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Application of the decision tree 
method to lithology identification 
of volcanic rocks‑taking 
the Mesozoic in the Laizhouwan 
Sag as an example
Yajun Duan1, Jun Xie1*, Yanchun Su2, Huizhen Liang3, Xiao Hu1, Qizhen Wang1 & 
Zhiping Pan1

The decision tree method can be used to identify complex volcanic rock lithology by dividing lithology 
sample data layer by layer and establishing a tree structure classification model. Mesozoic volcanic 
strata are widely developed in the Bohai Bay Basin, the rock types are complex and diverse, and the 
logging response is irregular. Taking the D oilfield of the Laizhouwan Sag in the Bohai Bay Basin as an 
example, this study selects volcanic rocks with good development scales and single-layer thicknesses 
of more than 0.2 m as samples. Based on a comparison of various lithology identification methods 
and both coring and logging data, using the decision tree analysis method and the probability density 
characteristics of logging parameters, six logging parameters with good sensitivity to the response of 
the volcanic rocks of the above formation are selected (resistivity (RD), spontaneous potential (SP), 
density (ZDEN), natural gamma ray (GR), acoustic (DT), and compensated neutron correction (CNCF) 
curves), which are combined to form a lithology classifier with a tree structure similar to a flow chart. 
This method can clearly express the process and result of identifying volcanic rock lithology with each 
logging curve. Additionally, crossplots and imaging logging are used to identify the volcanic rock 
structure, and the core data are used to correct the identified lithology. A combination of conventional 
logging, imaging logging and the decision tree method is proposed to identify volcanic rock lithology, 
which substantially improves the accuracy of rock identification.

Volcanic rock, as an important basin filler, is the main component of the early basin formation period. It is 
believed that all volcanic rocks may become reservoirs. The composition and structure of volcanic rocks are 
complex. There are many types of rocks and unclear logging relationships, making lithology identification dif-
ficult. However, the identification of volcanic lithology is the basis for the division of volcanic lithofacies and the 
study of reservoir performance and characteristics, which is significant to production practices. Therefore, it is 
necessary to study the lithology identification method of complex volcanic rocks1–4. At present, there are four 
main methods for volcanic rock lithology identification. The first method is to use core, thin-section and logging 
data to identify lithology directly and effectively. However, because volcanic rocks mostly develop at the bottom 
of a basin, drilling and coring are difficult, and it is difficult to apply this method of identification to an entire well 
section. The second method is to identify the lithology of volcanic rocks by seismic or gravity-magnetic-electric 
methods, which mainly use the seismic reflection characteristics of different lithologies of volcanic rocks and 
the influence of volcanic rocks on the magnetic anomaly intensity to identify lithology5 This kind of method 
can only identify the macroscopic distribution range of volcanic rocks and not the detailed identification of the 
volcanic rock lithology6,7. The third method is to use special logging data, such as element logging and imaging 
logging, for lithology identification8–10. This method has a good identification accuracy but a high cost, and most 
old wells lack special logging data, making it difficult to apply this identification method to all wells in a certain 
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area11,12. The fourth method uses a conventional logging curve to identify volcanic rock lithology; commonly 
used methods include the conventional logging curve feature method, crossplot identification method, princi-
pal component analysis method and neural network method13–17. This method is the most commonly used for 
volcanic rock lithology identification.

During the formation process of the Bohai Bay Basin, it experienced two rifting cycles in the Mesozoic 
and Cenozoic18–20, forming numerous intermediate acid and intermediate basic volcanic rock formations21–23. 
The D oilfield is located in the Laizhouwan Sag in the southeast of the Bohai Bay Basin. Drilling investigations 
have shown that volcanic reservoirs in this area have great development potential24,25. However, due to the 
complexity of the volcanic eruption environment, frequent eruption cycles and periods, lithology diversity and 
different degrees of weathering and alteration during diagenesis, the complex lithology of volcanic rock, high 
exploration cost of offshore platforms, limited data collection and difficult lithology identification restrict further 
exploration of volcanic reservoirs; thus, it is urgent to determine an effective approach for identifying volcanic 
rock lithology26,27. To solve the complex problem of lithology identification of volcanic rocks, the decision tree 
method of the "white box" model is introduced. The logging curves are screened layer by layer to clearly describe 
the various elements, related factors and process rules in the process of logging curve identification28. The tree 
structure lithology classifier is established to distinguish complex lithology, effectively solving the problem of 
the low accuracy of lithologic profile identification caused by the lack of large-scale and continuous cores. On 
the basis of selecting six logging parameters for lithology classification, identification and screening, this study 
uses the decision tree method to first generally distinguish lithology, which is corrected with imaging logging 
identification and core identification, and ultimately identify the volcanic rock lithology in the study area in detail.

Geological background
The Laizhouwan Sag, located in the southeastern Bohai Bay Basin, is a Cenozoic depression developed on a 
Mesozoic base29–31 (Fig. 1a). Strong volcanic activity occurred during Mesozoic rifting. The D oilfield is located 
in the southern slope zone of the Laizhouwan Sag (Fig. 1b,c). The buried Mesozoic hill in the study area is 
located at a high position, close to the hydrocarbon generation centre of the Laizhouwan Sag, resulting in the 
good trap conditions, well-developed fractures and good reservoir-forming conditions of the volcanic reservoir. 
Well drilling investigations have revealed that the Neogene Guantao Formation, Palaeogene Shahejie Forma-
tion and Mesozoic strata all have strong oil and gas shows32. This area is in a low-exploration area and has great 
exploration potential33. Among these strata, the Mesozoic mainly developed the Cretaceous Yixian Formation 
and Jurassic Lanqi Formation volcanic strata with complex lithologies, which are the main target strata of this 
study34–36 (Fig. 2).

Figure 1.   Distribution of major oil and gas fields in the Kenli area and location of the Kenli area. Map generated 
using CorelDRAW 2017. (https​://www.corel​.com/) (a) Laizhouwan Sag location map. (b) D oilfield location 
map. (c) D oilfield well location schematic.

https://www.corel.com/
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Samples and methods
A total of 235 core samples, with diameters of 50 mm and heights of 80 mm, were collected from the ten cored 
wells in the core library of the D oilfield. A total of eight logging curves were collected for each well. Among them, 
imaging logging curves were collected from four wellbores. The lithology identification of volcanic rocks in the 
study area mainly adopted the slice identification method, intersection graph method, decision tree method and 
imaging logging method. The analysis method is summarized as follows.

Slice observation.  The rock was cut to a thickness less than 0.3 mm and placed under a slide with adhesive 
to observe the mineral composition of the rock. Out of the 235 samples in the study area, 137 samples were iden-
tified by polarizing microscopy. The remaining 98 samples were made into thin casting sheets. The samples for 
preparing thin sections were impregnated with alizarin epoxy resin and potassium ferricyanide under vacuum 
to clearly observe the pores28. Dickson’s method was used to distinguish pores from grains.

Intersection graph method.  The intersection of the resistivity curve (RD), density curve (ZDEN), com-
pensated neutron correction curve (CNCF) and natural gamma ray curve (GR) was selected for detailed lithol-

Figure 2.   (a) Lithostratigraphy of the Laizhouwan Sag. (b) A detailed stratigraphic column of well D-6.
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ogy identification of volcanic rocks to obtain the approximate distribution range of the logging response param-
eters corresponding to different lithologies37,38, which is the basis of the decision tree method.

Imaging logging method.  Imaging logging uses the electrical conductivity of a formation to convert the 
microresistivity curve into bright and dark spots to reflect the lithologic characteristics and fracture conditions 
of the formation. The higher the formation conductivity and the lower the resistivity are, the darker the colour 
will be39,40. Using Fullbore Formation MicroImaging (FMI) technology, four wells were imaged to reflect the 
stratigraphic features visually, and these results were combined with conventional logging data for lithology 
identification in the study area.

Principle of the decision tree method.  A decision tree is a tree structure similar to a flow chart28,41,42. 
Its principle is to test different data samples, divide samples with different results into different sample subsets, 
and finally establish a tree structure model, for which each branch represents the output of a test point that can 
determine the relationship between data sample records and sample attributes43. Through the classification and 
prediction of logging data samples, the relationship between various logging curves and the volcanic rock lithol-
ogy can be clearly described. Therefore, based on the interactive graph method, the decision tree model is used 
to segment the lithology, which decreases the information entropy of each subset and lithology type and finally 
generates a classification decision tree for lithology identification.

Result
Recognition of lithologic slices of volcanic rocks.  According to the core thin-section data of each 
well in the study area, the core observation data and the borehole wall data, the main types of Mesozoic volcanic 
rocks in the study area are volcanic clastic rock and volcanic lava, and the volcanic clastic rock includes normal 
volcanic clastic rock and sedimentary pyroclastic rock. A small amount of pyroclastic sedimentary rock, mainly 
tuffaceous conglomerate, can be seen in the lower part of wells D-7 and D-10; andesite, rhyolite and dacite can 
be observed in the volcanic lava.

(1)	 Volcanic clastic rock
	   The tuff is mainly composed of fine volcanic ash and dust, contains a small amount of quartz, hornblende 

and biotite, with massive structure and tuff structure, is dense and hard, and has been nonuniformly altered 
(Fig. 3a,b,e). The volcanic breccia, with a range of colours, mainly grey, greyish green and reddish brown, is 
subangular and poorly sorted. The matrix is mainly composed of dense volcanic ash with fracture develop-
ment and a volcanic breccia structure (Fig. 3c,d,f).

(2)	 Sedimentary pyroclastic rock
	   The sedimentary volcaniclastic rock is a transitional lithology between the volcaniclastic rock and the 

sedimentary rock formed under the dual transformation of volcanism and sedimentation. The sedimentary 
tuff is largely variegated, including mainly rock debris and volcanic dust. The rock debris includes primarily 
quartz and feldspar of medium and fine sand grades. Most of the rock debris has been altered, and some 
of the fragments are argillized. The matrix is mainly siliceous rock formed by volcanic dust under high 

Figure 3.   Photographs of the characteristics of Mesozoic volcanic clastic rocks in the D Oilfield, Laizhouwan 
Sag. (a) Tuff D-4 1203.5 m massive structure. (b) Tuff D-7 1588 m purple brown. (c) Volcanic breccia D-7 
1636 m variegated. (d) Volcanic breccia D-9 1605 m. (e) Brecciferous rhytitic tuff D-9 1603.68 m. (f) Tuffaceous 
breccia D-7 1580 m.
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temperatures and pressures and evenly distributed among rock cuttings, with moderate fracture and pore 
development and a tuff structure (Fig. 4a,b).The sedimentary volcanic clastic rocks developed in the study 
area are mainly sedimentary volcanic breccia and tuff. The sedimentary volcanic breccia is mainly varie-
gated. The rock is mainly composed of volcanic breccia and mudstone around the breccia. The volcanic 
breccia has distinct edges and corners. The breccia is mainly composed of tuff rock blocks with poor pore 
development. The fractures are well developed, and the structure of the sedimentary volcanic breccia is 
also well developed (Fig. 4c).

(3)	 Volcanic lava
	   Volcanic lava is a kind of rock formed by the condensation and crystallization of magma from the 

weak part of the Earth’s crust. The volcanic lava in the study area includes rhyolite, dacite and andesite. 
The andesite is mainly brownish grey and black/brown with a porphyritic structure. The phenocrysts are 
feldspar and plagioclase, and the matrix is fine plagioclase with an interwoven structure. The pores of the 
rock are poorly developed; the fractures include a small amount of chlorite and argillaceous filling, a small 
number of phenocryst dissolution pores exist, and chloritization and feldspar phenocryst kaolinization has 
occurred (Fig. 5a,b). The dacite is mainly grey, and the plagioclase and hornblende are mainly observed 
in phenocrysts. The plagioclase appears argillized. The matrix has a glass base interwoven structure. The 
plagioclase microcrystals are disorderly distributed in glassy areas. The observed cracks in these rocks 
are mostly filled by siliceous minerals and calcite; the rock is relatively dense, with a porphyritic texture 
(Fig. 5c,d). In the rhyolite, the quartz and feldspar are mainly observed in phenocrysts. In the later stage of 
phenocryst formation, the alteration was intense. The matrix has a cryptocrystalline structure, and fractures 
and cataclastic structures can also be observed (Fig. 5e,f).

Figure 4.   Characteristics of Mesozoic sedimentary volcaniclastics in the D oilfield of the Laizhouwan Sag. (a) 
Sedimentary tuff D-4 1219 m. (b) Sedimentary tuff D-4 1223 m. (c) Sedimentary volcanic breccia D-6 1491 m.

Figure 5.   Characteristics of Mesozoic volcanic lava in the D oilfield of the Laizhouwan Sag. (a) Andesite D-4 
1495 m porphyry structure. (b) Andesite D-6 1506 m massive structure. (c) Dacite D-7 1605 m intergranular 
structure. (d) Dacite D-9 1633 m glass crystal interwoven structure. (e) Rhyolite D-10 1775 m cryptocrystalline 
structure. (f) Rhyolite D-10 1733.5 m cryptocrystalline structure.
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Recognition of lithology using a conventional log intersection chart.  The lithology of volcanic 
rocks in the study area is complex, with neutral, basic and acidic rocks. In this paper, eleven wells in the study 
area were cored, core slices were made, and the natural gamma, neutron, acoustic time difference, resistivity, 
natural potential and density curves were calibrated with the determined lithology. At present, the intersection 
chart of the resistivity RD, ZDEN, CNCF and GR is mainly selected for detailed volcanic lithology identification.

It can be seen from the RD-GR crossplot (Fig. 6) that when RD < 20 Ω·m and GR < 270 API, the main litholo-
gies identified are tuff, andesite, volcanic breccia, sedimentary tuff and sedimentary volcanic breccia. The RD 
value of tuff is less than 3 Ω·m, and the RD value of andesite and sedimentary breccia is in the range of 3–9 Ω·m. 
When GR > 250 API, the main lithology is dacite and tuff, and the RD value of dacite is generally greater than 
30 Ω·m.

According to the GR-ZDEN intersection diagram (Fig. 7), when ZDEN < 2.53 (g/cm3) and GR < 200 API, 
the main lithologies identified are tuff, andesite and sedimentary volcanic breccia. When ZDEN < 2.53 (g/cm3) 
and 200 < GR < 400 API, the main lithologies identified are breccia bearing rhyolitic tuff and rhyolite. When 
ZDEN > 2.53 (g/cm3) and GR < 200 API, the identified lithology is tuff. When ZDEN > 2.53 (g/cm3) and GR > 200 
API, volcanic breccia and dacite are identified.

Figure 6.   RD-GR crossplot of conventional logging curves of volcanic rocks in the study area.

Figure 7.   GR-ZDEN crossplot of conventional logging curves of volcanic rocks in the study area.
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From the ZDEN-CNCF intersection map (Fig. 8), it can be seen that when CNCF > 0.258%, tuff is the main 
identified lithology. When CNCF < 0.258 and ZDEN < 2.46 (g/cm3), the main identified lithologies are breccia-
bearing rhyolitic tuff, andesite and sedimentary volcanic breccia. When CNCF < 0.2% and ZDEN > 2.46 (g/cm3), 
the main identified lithologies are volcanic breccia, rhyolite, dacite and tuff.

Curve characteristic method.  Volcanic rocks of different lithologies have different logging response char-
acteristics. The density curve, neutron curve and acoustic time difference curves in the study area are sensitive 
to the composition of the rock. For the conventional logging curves, the pyroclastic rocks are characterized by 
a low density, high density and high acoustic time difference, reflecting the high porosity and low resistivity of 
the reservoir. Among them, the logging response characteristics of volcanic breccia are obviously affected by 
its lithology. Specifically, the neutron density presents "zigzag double track" characteristics, there is a crossing 
phenomenon in the plot, and the deep lateral resistivity value is moderately high. The logging of tuff response 
characteristics is obvious, the neutron density has "smooth double track" characteristics, there is no crossing 
phenomenon in the plot, and the deep lateral resistivity is low. Volcanic lava is characterized by a high resistivity, 
certain "bayonet shape" in the plot, density close to the skeleton value, small neutron value, and low and straight 
acoustic transit time curves (Table 1).

Imaging logging identification method.  According to the change in the resistivity depth response of 
the borehole wall, FMI can directly and clearly observe the characteristics of rock structure, lithology and frac-
tures and is used here to distinguish different volcanic rock lithology in the study area and improve the accuracy 
of volcanic rock lithology identification.

The volcanic lava is relatively dense and homogeneous on the whole, usually exhibiting a bright a blocky 
response and showing a high-resistivity in the FMI images, with dark stripes on either side of the high resistivity. 
In the FMI images, the andesite is mainly characterized by a massive and bright pattern, and dark arc-shaped 
bands are visible. The rhyolite is characterized by the combination of a layered bright pattern and a dark linear 
pattern. Dacite usually shows a combination of massive patterns and very fine dark stripes.

Among the pyroclastic rocks, the volcanic breccia is mainly f volcanic breccia without a rounded structure. 
The interstitial materials are mainly volcanic dust and volcanic ash, which are the main rock types of volcanic 
explosive facies. The resistivity difference between volcanic breccia and volcanic ash is obvious, and the mode 
of an irregular combination of bright spot appears in the FMI images. Tuff is mainly composed of pyroclastic, 
crystalline, wavy and lithic material, with a layered or massive structure. Its resistivity is lower than that of the 

Figure 8.   ZDEN-CNCF crossplot of conventional logging curves of volcanic rocks in the study area.

Table 1.   Lithology logging identification standard of the Mesozoic buried hill.

Rock logging classification

Response characteristics of conventional 
logging

RD (Ω·m) ZDEN (g/cm3) CNCF

Lava  > 15  > 2.65  < 0.15

Volcanic breccia 1–15 2.25–2.73  < 0.28

Tuff  < 10  < 2.57 0.08–0.4
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lava and pyroclastic rock. The volcanic breccia or gravel mixed locally in the tuff is bright, so the tuff exhibits 
a dark spotted pattern. The sedimentary tuff is characterized by alternating dark and bright bands in the FMI 
images, which reflect the general imaging logging characteristics of sedimentary rocks (Fig. 9).

Identification of lithology by the decision tree method.  The decision tree method can clearly 
describe the relationship between various logging curves and the lithology of volcanic rocks; thus, the optimi-
zation of logging parameters is very important in various lithology identification methods. The decision tree 
method can not only determine the adaptability of various lithology identification methods but also determine 
which kind of rock exhibits the best accuracy in the lithology identification. In general, the fewer logging param-
eters used for reference, the higher the lithological discrimination is. Usually, a set of specific logging parameters 
will be most sensitive to a certain rock response (Fig. 10). The decision tree method is a process of segmenting 
a large number of samples by recursive selection of optimal features. Based on the differences in radioactivity, 
porosity, density, acoustic velocity, conductivity and potential variation of various volcanic rocks, the logging 
response values corresponding to six logging curves (i.e., natural gamma, neutron, density, acoustic time dif-
ference, resistivity and spontaneous potential) of various volcanic rocks are taken as the total sample parameter 
set. The data set is divided into subsets by selecting sensitive curves, and then feature selection and partition are 
performed recursively until all subsets are correctly classified or there are no features available for segmentation 
to establish a decision tree and realize the recognition of volcanic rock lithology.

First, according to the logging data, six logging parameters are analysed in terms of their correlation to the 
dacite, andesite, rhyolite, tuff, volcanic breccia, sedimentary breccia and tuff in the study area, and the probability 
density of all the logging parameters of these seven volcanic rocks is projected into a map. A probability density 
distribution diagram of logging parameters can show the response sensitivity and approximate distribution range 
of various logging parameters to different types of volcanic rocks, and the approximate distribution range of log-
ging response parameters corresponding to different lithologies can be observed. From the obtained probability 
density distribution diagram of the logging parameters, it can be seen that the CNCF curve is more sensitive to 
tuff, and many of the CNCF values of tuff are more than 0.25%, which can be clearly distinguished from other 
lithologies. However, other lithologies have little difference in terms of the values of the CNCF curves, which 
is difficult to distinguish. In addition, the GR values of dacite and rhyolite are relatively high, but the difference 
is not large, making it is difficult to distinguish them. The RD curve is relatively sensitive to dacite, remaining 
above 20 Ω·m, and the RD values of other lithologies are similar. Therefore, the RD curve can be used to identify 
dacite, but other curves are difficult to distinguish. The SP curves are sensitive to dacite and generally remain 
below 30 mV, but there is little difference between these three lithologies, making it is difficult to distinguish 
them. Therefore, the linear division of a single logging parameter cannot classify the lithology of complex volcanic 
rocks. Therefore, it is necessary to integrate multiple logging parameters to identify these lithologies.

To obtain the lithologic classification model of complex volcanic rocks, based on the probability density 
distribution characteristics of the logging parameters, the decision tree method is used to summarize all the log-
ging parameter data in the study area, and logging parameter sample sets of different lithologies are established. 
For various lithologies, 215 logging parameter samples are randomly selected to obtain the sample parameter 
set. Based on the comprehensive analysis of the probability density distribution characteristics of the logging 
parameters, six logging parameters, namely, the acoustic (DT), natural gamma ray (GR), density (ZDEN), deep 
lateral resistivity (RD), compensated neutron (CNCF) and spontaneous potential (SP) parameters, are selected 
for lithology classification and identification. The required data set is obtained through the screening test of the 
sample set, and then a lithologic classifier that can identify the complex volcanic rock is gradually established 
according to the decision tree method (Fig. 11).

The lithology is segmented using the established lithology classifier of complex volcanic rocks, and the infor-
mation entropy of each lithology type decreases with the layer screening. Taking RD = 30 Ω·m as the node, 
values greater than 30 Ω·m are divided into dacite, and the rest of the lithology is divided by the SP curve. When 
SP ≤ 20 MV and GR < 340 API, the lithology is volcanic breccia tuff; when SP ≤ 20 MV and GR ≥ 340 API, the 
lithology is breccia-bearing rhyolite tuff; when SP ≥ 70 MV and ZDEN < 2.37 g/cm3, the lithology is sedimentary 
volcanic breccia; when SP ≥ 70 MV, ZDEN ≥ 2.37 g/cm3 and DT ≥ 90 μs/m, the lithology is tuff; when SP ≥ 20 

Figure 9.   Imaging logging lithology identification chart.
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Figure 10.   Probability density distributions of the well parameters.

Figure 11.   Lithology classifier based on the decision tree method.



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19209  | https://doi.org/10.1038/s41598-020-76303-y

www.nature.com/scientificreports/

MV, ZDEN ≥ 2.37 g/cm3 and DT < 9 μs/m, the lithology is andesite; when SP is 20–70 MV and GR ≤ 120 API, 
the identified lithology is sedimentary tuff; when SP is 20–70 MV, GR > 120 API and CNCF ≤ 0.18, the identified 
lithology is rhyolite; when SP is 20–70 MV, GR > 120 API, CNCF > 0.18 and SP ≤ 59 MV, the identified lithol-
ogy is tuffaceous volcanic breccia; and when SP is 20–70 MV, GR > 120 API, CNCF > 0.18 and SP > 59 MV, the 
identified lithology is tuffaceous volcanic breccia. The decision tree branch of each layer can divide the logging 
curve data. The model composed of multiple logging parameter branches to identify the volcanic rock lithology 
by the decision tree method can more clearly reflect the logging response characteristics of volcanic rock to 
improve the recognition accuracy of the volcanic rock lithology. Therefore, the cutoff value table of the volcanic 
rock lithology logging identification is summarized in this study (Table 2).

Discussion
Comparison and application of different lithology identification methods.  Based on the deci-
sion tree method to identify lithology and using the constraints of the FMI results, curve shape and crossplot 
discrimination results, a lithology identification chart is established with core and thin-section photographs 
(Fig. 12).

Table 2.   Cutoff values of lithology identification based on the decision tree method.

Lithology CNCF DT GR RD ZDEN SP

Andesite 0.11–0.3 59.5–90.58 130.38–233.82 2.02–9.06 2.37–2.54 72.06–84.56

Dacite 0.091–0.28 56.82–80.41 282.07–350.83 27.46–91.22 2.49–2.65 18.06–20.51

Rhyolite 0.14–0.18 68.7–80.73 156.12–397.63 4.11–14.36 2.39–2.59 60.16–62.46

Tuff 0.28–0.37 90–110.06 118.57–163.67 1.46–2.71 2.37–2.51 80.33–88.11

Volcanic breccia 0.18–0.28 68.76–89.15 173.59–263.28 1.48–11.77 2.32–2.73 59–66.01

Tuffaceous breccia 0.18–0.34 71.47–107.63 201.3–268.55 1.8–8.34 2.36–2.46 55.45–59.92

Breccia-bearing rhyolitic tuff 0.2–0.23 67.32–94.31 340–485.39 7.01–11.92 2.37–2.53 9.08–11.03

Volcanic breccia tuff 0.21–0.23 73.71–82.82 300.85–340 7.47–9.3 2.4–2.49 9.08–10.45

Sedimentary volcanic breccia 0.23–0.25 83.53–89.82 152.69–219.77 5.27–6.59 2.34–2.37 76.29–79.68

Sedimentary tuff 0.11–0.16 62.82–105.31 85.19–121 4.768–31.85 2.52–2.58 2.5–49.25

Figure 12.   Logging curve, core slice identification and imaging logging identification chart of Mesozoic 
volcanic rocks in the Laizhouwan Sag.
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Through the comparative analysis of back judgement, it is shown that there are errors in the identification 
of rock composition by different methods, in which the lithology identification error of the intersection map 
is smaller than that of the curve shape method, while the error of lithology identification by the decision tree 
method is smaller than that of the crossplot method. This shows that the error of a single curve in lithology 
identification is greater than that of lithology identification with multiple curves. Imaging logging has a high 
accuracy but also a high cost, and most old wells lack imaging logging data. Therefore, imaging logging and 
core photographs can be used as references for lithology identification and correction to improve the accuracy 
of volcanic rock lithology identification. The decision tree method is used to identify the lithology of each well 
in the study area. Taking well D-6 as an example, the lithology identification results are compared with the 
core photographs. In the 1468–1485 m well section, when RD < 30 Ω·m, SP > 70 MV, ZDEN > 2.37 g/cm3, and 
DT < 90 μs/m, the original logging lithology identification suggested tuffaceous sand conglomerate. However, it 
can be seen from the decision tree method that the well section is mainly andesite, and it can also be seen from 
the core photographs that the section is andesite. In the 1485–1492 m interval, when RD < 30 Ω·m, SP > 70 MV, 
and ZDEN < 2.37 g/cm3, the lithology identified by logging is tuffaceous sand conglomerate, while sedimentary 
volcanic breccia is mainly developed in this interval according to the decision tree method. In the 1495–1508 
well section, when RD < 30 Ω·m, SP > 70 MV, ZDEN > 2.37 g/cm3, and DT < 90 μs/m, the lithology identified by 
logging is volcanic breccia, but the decision tree method shows that andesite is mainly developed in this section. 
It can be seen from the borehole coring photographs and core slice photographs that the core identified by the 
decision tree method is more in line with the actual situation (Fig. 13). The results show that the application of 
the decision tree method to the lithology identification of the mixed rock in the study area is generally good, 
and its accuracy rate exceeds 82%.

Influence of volcanic lithology on oil bearing properties.  Through the comprehensive analysis of 
the volcanic rock lithology identification, logging oil-bearing level analysis, reservoir space type identification 
and porosity lower limit, oil–gas reservoir comprehensive identification of the test wells in this area (Table 3) 
is carried out, and the results are in good agreement with the oil test results. According to the statistical results 
of the physical properties of different lithologies, the physical properties of different types of volcanic rocks 
are clearly different. The lithologies with the most favourable physical properties are tuff, volcanic breccia and 
andesite, which have relatively high porosities; the average porosity of andesite is 16.02%, that of volcanic breccia 
is 16.185%, and that of tuff is 14.7% (Fig. 14). According to the relationship between the oil-bearing properties 
and lithology, andesite has the most favourable oil-bearing properties, followed by tuff and volcanic breccia. The 
logging display level of volcanic rock cuttings in the oil layer (oil spotting) can be used as an important threshold 
to identify oil and gas reservoirs.

In conclusion, the three types of volcanic rock lithologies, andesite, tuff and volcanic breccia, easily form oil 
and gas reservoirs in this area. Identifying these three lithologies is an important basis for field identification of 

Figure 13.   Comparison of the original lithology and corrected lithology of the D-6 well.
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oil and gas reservoirs. The lithology of volcanic rock is one of the important factors that affect the oil-bearing 
properties of volcanic reservoirs.

Conclusion

(1)	 Based on the analysis of the characteristics of the lithology parameters, the characteristics of the logging 
parameters of different lithologies are clarified. Six logging parameters that are sensitive to lithology, includ-
ing the natural gamma ray, density, acoustic, compensated neutron and deep lateral resistivity parameters, 
are selected. Then, the decision tree method is used to distinguish them sequentially. Finally, the mode and 
technical method of mixed lithology identification are established, with a combination of the conventional 
logging crossplot method, the decision tree method, imaging logging and core calibration.

(2)	 The volcanic rocks in the study area are mainly composed of volcanic lava (andesite, dacite, and rhyolite), 
pyroclastic rock (tuff and volcanic breccia) and sedimentary pyroclastic rock (sedimentary volcanic breccia 
and tuff). Compared with other lithology identification methods, the lithology identified by this decision 
tree method is more in line with the actual situation. According to the relationship between the oil-bearing 
properties and lithology, andesite has the most favourable oil-bearing properties, followed by tuff and vol-
canic breccia. The logging display level of volcanic rock cuttings in the oil layer (oil spotting) can be used 
as an important threshold to identify oil and gas reservoirs.
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