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Enhancing protein backbone angle 
prediction by using simpler models 
of deep neural networks
Fereshteh Mataeimoghadam1,7*, M. A. Hakim Newton1,2,7*, Abdollah Dehzangi3,4, 
Abdul Karim1, B. Jayaram5, Shoba Ranganathan6 & Abdul Sattar1,2

Protein structure prediction is a grand challenge. Prediction of protein structures via the 
representations using backbone dihedral angles has recently achieved significant progress along with 
the on-going surge of deep neural network (DNN) research in general. However, we observe that in 
the protein backbone angle prediction research, there is an overall trend to employ more and more 
complex neural networks and then to throw more and more features to the neural networks. While 
more features might add more predictive power to the neural network, we argue that redundant 
features could rather clutter the scenario and more complex neural networks then just could 
counterbalance the noise. From artificial intelligence and machine learning perspectives, problem 
representations and solution approaches do mutually interact and thus affect performance. We also 
argue that comparatively simpler predictors can more easily be reconstructed than the more complex 
ones. With these arguments in mind, we present a deep learning method named Simpler Angle 
Predictor (SAP) to train simpler DNN models that enhance protein backbone angle prediction. We 
then empirically show that SAP significantly outperforms existing state-of-the-art methods on well-
known benchmark datasets: for some types of angles, the differences are above 3 in mean absolute 
error (MAE). The SAP program along with its data is available from the website https://​gitlab.​com/​
mahne​wton/​sap.

Protein structure prediction (PSP) has been an unsolved problem for the last half century1. Three dimensional 
structures of most proteins depend on their amino acid (AA) sequences. The PSP problem is to determine the 
three dimensional structures of given proteins just from their amino acid sequences. The difficulties come from 
the inevitability of searching an astronomically large conformation space and from the absence of a highly 
accurate energy function to evaluate potential protein conformations2.

There are 20 types of amino acids. A protein might have any of the 20 types of amino acids any number of 
times in any order subject to stoichiometric constraints3. Each amino acid has three common atoms N, Cα and 
C among others. The C and N atoms of every two consecutive amino acids in a protein form a peptide bond and 
thus we obtain the backbone or main chain of the protein. As shown in Fig. 1, protein backbone structures can 
essentially be represented by dihedral angles φ , ψ , and ω , which are respectively defined by taking every four 
consecutive atoms from the sequence Ci−1 , Ni , Cαi , Ci , Ni+1 , Cαi . Typically ω is fixed at 180◦ for majority proteins4, 
and so only φ and ψ are to be determined. Besides being the parts of the main chain, each amino acid, starting 
from its Cα atom, has a side chain as well. The side chains have their own dihedral angles, but for this work we 
consider them to be out of scope. Once the backbone structures could be predicted with very high accuracy, 
side chain angles could be predicted or determined later. Besides φ , ψ , and ω angles, as shown in Fig. 1, θ and τ 
angles provide an alternative representation for protein backbone structures. While θ is a planar angle defined 
by three consecutive Cα atoms, τ is a dihedral angle defined by four consecutive Cα atoms. Such a representation 
is actually possible because of the nearly constant distance between consecutive Cα atoms. While φ and ψ are 
dihedral angles each involving four atoms from two consecutive residues, θ and τ involving three or four residues 
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capture more local structures in a protein. In this work, we predict all the four types of backbone angles φ , ψ , θ 
and τ for each protein in a given protein using deep neural networks (DNN).

Prediction of protein backbone structures is very important since both template-based and template-free 
protein structure prediction rely strongly on that2,5. From an abstraction based perspective, protein backbone 
structure prediction could be viewed as prediction of secondary structures (SSs). Protein secondary structure pre-
diction has obtained significant success over the years through the use of various types of deep neural networks 
and their ensembles6–12 and ab initio methods13. For example, SSpro814 achieves 79% accuracy on proteins with 
no homologs in the Protein Data Bank (PDB) and of 92% accuracy on proteins where homologs can be found 
in the PDB. However, this progress does not necessarily make backbone angle prediction trivial. With accurate 
SS predictions, one can obtain narrow ranges (about 20◦ ) of φ and ψ angles, but only for helices and sheets. For 
coils, φ and ψ can take any value in [−180,+180] and coils comprise about 40% residues in average proteins15. 
Moreover, errors in backbone angle prediction in one part of a protein has a cascaded effect in the construction 
of the entire protein structure. Overall, secondary structures, on one hand, are coarse-grained description of 
protein local structures in three (helices, sheets, and coils) or eight discrete states (including some variants of the 
three). On the other hand, secondary structures are somewhat arbitrarily defined with coils essentially having no 
well-defined structures. In contrast to secondary structures, backbone angles as being continuous variables can 
represent protein structures at greater accuracy levels. Moreover, predicted backbone dihedral angles, compared 
to the predicted secondary structures, have been found to be more useful in ab initio structure prediction or 
refinement by performing search16,17. Protein backbone angle prediction has improved over the years. A number 
of methods have been developed to predict φ and ψ as both discrete18,19 and continuous9,20–27 labels.

Protein backbone angle prediction methods in recent years are mostly based on DNNs and their complex 
variants such as stacked sparse auto-encoder neural networks23, long short-term memory (LSTM) bidirectional 
recurrent neural networks (BRNNs)6,25,27, and Residual Networks (ResNets)27, and their ensembles6,27 or layered 
iterations24. In terms of input features, position specific scoring matrices (PSSM) produced by PSI-BLAST28 
have been used by most methods9,23–25,27. Moreover, 7 physicochemical properties (7PCP) such as steric param-
eter (graph shape index), hydrophobicity, volume, polarisability, isoelectric point, helix probability, and sheet 
probability29 have been used as well9,23–25,27. Other input features that have been used include accessible surface 
area (ASA)23, Hidden Markov Model (HMM) profiles9,27,30 produced by HHBlits31, contact maps27, and PSP196. 
In order to capture local structures around each given amino acids, sliding windows with various sizes have been 
used23–25. Moreover, to capture the non-local or long-range interactions among amino acids in a protein, the 
entire protein sequence has been used as features9,24,26 or convolutional neural networks (CNNs)6,30 or LSTM-
BRNNs25,27 have been used. In terms of datasets to be used to evaluate the prediction models, we refer to four 
datasets: PISCES32, SPOT-1D27,33, PDB15034 and CAMEO9335. The first two datasets have respectively about 5.5K 
and 12.5K proteins with 1.2M and 2.7M residues. The last two datasets respectively have 150 and 93 proteins and 
have been used mainly for independent testing.

Given the literature explored above, we observe that in the protein backbone angle prediction research, 
there is an overall trend to employ more and more complex neural networks and then to throw more and more 
features to the neural networks. While more features might add more predictive power to the neural network, 
we argue that redundant features rather clutter the scenario and more complex neural networks then just coun-
terbalance the noise. Similar results have been reported in other research areas. For example, in a Nature article 
in seismic aftershock prediction by deep learning methods36, a simple two-parameter logistic regression (that 
is, one neuron) is shown to have obtained the same performance as that of the 13,451-parameter DNN. From 
artificial intelligence and machine learning perspectives, problem representations and solution approaches do 
mutually interact and thus affect performance. Nevertheless, we also argue that comparatively simpler predic-
tors can more easily be reconstructed than the more complex ones. With these arguments in mind, we present a 
deep learning method named Simpler Angle Predictor (SAP) to train simpler DNN models that enhance protein 
backbone angle prediction. We then empirically show that SAP significantly outperforms the existing state-of-
the-art methods SPOT-1D and OPUS-TASS6 on well-known benchmark datasets: for ψ and τ, the differences are 
above 3 in mean absolute error (MAE). With an ensemble of several types of DNNs using many input features, 
SPOT-1D and OPUS-TASS are very complex prediction methods compared to the SAP, which uses just a fully 
connected DNN and a few input features. The SAP program along with its data is available from the website 
https://​gitlab.​com/​mahne​wton/​sap.

Methods
In this section, we describe the deep learning model proposed in this paper and the datasets used in this work.

Figure 1.   Backbone angles of a protein structure.

https://gitlab.com/mahnewton/sap
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Input features.  As shown in Fig. 2, we use a sliding window of size W: up to W
2

 amino acids at each side of 
a given amino acid. Depending on the window sizes, sliding windows can capture short or long range interac-
tions between residues and secondary structures. Some backbone angle prediction methods that use recurrent 
neural networks (RNN) and CNNs take the whole protein sequences as input to capture interactions in the entire 
protein. However, with the absence of a firmly known energy function, it is not clear whether very long range 
interactions are really effective. So any choices regarding using sliding windows versus using entire proteins are 
to be made based on empirical evaluation. To make it clearer, in any distance-based energy components e.g. 
Lennard–Jones or charge-based potentials, the values are in effect zero after a certain distance. Moreover, if we 
look at the state-of-the-art backbone angle prediction method SPOT-1D, we see, besides using entire proteins, 
it still uses windowing to capture contact information. Our intent in this work is to explore simple models that 
can still achieve very good accuracy levels.

While window size effectively ensures context dependence of assumed local conformations, arguably there 
is not enough data in the training set, even in the protein data bank, to cover all possible combinations of amino 
acids (e.g. 205 ) with a given window size (e.g. 5). So the context has to be captured via a 3-state a 8-state model 
that can specify the average range of angle values for each amino acid in a given protein. The data deficiency 
for larger windows even further spoils the training. In this work, for each amino acid, we consider one of the 8 
values G, H, I, T, S, E, B, and C to represent predicted 8-state SS and then encode that using an one-hot vector. 
The 8-state SS prediction is obtained by running SSpro814 on each protein. The training set of SSpro8 comprises 
5772 proteins that are released before August 20, 2013. SSpro8 uses sequence similarity and sequence-based 
structural similarity in SS prediction and achieves respectively 92% and 79% accuracy on proteins with and 
without homologs in the PDB. On one hand, we have already discussed that these highly accurate SS predic-
tions do not necessarily solve the backbone angle prediction problem when high quality protein structures are 
to be constructed. On the other hand, we note that we have removed all SSpro8’s training proteins from our 
training, validation, and tests sets and also use BLAST28 for this purpose with e-value 0.01. In this aspect, our 
method differs from the state-of-the-art backbone angle predictor SPOT-1D, which uses homologous sequences 
to generate its HMM-based features.

For each amino acid, we consider 20 values obtained from the PSSM matrix generated by three iterations of 
PSI-BLAST28 against the UniRef90 sequence database updated in April 2018. We also use 7PCP (seven physico-
chemical properties) and ASA, and experiment with their various combinations. These features are very common 
in the literature.

In summary, we have 20+ 8 = 28 PSSM and SS features plus various combinations of 7 or 1 feature values 
for 7PCP or ASA for each amino acid residue in each protein. This will be multiplied by the size of the sliding 
window used. We experiment with sliding windows of sizes 1, 5, 9, 13, 17, 21 as SPIDER23 tried up to size 21.

Predicted outputs.  We consider 4 outputs, one for each of φ , ψ , θ , and τ angles. Each φ and ψ can be asso-
ciated with exactly one residue or Cα . A θ angle involving Cαi−1

,Cαi ,Cαi+1
 is associated with Cαi . Similarly, a τ 

angle involving Cαi−1
,Cαi ,Cαi+1

,Cαi+2
 is associated with Cαi . In one set of experiments, we consider these angles 

directly, handling their periodicity ( −180◦ to 180◦ ) within the loss function of the DNN used. In another set of 
experiments, just like the state-of-the-art method SPOT-1D, we use both sine and cosine ratios for each of the 4 
angles, and thus use 8 outputs. The trigonometric ratios handle the periodicity issue of the angles and the tangent 
values obtained from the sine and cosine values can give the predicted angle within −180◦ to 180◦.

DNN architecture.  Figure 3 shows the DNN architecture used in our method. The DNN in fact is a fully 
connected neural network (FCNN) with three hidden layers, each having 150 neurons. This architecture is simi-
lar to that used in SPIDER23 and SPIDER224. SPIDER2, however, uses a series of 3 DNNs feeding a previous 
DNN’s output as input to the next DNN. In our experiments, we have used only one DNN with three hidden 
layers, although we have trialled two and four hidden layers as well and showed the results later. The inputs and 
the outputs of the DNN are per amino acid basis. Depending on the size of the sliding window and the combina-
tions of 7PCP and ASA, the input layer will have different numbers of inputs. The output layer has one output for 
each angle when we want to predict an angle directly. However, if we consider sine and cosine ratios of an angle 
and consequently later calculate the angle, then the output layer will have two outputs for each angle.

DNN implementation.  The DNN has been implemented in Python language using Keras library and 
SGD optimiser with momentum 0.9. The learning rate starts from 0.01 and if the loss function does not 
improve in 3 iterations, then learning rate is reduced by a factor 0.5 until it reaches 10−15 . The activation func-
tion is linear in the output layer and sigmoid in the input and the hidden layers. The kernel initialiser is 
glorot_uniform. We run programs on NVIDIA Tesla V100-PCIE-32GB machines.

Benchmark datasets.  We briefly describe the dataset used by SPOT-1D27. This dataset has 12450 proteins 
that were culled from PISCES32 on Feb 2017 with the constraints of high resolution ( < 2.5A◦ ), an R-free < 1 , 

Figure 2.   Sliding window of size 5: two residues on each side of a given residue.
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and a sequence identity cutoff of 25% according to BlastClust28. Among those proteins, 1250 proteins depos-
ited after June 2015 were separated into an independent test set, leaving 11200 proteins, which were then ran-
domly divided into a training set (10200 proteins) and a validation set (1000 proteins). Then, some proteins were 
removed to obtain efficient calculation. This reduced the training, validation, and independent test sets to 10029, 
983, and 1213 proteins, respectively. In the SPOT-1D dataset, another independent test set was obtained from 
the PDB. These proteins were released between January 01, 2018 and July 16, 2018 and solved with resolution 
< 2.5A◦ and R-free < 0.25 . In order to minimise evaluation bias associated with partially overlapping training 
data, proteins were removed for > 25% sequence identity to structures released prior to 2018. This dataset was 
also filtered to remove redundancy at a 25% sequence identity cutoff and another 13 proteins with length > 700 
were removed, leaving 250 high-quality, non-redundant targets. For convenience, these two independent test 
sets were denoted as TEST2016 (1213 proteins) and TEST2018 (250 proteins) as they were deposited between 
June 2015 and Feb 2017 and between Jan 2018 and July 2018, respectively.

We use the same dataset used by SPOT-1D27. However, we have performed additional filtering since it is not 
precisely clear to us how SPOT-1D handles the proteins that have mismatches in their amino acid sequences 
specified in various data source files (e.g. .t, .pssm, .dssp, and .fasta files). To be clearer, we have found that for 
some proteins, the amino acid sequence specified in one data source file has additional residues at the begin-
ning or ending compared to that specified in another data source file. For such proteins, we have taken the part 
common in the amino acid sequences specified in various source files. However, when there is any mismatch at 
the middle of any two amino acid sequences specified in two different data source files for the same protein, we 
have removed the protein from the dataset. Also, we have removed proteins that have X in the secondary struc-
ture sequences in their corresponding DSSP files, although we do not use the secondary structure data from the 
DSSP files in our learning model. As mentioned before, apart from using subsets of features from SPOT-1D, we 
generate 8-state SS predictions using SSpro814. The training set for SSpro8 comprised 5772 proteins released in 
the PDB before August 20, 2013. In order to avoid over-training with SSpro8 predictions as input of our method, 
we have removed 3259 proteins from SPOT-1D’s proteins using Blast28 against SSpro8’s training set with e-value 
0.01. We show in Table 1 the numbers of proteins and residues in training, validation, and testing datasets, after 
performing the abovementioned filtering. As we can see later in Table 5, the remaining dataset after performing 
the filtering does not degrade the performance of SPOT-1D.

While our main training and test proteins are from the SPOT1D dataset, for further independent testing, we 
use PDB15034 and CAMEO9335 datasets. The PDB150 dataset contains 150 proteins released between February 
1, 2019 and May 15, 2019. For each protein, PSI-BLAST28 was applied against the whole CullPDB32 dataset with 
e-value smaller than 0.005. The CAMEO93 dataset contains 93 proteins that are released between February 2020 
and March 2020 and has been used by OPUS-TASS in its evaluation. For both datasets, we have applied 25% 
sequence similarity cutoff w.r.t. our and SSpro8’s training and validation datasets and also have removed proteins 
having X in their fasta file. For proteins with discontinuity in their amino acid sequences, we have considered 
largest segment of each protein so that our sliding window method can still be applied. At the end, we have 
obtained 71 and 55 proteins from the PDB150 and CAMEO93 datasets and we use them for independent testing 
of our method and the state-of-the-art method OPUS-TASS and compare their performance.

Figure 3.   The fully connected deep neural network used in our method. It has three hidden layers, each having 
150 neurons. The numbers of inputs and outputs could vary depending on the combinations of features used 
(e.g. PSSM plus SS and combinations of 7PCP and ASA) and the representation of the output angles (Direct 
Angles vs Trigonometric Ratios).

Table 1.   Numbers of proteins and residues in training, validation, and testing datasets. 27 testing proteins are 
in TEST2018 and 1179 are in TEST2016.

Datasets Training Validation Testing Total

Proteins 6721 667 1206 8594

Residues 1,670,605 165,530 282,461 2,118,596
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Results
We compare various settings of SAP to find the best setting for each of the 4 types of angles to be predicted. 
This comparison helps us understand the impact of various features and encodings. Then, we compare the best 
settings with the current state-of-the-art predictors. Moreover, we show various other analyses of the results 
obtained for the best settings.

Calculating absolute errors.  For each predicted angle P against the actual angle A, we calculate the differ-
ence D = |P − A| . Then, we take AE = min(D,|360−D|) as the absolute error (AE) for that predicted angle. This 
addresses the periodicity issue that each angle must be in the range −180◦ to 180◦ . When angles are predicted 
directly, we implement the AE calculation within the loss function for the training and validation, and also later 
for testing. When we use sine and cosine ratios, then we calculate AE only during testing. In all cases, the angles 
that are not defined for the amino acids at the beginning or ending of the proteins are ignored.

Determining best settings.  We run 96 settings of SAP. All of these settings having 20 PSSM and 8 SS 
hot-vector features. The 96 settings are obtained by using or not using ASA, by using or not using 7PCP, by using 
range-based or Z-score based normalisation for input feature encoding, by using 6 window sizes (1, 5, 9, 13, 
17, 21), and by using direct angles or trigonometric ratios to encode output angles. However, Table 2 presents 
performance of 16 settings only, selecting the best window size for each combination of the other parameters. 
From these results, it appears that window sizes 5 and 9 in most cases lead to better performances. Moreover, 
prediction of direct angles is better than that of trigonometric ratios.  While not using ASA appears to be better 
than using, in contrast, using 7PCP appears to be better than not using. Overall, the best SAP setting is using 
7PCP, range-based normalisation, direct angle prediction, and window size 5. Henceforth, we use this setting 
in further analysis. It is worth noting here that in our observation, training a DNN simultaneously for several 
outputs is not much different from training the DNN separately for each output in terms of the accuracy level 
obtained for each output.

All results presented in Table 2 are for DNNs having 3 hidden layers. The choice of the number of layers was 
inspired by SPIDER23. However, in Table 3, we show the performance of the best SAP setting when run with 
DNNs having 2 and 4 hidden layers. In most cases DNNs having 3 hidden layers obtain the best results (shown 
in bold in Table 3); where this is not the case, DNNs with three hidden layers are a close second (shown in italics 
in Table 3), with the difference being < 0.09.  So for the rest of the paper, we have chosen the DNN with 3 hidden 
layers as the selected SAP setting.

Performing cross‑validation.  When we train a DNN, we specify the validation set. Consequently, the 
MAE values for the validation set as well as for the testing set for each SAP setting are shown in Table 2. In 
Table 4, we again show the MAE values but only for the best setting of SAP. However, to check the robustness 

Table 2.   Performance of SAP settings on 1206 testing proteins. In the table, column ASA denotes whether 
accessible surface area is used (Yes/No), column 7PCP denotes whether 7 physicochemical properties are used 
(Yes/No), column OR denotes output representation is in direct angles (D) or trigonometric ratios (R), column 
NM denotes normalisation method for input feature encoding is [0,1] range based (R) or Z-score based (Z), 
WS denotes the best size of the sliding window. Note that the emboldened cells denote the best performance 
for each combination of ASA and 7PCP while the boxed plus emboldened cells in each respective column 
denote the best performance among all SAP settings.

Features Encoding φ MAE ψ MAE θ MAE τ MAE

ASA 7PCP OR NM WS Test Valid WS Test Valid WS Test Valid WS Test Valid

N N

D
R 5 17.14 17.66 5 20.19 20.48 5 6.40 6.49 5 22.74 23.02

Z 5 16.97 17.49 5 19.99 20.24 5 6.38 6.47 5 22.44 22.68

R
R 5 18.05 18.58 5 21.58 21.97 5 6.70 6.81 5 24.44 24.71

Z 9 17.07 17.57 5 20.14 20.43 9 6.38 6.48 5 22.39 22.59

Y N

D
R 9 16.08 16.51 9 18.85 18.91 9 6.11 6.17 9 21.83 21.35

Z 5 16.44 16.55 5 19.36 19.56 5 6.23 6.18 9 21.52 21.63

R
R 13 17.04 17.54 13 19.15 19.20 13 6.38 6.18 13 22.39 22.06

Z 9 16.41 16.78 9 19.26 19.94 9 6.17 6.33 9 21.15 21.28

N Y

D
R 5 |15.65| |16.04| 5 |18.59| |18.80| 5 |6.07| |6.16| 5 |21.03| |21.18|

Z 5 16.42 16.84 5 19.59 19.84 5 6.32 6.41 5 22.23 22.47

R
R 9 17.49 17.95 9 21.51 21.88 9 6.68 6.79 9 24.34 24.57

Z 13 16.31 16.66 13 19.68 19.87 13 6.30 6.37 13 22.08 22.23

Y Y

D
R 9 15.79 16.13 9 18.84 18.85 5 6.12 6.17 5 21.49 21.89

Z 9 15.87 16.55 5 18.91 18.85 5 6.16 6.19 5 21.12 21.71

R
R 9 16.15 16.85 9 19.30 19.91 9 6.23 6.20 9 21.63 21.71

Z 9 16.70 16.51 9 18.86 18.91 9 6.17 6.20 9 21.74 21.65
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of SAP, we perform 10-fold cross-validation, where the training and validation sets are merged. The merged 
proteins are then randomly divided into 10 folds. Then, 9 out of 10 folds are used in turn for training while the 
remaining one is used for testing. Table 4 shows the MAE value and the standard deviation of MAEs (SDMAE) 
for each type of angles to be predicted. As one can see, the small differences between MAE values and the small 
SDMAE values observed in the table shows the consistency and robustness of SAP.

Comparison with state‑of‑the‑art predictors.  We mainly compare the performance of SAP with that 
of SPIDER224, SPOT-1D27, and OPUS-TASS6 in Table 5. We have run these systems on the testing dataset that is 
used in this work and that is a subset of the SPOT-1D dataset because of more rigorous filtering. Moreover, we 
use 71 and 55 proteins from PDB15034 and CAMEO9335 datasets after performing filtering as mentioned before. 
However, we also compare SAP’s performance with that of SPIDER2, SPOT-1D, and OPUS-TASS as they are 
reported in the respective publications. Below we briefly describe SPIDER2, SPOT-1D, and OPUS-TASS. 

1.	 SPIDER2 is similar to SAP in that both use similar FCNN and similar features. SPIDER2 uses three DNNs 
of its precursor SPIDER23 in a series where the output of a previous DNN is fed as input to the next DNN 
in the series. Like SAP, SPIDER uses FCNN with 3 hidden layers each with 150 neurons. However, SPIDER 
uses stacked sparse auto-encoder for weight initialisation and 0-1 range normalisation for input values. 
SPIDER’s input features are PSSM, 3-state predicted SS, ASA, and 7PCP and the outputs are represented by 
trigonometric ratios. The window size is 21 in SPIDER and 17 in SPIDER2. SPIDER and SPIDER2 use the 
PISCES32 dataset, which has 5840 proteins.

2.	 SPOT-1D is a recent protein backbone angle predictor. It uses an ensemble of 9 long short term memory 
(LSTM) bidirectional recurrent neural networks (BRNNs) and Residual Networks (ResNets). SPOT-1D’s 
input features are PSSM, Hidden Markov Model (HMM), 7PCP, and contact maps. SPOT-1D obtains its 
predicted contact maps from SPOT-Contact33. SPOT-1D then uses windowing of the predicted contact maps. 
Further, SPOT-1D generates HMM profiles that include information about homologous sequences. For this, 
SPOT-1D uses HHBlits31 with the Uniprot sequence profile database from October 2017. SPOT-1D’s inputs 
are mapped in the range of [0, 1] and the outputs are represented by trigonometric ratios. SPOT-1D’s dataset 
is a superset of SAP’s dataset.

3.	 OPUS-TASS is the current state-of-the-art protein backbone angle predictor and predicts φ and ψ only. Its 
architecture consists of CNN layers, LSTM layers, and Transformer37 layers. It uses an input feature named 
PSP1938, which classifies 20 residues into 19 rigid-body blocks depending on their local structures. It also 
introduces a new constrained/output feature named CSF339, which is a local backbone structure descriptor. 
Further, it uses a multi-task learning strategy40 to maximise generalisation of the neural network and an 
ensemble of neural networks for further improvement.

Since SPOT-1D and OPUS-TASS show their performance on two subsets namely TEST2016 and TEST2018 
of the testing proteins, we also do the same although we show the accumulated results for all testing proteins. 
Notice from the table that SAP significantly outperforms both SPOT-1D and OPUS-TASS in all cases. We have 
performed t-tests to compare the performances of SPOT-1D and OPUS-TASS with SAP and the p values are 
< 0.01 in all cases, indicating the differences are statistically significant. The differences are really huge for ψ and 
τ . These results demonstrate the effectiveness of SAP in enhancing protein backbone angle prediction accuracy.

Although our results are in Table 5, to test the generality of performance of SAP over other datasets, we have 
run SAP on 71 proteins of PDB150 dataset and 55 proteins of CAMEO93 datasets. In Table 6, we also compare 
SAP’s performance with SPOT-1D’s performance on the PDB150 proteins and with OPUS-TASS’s performance 

Table 3.   Performance of the best SAP setting when the numbers of hidden layers in the DNNs are varied.

Hidden φ MAE ψ MAE θ MAE τ MAE

Layer Test Valid Test Valid Test Valid Test Valid

2 15.70 16.09 18.65 18.71 6.05 6.14 21.04 21.20

3 15.65 16.04 18.59 18.80 6.07 6.16 21.03 21.18

4 15.72 16.12 18.71 18.91 6.11 6.21 21.18 21.33

Table 4.   Average performance of the best setting of SAP after 10-fold cross validation is performed.

Dataset Measure φ ψ θ τ

Validation MAE 16.04 18.80 6.16 21.18

Testing MAE 15.65 18.59 6.07 21.03

10-Fold MAE 16.14 18.82 6.33 21.31

10-Fold SDMAE 0.24 0.09 0.08 0.21
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on the CAMEO93 proteins. The performance of various methods are rather mixed here. We have performed 
t-tests to compare the performances of SPOT-1D and OPUS-TASS with SAP and the p values are < 0.05 in all 
cases, indicating the differences are statistically significant.

Comparison on protein length groups.  In Table 7, we compare the performance of SAP, OPUS-TASS, 
SPOT-1D, and SPIDER2 when our testing proteins are grouped based on their lengths i.e. the number of amino 
acids each protein has. This is to observe how SAP’s performance varies with the increase of the protein length. 
From the table, we see that for all four types of angles, SAP’s prediction accuracy gradually decreases, with minor 
exceptions, as the protein length increases. When protein lengths are 300 or below (with minor exception for 
θ), the MAE values are less than the overall MAE values and for protein lengths above 300, the MAE values are 
greater than the overall MAE values. From the �MAE values (i.e. how far from SAP’s MAE) of OPUS-TASS, 
SPOT-1D and SPIDER2, we see that with the increase of protein lengths, the performance difference increases; 
which essentially means compared to OPUS-TASS’s or SPOT-1D’s or SPIDER2’s performance, SAP’s perfor-
mance rather gets better.

Table 5.   Performances of SPIDER2, SPOT-1D, SAP, and OPUS-TASS on our testing dataset and its subsets 
TEST2016 and TEST2018. The emboldened values are the winning numbers for the corresponding types of 
angles and datasets. OPUS-TASS does not predict θ and τ angles while the other three methods predict all four 
types of angles.

Results below are as we run all of the systems on our datasets

Dataset Proteins Residues Method φ MAE ψ MAE θ MAE τ MAE

TEST2016 1179 278553

SPIDER2 18.93 30.14 8.15 32.13

SPOT-1D 16.23 23.23 6.77 24.58

OPUS-TASS 15.75 22.41 – –

SAP 15.66 18.62 6.08 21.05

TEST2018 27 3908

SPIDER2 18.51 28.78 7.80 30.35

SPOT-1D 16.07 22.66 6.51 23.54

OPUS-TASS 15.62 21.96 – –

SAP 14.60 16.75 5.60 19.28

Testing 1206 282461

SPIDER2 18.92 30.12 8.15 32.11

SPOT-1D 16.23 23.22 6.77 24.57

OPUS-TASS 15.74 22.41 – –

SAP 15.65 18.59 6.07 21.03

Results below are as they are reported in the respective publications

Dataset Proteins Method φ MAE ψ MAE θ MAE τ MAE

PISCES-test 1199 SPIDER2 19.7 30.3 8.2 32.6

TEST2016 1213
SPOT-1D 16.27 23.26 6.89 25.38

OPUS-TASS 15.78 22.46 – –

TEST2018 250
SPOT-1D 16.89 24.87 6.91 25.94

OPUS-TASS 16.40 24.06 – –

Table 6.   Performances of SPIDER2, SPOT-1D, OPUS-TASS, and SAP on filtered PDB150 and CAMEO93 
proteins. The emboldened values are the winning numbers for the corresponding types of angles and datasets. 
OPUS-TASS does not predict θ and τ angles while the other three methods predict all four types of angles.

Results below are as we run all of the systems on our datasets

Dataset Proteins Residues Method φ MAE ψ MAE θ MAE τ MAE

PDB150 71 11547

SPIDER2 20.98 32.32 8.39 53.46

SPOT-1D 18.32 24.43 6.85 52.58

SAP 19.29 26.37 7.20 51.89

CAMEO93 55 13872

SPIDER2 20.05 31.80 8.34 33.83

OPUS-TASS 16.76 24.04 – –

SAP 20.24 31.02 7.87 32.69

Results below are as they are reported in the respective publications

Dataset Proteins Method φ MAE ψ MAE θ MAE τ MAE

CAMEO 93
SPOT-1D 16.89 23.02

OPUS-TASS 16.56 22.56
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Comparison on secondary structure groups.  Table 8 (Left) shows the residue distribution over the 
testing proteins when the residues are grouped on their SS types. Types C, E, H, S and T are the most frequent 
groups. Figure 4 (Top Four) shows the MAE values of SAP, OPUS-TASS, SPOT-1D, and SPIDER2 when the 
residues are grouped on their SS types. From the charts, frequent SS type H appears to have the best MAE values 
while other frequent SS types C, E, and S have significantly worse MAE values than the overall MAE values.

Comparison on amino acid groups.  Table 8 (Right) shows the residue distribution over the testing pro-
teins when the residues are grouped on their AA types. Types A, D, E, G, I, K, L, P, R, S, T, and V are the most 
frequent groups having at least 4.5% residues. Figure 4 (Bottom Four) shows the MAE values of SAP, OPUS-
TASS, SPOT-1D, and SPIDER2 when the residues are grouped on their AA types. From the charts, frequent AA 
types A, E, I, L appear to have the best MAE values in all 4 types of angles. Among other frequent AA types C, 
D, G have worse MAE values than the overall MAE values in some types of angles.

Using angle ranges from predicted secondary structures.  Given the SS predictions and their sug-
gested ranges of φ and ψ values as shown in Table 8 left, particularly for helices (G, H, I) and sheets (B, E), one 
might just use the mid values of the respectives ranges as the predicted values and expect an MAE of about 10 for 
the respective SS type. When we do that for the residues that belong to SS types G, H and I, we get MAE values 
respectively 27.71, 9.12, and 22.04 for φ and 18.71, 8.83, 21.17 for ψ . In contrast, the MAE values for SAP predic-
tions are respectively 12.40, 5.43, 11.34 for φ for SS types G, H, and I, and 16.08, 6.40, 15.16 for ψ . The situations 
worsens for sheets such as SS types B and E. These results clearly show that just achieving higher accuracy in SS 
prediction would not be sufficient for backbone angle prediction.

Comparison of angle distributions.  Figure 5 shows the distributions of the actual angles and predicted 
values obtained from SAP, OPUS-TASS, SPOT-1D, and SPIDER2. As we can see from the charts, the distribution 
of values predicted by SAP aligns very well with the distribution of the actual values. The peaks and troughs of 
the distributions align quite well, even multiple peaks and troughs are captured well. While the peaks of the pre-
dicted distributions are larger and narrower than those of the actual distributions, the troughs of the predicted 
distributions are rather smaller and wider than those of the actual distributions. When SAP’s curves are com-
pared with OPUS-TASS’s, SPOT-1D’s and SPIDER2’s, we see SAP’s curves are occasionally closer to the curves 
for the actual values. We also see that the distributions of φ and ψ angles for are OPUS-TASS and SPOT-1D are 
almost similar. Notice that the largest peaks of the predicted values are higher than the largest peaks of the actual 
values. One noticeable fact is in the θ chart: there are actual values between 0 and 90 although with almost zero 
probability, and these values are not much captured by the predictors. Overall, there is a tendency to predict the 
peak values with probabilities larger than that of the actual values.

Protein structure generation and refinement.  Given the improvement in angle prediction accuracy, 
an interesting question is as follows: “Can predicted angles be directly employed in building accurate protein 
structures?” The direct answer to this question is yes if we reach to a very high accuracy level. This is actually the 
aim of this study to enhance the performance gradually to the level that would predict protein structures with 
very high accuracy; which is very challenging. Given the 27 proteins in our TEST2018 set, we have tried to gen-
erate entire protein structures from the predicted values obtained from SAP, OPUS-TASS, and SPOT-1D, and 
assuming ω = 180◦ and standard bond distances. From Fig. 6, we can see very high root mean square distance 
(RMSD) for more proteins and only for 2–3 proteins, RMSD values are less than 6 A◦ , a distance considered to 
be practically meaningful. Although this is the case with protein structure generation, for structure refinement 
via ab initio structure sampling and evaluation by using perturbation techniques would obtain significant help. 
This is because given a prediction ρ and estimated error ǫ , with some level of certainty, one can focus searching 
within the region [ρ − ǫ, ρ + ǫ] . These soft constraints can thus reduce the search space significantly. With more 

Table 7.   Performance of SAP, OPUS-TASS, SPOT-1D, and SPIDER2 when our testing proteins are grouped 
based on their lengths. In the table, �MAE of a system (e.g. OPUS-TASS, SPOT-1D or SPIDER2) is its MAE 
minus the MAE of SAP. As such, the greater the value of �MAE, the worse the performance of the system w.r.t. 
the performance of SAP.

Testing proteins

φ ψ θ τ

SAP
OPUS-
TASS SPOT-1D SPIDER2 SAP

OPUS-
TASS SPOT-1D SPIDER2 SAP SPOT-1D SPIDER2 SAP SPOT-1D SPIDER2

Length Count MAE �MAE �MAE �MAE MAE �MAE �MAE �MAE MAE �MAE �MAE MAE �MAE �MAE

001–100 210 14.46 + 0.11 + 0.57 + 3.03 17.88 + 3.15 + 3.71 + 9.32 5.63 + 0.53 + 1.82 18.95 + 2.68 + 8.98

101–200 381 15.37 + 0.02 + 0.46 + 3.08 18.40 + 3.27 + 3.93 + 10.35 6.10 + 0.55 + 1.93 20.79 +2.63 + 9.79

201–300 264 15.24 + 0.25 + 0.61 + 3.17 18.02 + 3.93 + 4.66 + 11.14 5.96 + 0.71 + 1.99 20.38 + 3.50 + 10.74

301–400 180 15.76 − 0.29 + 0.30 + 3.42 18.58 + 3.06 + 4.09 + 11.70 6.12 + 0.59 + 2.10 21.43 + 2.96 + 11.23

401–500 102 16.06 + 0.34 + 0.87 + 3.53 18.98 + 4.76 + 5.37 + 12.91 6.09 + 0.86 + 2.32 21.49 + 4.28 + 12.36

501–800 69 16.52 + 0.25 + 0.81 + 3.29 19.64 + 4.75 + 5.89 + 12.77 6.29 + 0.89 + 2.20 22.04 + 5.22 + 12.44

Overall 1206 15.65 + 0.09 + 0.58 + 3.27 18.59 + 3.82 + 4.63 + 11.53 6.07 + 0.70 + 2.08 21.03 + 3.54 + 11.08
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Table 8.   Residue distribution over the testing proteins when residues are grouped on their (Left) SS and 
(Right) AA types. Also, on the left, typical ranges suggested for the torsion angles φ and ψ for various 
secondary structures41.

SS Residues Percentage φ Range ψ Range

B 2955 1.05 [− 130, − 110] [110, 130]

C 56,250 19.91 [− 180, + 180] [− 180, + 180]

E 61,041 21.61 [− 130, − 110] [110, 130]

G 10,581 3.75 [− 59, − 39] [− 36, − 16]

H 96,993 34.34 [− 67, − 47] [− 57, − 37]

I 47 0.02 [− 67, − 47] [− 80, − 60]

S 22,984 8.14 [− 180, + 180] [− 180, + 180]

T 31,610 11.19 [− 180, + 180] [− 180, + 180]

Total 282,461 100.00

AA Residues Percentages

A 22,406 7.93

C 3874 1.37

D 16,697 5.91

E 18,752 6.64

F 12,022 4.26

G 19,593 6.94

H 6904 2.44

I 16,152 5.72

K 16,024 5.67

L 26,909 9.53

M 5963 2.11

N 12,161 4.31

P 12,752 4.51

Q 10,567 3.74

R 14,619 5.18

S 17,387 6.16

T 15,492 5.48

V 19,622 6.95

W 4170 1.48

Y 10,395 3.68

Total 282,461 100.00

Figure 4.   Performance of SAP, OPUS-TASS, SPOT-1D, SPIDER2 on the testing proteins when residues are 
grouped based (Top Four) on their SS types and (Bottom Four) on their AA types. In the charts, y-axis shows 
MAE values and x-axis shows SS or AA types. The dashed horizontal line in each chart shows the overall MAE 
value for SAP.
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proteins having more dihedral angles predicted with less absolute errors, ab initio or refinement search for pro-
tein structures would be benefited more from SAP’s prediction than OPUS-TASS’s or SPOT-1D’s.

Comparison on correct prediction per protein.  Having the discussion regarding structure generation 
and refinement, we compare SAP, OPUS-TASS, and SPOT-1D on what portions of the angles of the proteins are 
predicted within certain error levels. Figure 7 shows the percentages of proteins that have a given percentage of 
particular angles with absolute errors at most a given threshold. We choose the threshold values to be 6 and 18 
in the charts. Notice that SPOT-1D’s and OPUS-TASS’s performances are very close in the charts for φ and ψ . 
Moreover, SAP outperforms the other three methods in all angles in all threshold levels.

Conclusions
Input features and neural network architectures interact with each other when employed in prediction systems. 
Consequently, inclusions of just more features might cause cluttering and the complex networks might then 
be needed to counterbalance. In the protein backbone angle prediction research, the existing state-of-the-art 

Figure 5.   Distributions of actual angles of testing proteins and predictions of SAP, OPUS-TASS, SPOT-1D, and 
SPIDER2.

Figure 6.   RMSD values for SAP, SPOT-1D, and OPUS-TASS on TEST2018 proteins.
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prediction method uses ensembles of several types of deep neural networks and a number of features. In this 
paper, we present simpler deep neural network models for protein backbone angle prediction. Our models use 
fewer features and simpler neural networks but on a standard benchmark dataset obtain significantly better mean 
absolute errors than the state-of-the-art predictor. Our program named Simpler Angle Predictor (SAP) along 
with its data is available from the website https://​gitlab.​com/​mahne​wton/​sap.
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