4)2SO4, 0.01% Tween 20, 2.5 mM 
MgCl2, 2.5 U Taq DNA Polymerase (Thermofisher, Waltham, MA, USA), 0.3 mM dNTP (Invitrogen, Carlsbad, 
CA, USA), and 0.5 μM each primer. Primer sequences are displayed in Table 1. The first round contained 250 ng 
genomic DNA and the second round contained 2.5 µl of PCR product from round 1. If a third round was neces-
sary, PCR product from round 2 was diluted 1:250 and 2.5 μL was added to round 3 master mix. The PCR was 
performed with an initial denaturation step at 95° C for 10 min. This was followed by 35 cycles of denaturation 
at 95° C for 30 s, annealing at 55° C for 30 s, extension at 72° C for 1 min and one elongation. The nested-PCR 



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19973  | https://doi.org/10.1038/s41598-020-76344-3

www.nature.com/scientificreports/

products were visualized by electrophoresis with a 2% agarose gel, stained with SYBR Safe DNA Gel Stain (Ther-
mofisher, Waltham, MA, USA). Successful amplifications were PCR purified with QIAquick PCR Purification 
Kit (Qiagen, Hilden, Germany) and stored in Ultra-pure DNase-free water at -20° C.

Cloning. Purified PCR products were cloned into a TOPO cloning vector using a TOPO TA Cloning Kit for 
Sequencing (Invitrogen, Carlsbad, CA, USA). Following cloning, 2 μL of TOPO reaction were added to DH5a 
competent cells and incubated for 30 min on ice. Cells were immediately heat shocked at 42 °C for 30 s, before 
adding 250 μL S.O.C. media and incubating for one hour at 37° C with shaking. 100 μL of transformation was 
plated overnight on LB Agar plates with ampicillin. Following overnight incubation, 12 colonies per sample were 
inoculated in liquid LB broth with ampicillin and grown up overnight. Tubes were then spun down and plasmids 
were isolated with a PureLink Quick Plasmid Miniprep Kit (Invitrogen, Carlsbad, CA, USA). Isolated plasmids 
were submitted to Elim Biopharm (Hayward, CA) for sequencing with M13 reverse primers. Sequences were 
aligned and analyzed with Geneious 10.2.5 software.

Peptides. GGDPHLPT peptide variants [GGDPPLPT (GGD), GCDPHLPTL (GCD), GDDPHLPTL(GDD) 
GGDPHVPTL (GGD_VP) and GIDPHLPTL (GID)] were synthetized and purchased from GenScript (New 
Jersey, USA). High Performance Liquid Chromatography (HPLC) and Mass Spectrometry (MS) confirmed their 
identities and the purity was greater than 95%. Peptides were dissolved in DMSO at 20 mM and stored in − 80 °C.

Structure visualization. To model the ligand and receptor structure, a Python script which launches a 
built-in PyMOL plug-in was used. We utilized the backbone of a published structure (PBD ID: 3CDG) from 
Petrie et al46. Peptide sequences have been changed using the mutagenesis tool to model each epitope. These 
structures did undergo energy minimization, allowing for a mild global relaxation of the peptide.

Statistical analysis. All graphs and statistical analyses were performed using GraphPad Prism, version 
7.04 (GraphPad Software).
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