
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18791  | https://doi.org/10.1038/s41598-020-75710-5

www.nature.com/scientificreports

Multi‑mission satellite remote 
sensing data for improving land 
hydrological models via data 
assimilation
M. Khaki1*, H.‑J. Hendricks Franssen2 & S. C. Han1

Satellite remote sensing offers valuable tools to study Earth and hydrological processes and improve 
land surface models. This is essential to improve the quality of model predictions, which are affected 
by various factors such as erroneous input data, the uncertainty of model forcings, and parameter 
uncertainties. Abundant datasets from multi‑mission satellite remote sensing during recent years 
have provided an opportunity to improve not only the model estimates but also model parameters 
through a parameter estimation process. This study utilises multiple datasets from satellite remote 
sensing including soil moisture from Soil Moisture and Ocean Salinity Mission and Advanced 
Microwave Scanning Radiometer Earth Observing System, terrestrial water storage from the 
Gravity Recovery And Climate Experiment, and leaf area index from Advanced Very‑High‑Resolution 
Radiometer to estimate model parameters. This is done using the recently proposed assimilation 
method, unsupervised weak constrained ensemble Kalman filter (UWCEnKF). UWCEnKF applies a dual 
scheme to separately update the state and parameters using two interactive EnKF filters followed 
by a water balance constraint enforcement. The performance of multivariate data assimilation is 
evaluated against various independent data over different time periods over two different basins 
including the Murray–Darling and Mississippi basins. Results indicate that simultaneous assimilation 
of multiple satellite products combined with parameter estimation strongly improves model 
predictions compared with single satellite products and/or state estimation alone. This improvement 
is achieved not only during the parameter estimation period ( ∼ 32% groundwater RMSE reduction and 
soil moisture correlation increase from ∼ 0.66 to ∼ 0.85) but also during the forecast period ( ∼ 14% 
groundwater RMSE reduction and soil moisture correlation increase from ∼ 0.69 to ∼ 0.78) due to the 
effective impacts of the approach on both state and parameters.

Studying the terrestrial hydrology is facilitated by developments of land surface models. These models are impor-
tant to simulate various terrestrial compartments over an extended period of time. Moreover, they are essential 
for predicting hydrological processes and water storage changes at various temporal and spatial resolutions. 
The performance of the land surface models, however, can be degraded caused by multiple factors such as 
uncertainties in model forcings, model parameters, initial and boundary conditions, and simplification of the 
representation of  processes1,2. To address this, traditionally additional datasets are integrated with models to 
improve model estimates.

The data integration approaches have become more popular with the advent of satellite remote sensing. This 
is related to the satellite’s extensive coverage and high spatial and temporal resolution, especially during the past 
few decades. Satellite data products can be used to constrain the models, e.g., via data  assimilation3–12. A number 
of studies has shown that applying multivariate data assimilation using in-situ and reanalysis  estimates13–19 could 
be beneficial. However, despite a few efforts for using multi-mission satellite products for data  assimilation20–22, 
the extent of the effectiveness of the approach has not yet been fully  investigated23. Furthermore, while using 
the multivariate data assimilation was found to be effective for improving on-line model estimates, its impact 
on the (long-term) forecasting skill is normally limited if only initial states are updated. The main reason behind 
this is the important role of the model parameters for simulating fluxes and water storage as well as uncertainty 
with respect to model forcings (meteorology). Poorly defined parameters, which are not updated during the 
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integration process, can negatively affect the model predictions. These parameters cannot be directly measured 
thus are difficult to be adjusted. Therefore, a parameter estimation strategy is required to improve the parameters. 
This is also important to decrease initial state errors in land surface models and consequently enhance  forecasts24.

In general, the model parameter estimation process adjusts the parameters to increase the consistency between 
the model simulations and observations based on their  uncertainties25. In this context, automatic optimization 
techniques are developed for land surface models, which usually use streamflow observations, especially for 
rainfall-runoff  models25–28. There are, however, only a few attempts to tune land surface/water balance model 
parameters, which are mainly used to model interactions between land (including vegetation) and atmosphere. 
Many of these efforts have taken advantage of state-of-art satellite remote sensing to improve  models29–34. Vrugt 
et al.35 proposed a simultaneous optimization and data assimilation method (SODA) to estimate time-invariant 
parameters while updating state variables. The approach was further applied for operational ensemble stream-
flow  forecasting36. Parajka et al.37 used soil moisture products from Scatterometer of the European Remote 
Sensing Satellite (SCAT) to calibrate a conceptual model. Synthetic brightness temperature observations were 
assimilated by Han et al.38 to estimate soil properties as well as soil moisture of the Community Land Model 
(CLM). In this study, they used the Local Ensemble Transform Kalman Filter (LETKF) to update the augmented 
state-parameter vector during the assimilation. van Dijk et al.39 applied Moderate Resolution Imaging Spectro-
radiometer (MODIS) data to improve model estimates via the nudging approach and then used the updated 
estimates dynamically to update parameters. In a different effort, Poovakka et al.40 estimated land surface model 
parameters using both evaporation and soil moisture products.

The main aim of the present study is to apply multi-mission satellite data products to improve a land surface 
model. This is done by applying an advanced data assimilation method to improve the estimates of different 
model variables together with model parameters. Terrestrial water storage (TWS) data acquired from the Gravity 
Recovery And Climate Experiment (GRACE), leaf area index (LAI) from the Advanced Very-High-Resolution 
Radiometer (AVHRR) instrument, and also soil moisture data from the Soil Moisture and Ocean Salinity (SMOS) 
as well as Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), are used for the 
state-parameter estimation. This is the first time that data from multiple satellite missions are used to estimate 
land surface model parameters using data assimilation. Multivariate data assimilation can be very challenging 
given various observations with different characteristics and uncertainties, as well as different spatiotemporal 
resolutions which differ from the model resolution.

Historically, model parameter estimation in combination with data assimilation is either done via an aug-
mented state vector (joint) or a dual approach. The augmented approach has been used often in land hydrological 
modelling  recently41–47. Dechant and  Moradkhani48 applied joint state-parameter estimation using Ensemble 
Kalman Filter (EnKF) and Particle Filter (PF) and concluded that both methods perform better than only state 
estimate for improving snow water equivalent predictions. Another effort by Kwon et al.49 successfully imple-
mented simultaneous state-parameter estimation in continental-scale radiance assimilation (RA) experiments. 
Despite these, multiple studies have shown that inconsistency between the estimated parameters and states (e.g., 
for nonlinear and large-dimensional systems) is an important concern in the joint assimilation method, which 
can negatively affect the performance of the  approach45,50. Moradkhani et al.51 proposed a dual state-parameter 
estimation based on sequential Monte Carlo techniques (SMC) for estimating time-variable states and param-
eters. Khaki et al.52 recently proposed an alternative dual data assimilation scheme based on the unsupervised 
weak constrained ensemble Kalman filter (UWCEnKF). Here, for the first time, we explore the approach to 
integrate multiple satellite remote sensing data into a model to estimate the model parameters. The experiment 
is done over two periods, i.e., a parameter estimation and forecast period to better investigate the impact of 
satellite data integration on the model parameters. The Murray–Darling and Mississippi basins, two large river 
basin systems, are used as case studies to run and validate the experiment.

Materials
Case studies. The two major river basins, Mississippi and Murray–Darling are selected for the experiment 
given the presence of in-situ measurements to assess the proposed multivariate data assimilation. The Murray–
Darling basin is the biggest river system in Australia comprising many wetlands (i.e. more than 30,000) and riv-
ers (i.e. 23), which provide freshwater for, e.g., agriculture, industry, and water  use54. A large area in the eastern 
part of the country is covered by the basin, which contains a variety of natural environments, e.g., desert and dry 
regions (west), rainforest (north), snow covered areas and areas with a larger amount of surface water (south). 
Historically, the Murray–Darling basin has undergone various extreme droughts and floods. Furthermore, water 
storage within the basin has also shown large inter-annual and annual  variabilities53,54. Temperature varies from 
0 to 3 ◦C in the elevated areas in the southeast of the basin in July to 33 to 36 ◦C for the upper northern parts in 
January. The same rainfall spatial variability also exists within the Murray–Darling basin, i.e. annual rainfall less 
than 250 mm in the northwest and excess of 2000 mm in the elevated  areas55.

Similarly, the Mississippi River basin is an important source of freshwater in North America, which provides 
water for more than 18 million people and different socioeconomic sectors. Temperature varies strongly within 
the basin, which leads to large spatial and temporal hydro-climatic  variabilities56,57. For example, higher tem-
perature ( 21 ◦C ) along with hot and humid condition exist in May to September while average low temperatures 
( −3 ◦C ) in January are available in the north caused by various factors such as polar and subtropical jet streams 
and Arctic cold. Snow line has been progressively migrating northward across the  basin59,60. Overall, Upper Mis-
sissippi areas (e.g., central Minnesota to central Wisconsin) has larger snow cover compared to the other parts 
of the Mississippi River basin (such as southeast Missouri and southwest Illinois). Showers (and thunderstorms) 
occur mostly in summers over different parts of the basins while winter precipitation varies from less than 25 mm 
for the western and northern Great Plains to 75 mm for the Ohio River area and to 130 mm in the south. Climate 
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conditions vary over the different parts of the Mississippi basin and different times of the  year58–60. This includes 
semiarid climates in the west, humid condition over the eastern parts, sub-humid climates in the south along 
with a large discharge rate and multiple flood events across the basin.

In-situ groundwater well data (derived from USGS and the New South Wales Government) are used over both 
basins to evaluate the estimated groundwater variations from the model with and without data assimilation. To 
this end, groundwater level data are converted into groundwater storage change values with the help of specific 
yield values of the  basin2,61–63. In addition, soil moisture observations from in-situ stations are used to assess the 
soil moisture estimates at different depths. For this purpose, top, shallow and root-zone soil moisture from the 
model are compared against in-situ soil moisture measurements at corresponding depths. Over the Mississippi 
Basin, groundwater and soil moisture measurements are acquired from USGS (https ://water .usgs.gov/ogw/data.
html) and the International Soil Moisture Network (https ://ismn.geo.tuwie n.ac.at/), respectively. For the Mur-
ray–Darling Basin, the measurements are acquired from New South Wales Government (http://water info.nsw.
gov.au/pinne ena/gw.shtml ) and the moisture-monitoring  network64.

Model and data. Model. The World-Wide Water Resources Assessment model (W3RA), which was de-
signed and developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) is used. 
W3RA is a Global water balance model, which is distributed on grid basis and simulates water flows and water 
 storage65. ERA-interim reanalysis data including meteorological fields of precipitation, maximum and minimum 
temperature, and downwelling short-wave radiation, are used as model forcings. The model presents the water 
balance of the soil, groundwater and surface water independently over each grid  cell66. The water and energy 
fluxes between the water storages are also modelled for two hydrological response units (HRUs) which occupy 
different fractions of a grid cell, i.e., tall and deep-root vegetation in HRU1 and short and shallow root vegeta-
tion in HRU2. Correspondingly, parameterizations are applied at the sub-grid  level39. Poovakka et al.40 discussed 
the necessity of calibration for this model, as it is currently limited to a number of catchments where streamflow 
records and input forcing data are available. The model relies on a variety of parameters such as water holding ca-
pacity and effective soil  parameters67. A detailed list of selected parameters for estimation is presented in Table 1.

These parameters influence mass balance equations underlying the model. Soil albedo and photosynthetic 
capacity index (PCI) parameters are used to model canopy albedo and outgoing shortwave radiation from the 
land. Initial retention capacity ( I0 ) and reference event precipitation ( Pref  ) are applied to derive surface runoff. 
These parameters are also connected to rainfall intensity and the soil infiltration distribution. Soil water drain-
age is estimated based on β and field capacity drainage fraction. FER0 , W0lim and maximum stomatal conduct-
ance ( Gsmax ) are applied for evaporation modelling, e.g., via rainfall interception evaporation, soil evaporation, 
and maximum transpiration, respectively. Open water evaporation scaling factor is used to derive open water 
evaporation, which can have higher uncertainties over large bodies of surface water. Specific leaf area and leaf 
area index parameters are developed to facilitate vegetation phenology  computations65.

Satellite remote sensing. Three main satellite products are used for data assimilation to update states and esti-
mate parameters. TWS changes are derived from level 2 (L2) GRACE products (up to degree and order 90). L2 
coefficients and their associated full error covariance information are acquired from the ITSG-Grace2014 grav-
ity field  model68. Post-processing steps are done following Khaki et al.69 and Khaki and  Awange70 to calculate 
TWS changes between 2003 and 2016. The data is then used to update the summation of different water storage 
components from the model including groundwater, different soil layers, and surface water storage (see details in 
“Methodology” section). TWS error covariances (to be used in data assimilation) are computed from potential 
coefficients following Schumacher et al.46.

The National Oceanic and Atmospheric Administration (NOAA) of LAI Climate Data Record (CDR; ver-
sion 4) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)71 are obtained for the period of 
2003–2016. The data were produced by the University of Maryland and the NASA Goddard Space Flight Center 
(GSFC) on a daily 0.05◦ × 0.05◦ global scale. LAI products are used for data assimilation given their potential 

Table 1.  W3RA parameters and their associated  ranges65 used in the parameter estimation process.

Parameter symbol HRU1 range HRU2 range Description

αdry [0.19–0.35] [0.19–0.35] Dry soil albedo (−)

β [0.70–8.40] [0.70–8.40] Hydraulic conductivity coefficient (−)

Gsmax [0.009–0.05] [0.009–0.05] Gsmax-related coefficient (from PCI) (m/s)

FER0 [0.05–0.25] [0.05–0.25] coefficient describing rate of wet canopy evaporation to rate of rainfall (−)

FOW [0.60–0.80] [0.60–0.80] Open water evaporation scaling factor (−)

Floss,max [0.25–0.50] [0.25–0.50] Maximum lose of daytime net radiation (−)

I0 [0–41] [0–41] Initial retention capacity (mm)

∧ref [1.30–3.50] [1.30–2.50] Reference LAI determining canopy cover (−)

Pref [54–1000000] [254–1000000] Reference event precipitation (to generate runoff) (mm/d)

CSLA [0.70–71] [0.70–71] Specific leaf area coefficient (m2/kg)

PCI [0.01–1.00] [0.01–1.00] Photosynthetic capacity index (−)

W0lim [0.60–0.89] [0.60–0.89] Water content at top soil (where evaporation is decreased) (−)

https://water.usgs.gov/ogw/data.html
https://water.usgs.gov/ogw/data.html
https://ismn.geo.tuwien.ac.at/
http://waterinfo.nsw.gov.au/pinneena/gw.shtml
http://waterinfo.nsw.gov.au/pinneena/gw.shtml
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to improve modelling  skills72. LAI has a major impact on estimating evapotranspiration (ET) and precipitation 
interception, thus, can be very useful for data  assimilation71. Following Fox et al.73, a constant error standard 
deviation of 0.2 (m2 m−2 ) is assumed for the LAI from satellite.

Soil moisture products are achieved over the same period, i.e., 2003–2011 from AMSR-E (Level-3)74 and 
2011–2016 from SMOS (Level 3 Centre Aval de Traitement des Donnees SMOS)75. These data are used during 
assimilation to control the model surface soil moisture content. Regarding soil moisture measurement uncer-
tainty, we followed Leroux et al.76 and De Jeu et al.77 and assumed 0.04 (m3 m−3 ) error for SMOS and 0.05 
(m3 m−3 ) error for AMSR-E observations.

Water fluxes. Additional datasets of precipitation, total evapotranspiration, and water discharge are used to 
constrain the water balance through in the UWCEnKF implementation (see details in “Data assimilation” sec-
tion). These data are derived from Khaki et al.69, in which data from different sources, e.g., satellite, reanalysis, 
and gauge-based measurements (from multiple sources over the Mississippi and Murray–Darling basins), are 
merged to achieve the best estimates over different basins. Note that the datasets applied here for water budget 
constraint are mostly independent from those applied for running the model except for precipitation, e.g., the 
Tropical Rainfall Measuring Mission (TRMM) is used in both ERA-interim forcing and the merged precipitation 
product for the water budget constraint. Nevertheless, this dependency between the products is not a limitation 
for our data assimilation experiments as it was shown that the water budget closure, where the water flux obser-
vations are used is not affected by  this69,78.

Methodology
Sensitivity analysis. A sensitivity analysis following  Cannavo79 is carried out to measure the model 
response to parameter changes. This is done to identify the parameters that significantly affect the model output. 
The analysis will also increase our understanding of the impact of model parameters on model simulations. The 
selected approach here is a global sensitivity analysis that contrary to so-called local sensitivity analysis assesses 
sensitivity over the entire input parameter space. It is a variance-based method that investigates the contribution 
of each input parameter to the total variance of the output, i.e., y = f (X) and X = (x1, x2, . . . , xn) with n being 
the number of input parameters ( x ). The objective is to measure the importance of input on the variance of the 
output, namely the sensitivity ( Si ) of y to xi through,

This is known as the first order sensitivity index by  Sobol80. Analytical solution of Eq. 1 for a non-linear high 
dimensional system is not possible, thus, a numerical approximation is needed. This can be facilitated using the 
Fourier Amplitude Sensitivity Test (FAST) and the Monte Carlo algorithm for numerical approximation. Here we 
apply the latter following  Cannavo79, where a sequence of random points of length N can be used to approximate 
the solution for N → ∞ . This allows for evaluating a multidimensional integral using a Monte-Carlo technique. 
Consider two uniformly distributed independent random points A and B (with a size of N × n ). A = [αA,βA] 
and B = [αB,βB] are composed of N trial sets for the evaluation of y . The model ( f (X) ) can be evaluated in 
these two points: f(A) and f (αA,βB) . Using this method, the influence of different variables and their subsets 
on the model can be analyzed. In practice, this method draws A and B and form C ( Ci , i = 1, . . . , n ) in a way 
that its ith column is equal to the ith column of B, and its remaining columns are from A. Using these sample 
inputs, the model is run to derive corresponding model evaluations ( f (A), f (B), f (Ci) ). These are then used to 
calculate the sensitivity indices using,

Using this method one can measure the sensitivity of the model to a given parameter based on its contribution 
to the variance of the model output see more details  in79.

Data assimilation. UWCEnKF. The main aim of UWCEnKF is to update the system state and its param-
eters in a dual way while accounting for water balance when incorporating new observations. Here, we present 
a summary of the approach and more details can be found in Khaki et al.52. Ait-El-Fquih et al.45 proposed a new 
dual EnKF scheme following the one-step-ahead (OSA) smoothing and showed that this could improve data as-
similation performance by imposing more information to the system. Their approach comprises two interactive 
EnKF filters for state-parameter estimation. Khaki et al.52 extended this to a water balance system by enforcing 
an additional constraint. The approach includes different steps; it first uses the state forecast ensemble to update 
the parameters through EnKF-like update, as well as to compute the OSA smoothing ensemble. The updated 
parameters and state variables are then integrated with the model to obtain the next state forecast ensemble in 
the second EnKF, which will be used to acquire the analysis ensemble. Despite the addition of the second EnKF 
implementation compared to the traditional dual-EnKF due to the OSA smoothing part, it has been shown that 
this only increases the computational cost minimally while it considerably enhances the performance of the dual 
 approach44,45,52. For the state-parameter estimation problem in a discrete-time dynamical system, one can write,

(1)Si =
var{E[y|xi]}

var{y}
.

(2)var{E[y|xi]} =
1

N

N∑

j=1

f (B)j[f (Ci)j − f (A)j].
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where xt ∈ R
nx is the system state vector (with dimension nx ) and yt ∈ R

ny is the observation vector (with 
dimension ny ) at time t. θ ∈ R

nθ represents the parameter vector of dimension nθ . In Eq. (3), the model operator 
is indicated by Mt−1(.) , which is used to forward the state vector from t − 1 to t, and the observational (design) 
operator at time t is shown by Ht . The model and observation process noises are represented by νt−1 ∼ N (0,Qt) 
and wt ∼ N (0,Rt) , respectively, with state covariance matrix Qt and observation covariance matrix Rt . To solve 
Eq. (3), UWCEnKF applies a dual EnKF scheme comprising two interactive EnKF filters for state-parameter 
estimation. Each step of the filter is presented below.

• Parameter estimation. Starting from {xa,(i)t−1 , θ
(i)
t−1}

n
i=1 (with n being the ensemble number and a standing for 

analysis step), the process begins with integrating state and parameters within the model to derive forecast 
state ( ̃xf ,(i)t  ) as, 

 The observation forecast {ỹf ,(i)t }ni=1 is then used to calculate the analysis parameter ensemble {θ(i)t }ni=1 by, 

 with the sample forecast error covariance matrix P
x
f
t
 and the sample cross-covariance matrix between the 

previous parameter vector and current forecast errors P
θt−1,x̃

f
t
 , 

where S is ensemble perturbation and can be calculated as a difference between ensemble members and 
ensemble mean.

• State estimation. Traditionally, the analysis parameters are used to recalculate the forecast ensemble in the 
standard dual EnKF by integrating {xa,(i)t−1 }

n
i=1 into the model based on the updated parameters. Ait-El-Fquih 

et al.45 showed that the implementation of the OSA smoothing step, which is a measurement update based 
on the current observation can lead to a better state estimate. The smoothing state {xs,(i)t−1}

n
i=1 can be derived 

according, 

 with P
xat−1,x̃

f
t
 being the sample cross-covariance matrix, calculated from the analysis states at t − 1 and forecast 

states at t. Next, similar to the standard EnKF, the forecast step is applied but using the updated parameters 
to forward states in time (from t − 1 to t). This is done using {xs,(i)t−1 , θ

(i)
t }ni=1 via, 

 Next, the state vector is to be updated based on the observation vector. This step is implemented to calculate 
the state analysis {x̃a,(i)t }ni=1 by: 

 Khaki et al.78 and Khaki et al.69 showed that assimilation of observations related to the storage term, especially 
from GRACE TWS can break the balance between water flux components, namely water storage change 
( �s ), precipitation ( p ), evaporation ( e ), and water discharge ( q ) in the water balance equation, which can 
be formulated as, 

 with noise ξ t and corresponding covariance �t associated with the flux observations. To account for the 
imbalance issue, Khaki et al.78 imposed a constraint based on the water balance equation and using an EnKF-
like update. To do this, a correction is applied based on the estimated imbalance as, 

(3)
{
xt = Mt−1(xt−1, θt−1)+ νt−1,

yt = Htxt + wt ,

(4)

{

x̃
f ,(i)
t = Mt−1(x

a,(i)
t−1 , θ

(i)
t−1)+ ν

(i)
t−1,

ỹ
f ,(i)
t = Ht x̃

f ,(i)
t + w

(i)
t .

(5)
θ
(i)
t = θ

(i)
t−1 + P

θt−1,x̃
f
t
HT [HP

x̃
f
t
HT + Rt ]

−1[yt − ỹ
f ,(i)
t ]

︸ ︷︷ ︸

µ
(i)
t

,

(6)P
x̃
f
t
= (n− 1)−1S

x̃
f
t
ST
x̃
f
t

,

(7)P
θt−1,x̃

f
t
= (n− 1)−1Sθt−1

ST
x̃
f
t

,

(8)x
s,(i)
t−1 = x

a,(i)
t−1 + P

xat−1,x̃
f
t
HTµ

(i)
t ,

(9)P
xat−1,x̃

f
t
= (n− 1)−1Sxat−1

ST
x̃
f
t

,

(10)

{

x
f ,(i)
t = Mt−1(x

s,(i)
t−1 , θ

(i)
t )+ ν

(i)
t−1,

y
f ,(i)
t = Htx

f ,(i)
t + w

(i)
t .

(11)x̃
a,(i)
t = x

f ,(i)
t + P

x
f
t ,y

f
t
P−1

y
f
t

[yt − y
f ,(i)
t ].

(12)dt = −xt + xt−1 + pt − et − qt + ξ t ,
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where zt
def
=dt − pt + et + qt is introduced as “pseudo-observation”. In this equation, L is an nz × nx identity 

matrix, and G = −L (here, nz = nx ). Contrary to a standard EnKF that only computes states in the analysis 
step, UWCEnKF estimates pseudo-observation noise covariance along with the states. This leads to the 
computation of constrained states from unconstrained state analysis ( {x̃a,(i)t }ni=1 ) in a second analysis step. 
A recursive algorithm exists in UWCEnKF to efficiently compute the analysis state {xa,(i)t }ni=1 based on the 
pseudo-observation noise covariance matrix ( �̂t ). The second update step, thus, involves cyclic iterations to 
adjust the analysis state for ℓ = 0 . . . L (with L being the iteration number) as, 

 with Mdef
=[G, L] and sample covariances P

x̃at ,z
f ,ℓ
t

 and P
x̃st−1,z

f ,ℓ
t

 that are derived from {x̃a,(i)t }
n

i=1 , {x̃
s,(i)
t−1}

n

i=1
 and 

{z
f ,(i,ℓ)
t }

n

i=1 . Pηt can also be calculated from {η(i)t }
n

i=1 with η(i)t
def
=[(x̃

a,(i)
t )T , (x̃

s,(i)
t−1)

T ]T . At each iteration �̂
(ℓ)

t  is 
computed from the new state and it is then used again in Eqs. (14)–(16)12.

Data assimilation setup. An experiment is designed to monitor the performance of multivariate data assimi-
lation. The study period is divided into three parts: 2000–2002 to generate the initial ensemble, 2003–2012 to 
assimilate observations and estimate model parameters (i.e. assimilation periods), and 2013–2016 to investigate 
the impact of the estimated parameters on model simulations in the absence of assimilation (i.e. forecasting 
period). The spin-up is made for m = 30 ensemble members for the period 2000–2002. This is done by perturb-
ing the meteorological forcing fields, i.e. for precipitation: ×N (0, 0.3) , for shortwave radiation: +N (0, 50) , and 
for temperature: +N (0, 2) . Model errors are mainly caused by errors in the initial condition, forcing data, and 
model parameters. The above perturbation process accounts for the first two error sources while the model 
structure error is not considered here. Nevertheless, ensemble inflation applied in the assimilation process 
(explained below) allows the ensemble to largely account for this  error81,82. A parameter ensemble is produced 
by drawing (30) random samples from each parameter’s HRU defined range (cf. Table 1). The state vector for 
data assimilation includes soil moisture at three layers of top (up to 7–9 cm soil layer), shallow (up to 30 cm soil 
layer), and deep-zone layers (up to 100 cm soil layer), surface and snow water storage, groundwater and LAI. The 
observation vector contains GRACE TWS observations, satellite soil moisture, and LAI products. Cumulative 
distribution function (CDF) matching is used for rescaling the observations (TWS, soil moisture, and LAI) to 
match those from the  model22,83.

The observational operator ( Ht ) converts the state variables into the observation space by taking into account 
discrepancies between the model and observation spatial resolutions. It aggregates model state variables at mul-
tiple grid cells to 1◦ to be updated by 1◦ GRACE TWS data. Top layer soil moisture variables at every 0.25◦ are 
updated by satellite soil moisture measurements (i.e. 0.25◦ AMSR-E and SMOS). LAI observations are spatially 
averaged and assimilated at the same resolution as of model ( 0.125◦ ). To deal with the observations different tem-
poral resolution, all observations are rescaled to the monthly scale (same as GRACE products) and assimilated 
on a monthly basis. This scale is also selected because it allows easier water budget constraint implementation 
provided in the second step of UWCEnKF, where water balance equation is applied using TWS changes over 
consecutive months. The monthly corrections as a result of data assimilation are added as offsets to the state 
vectors at the last day of each month to generate the ensembles for the next month assimilation  step2,84.

To enhance EnKF performance during assimilation ensemble inflation and localization are applied. It has 
been shown by  literature85,86 that ensemble-based data assimilation methods are sensitive to the size of ensemble. 
Generally, a larger number of ensemble members can better span the state-observation space and lead to bet-
ter results but at the expense of strongly increased computation needs. To address this, ensemble inflation and 
localization methods are usually used to tackle filter divergent or inaccurate  estimation87 for a small ensemble 
size and to avoid filter inbreeding. Ensemble inflation increases ensemble deviation from the ensemble-mean by 
applying a small coefficient ( [1.1− 1.3] for the parameter and state updates) to ensemble  members88. Localization 
using the Local Analysis (LA) scheme is also applied. It performs by spatially limiting the assimilation process 
within a certain distance from a grid  point10,89. The suggested values ( 3◦ ) by Khaki et al.10 are used as localization 
radii to achieve the best outcomes using a trial and error.

As mentioned, the experiment is undertaken over the Murray–Darling and Mississippi basins given good 
data availability. To assess the results, model simulations are spatially interpolated to the nearest in-situ stations 
(cf. “Case studies” section). Once the simulation time series are generated at these locations, three evalua-
tion metrics including standard deviation (STD), Root-Mean-Squared Error (RMSE), and correlation values 
are calculated with respect to the independent in-situ measurements. RMSE and STD are particularly useful 
to respectively investigate the distance between the simulations and in-situ measurements and the spread of 
simulations around the mean. These show how accurate and precise the results are. Note that only time series 
anomalies (i.e. time series minus their temporal average) are used for the validation. To better investigate the 
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performance of multivariate data assimilation for state-parameter estimation, its results are compared with the 
open-loop (model run without assimilation), multivariate data assimilation without parameter estimation, and 
univariate data assimilations cases, where only one of the remote sensing products (GRACE TWS, soil mois-
ture and LAI observations) is used for state-parameter estimation. For convenience, hereafter the assimilation 
with parameter estimation approach will be called A/Par and the assimilation only method without parameter 
estimation will be called A/O.

Results
Sensitivity analysis. The results of the sensitivity analysis are shown in Fig. 1. Estimated sensitivity weights 
of parameters (cf. Table 1) for each iteration of total 100 different iterations (using 100 different sets of matrices, 
see “Sensitivity analysis” section) are spatially averaged to show the relative weights of the model parameters and 
their influence on model output. In addition, the average parameter weights (for 100 iterations) are also plotted 
in the figure by a solid black line. It can be seen that larger weights are assigned to a group of parameters includ-
ing CSLA , �ref  , I0 Pref  , and β with CSLA and �ref  having the biggest weights amongst all parameters. This can show 
the fundamental impact of specific leaf area and its interaction with light and moisture (humidity) levels within 
the study area. These larger weights corresponding to more model sensitivity can be observed over a majority 
of iterations. Some of the other parameters such as Gsmax and FER0 represent less impact on the model outputs. 
From Fig. 1, it can be seen that sensitivity of parameters (e.g., PCI and αdry ) differ between HRU’s. These indicate 
the effect of the model parameter variations on the simulation results, which highlights the importance of an 
accurate selection of parameters for estimation.

Figure 1.  The results of the sensitivity analysis from 100 different samples. The relative weights of different 
parameters (the average over the 100 iterations scaled by the factor 2 for a better presentation) is also plotted in 
the figure with a solid black line.

Figure 2.  The scatter plot of average and STD of parameters’ weights from the sensitivity analysis.



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18791  | https://doi.org/10.1038/s41598-020-75710-5

www.nature.com/scientificreports/

In addition to the above variations, it is found that the sensitivity of parameters shows considerable varia-
tions over different grid points. This can be seen in Fig. 2, where the relationship between the average and STD 
of parameters over the grid points is shown. These variations indicate that defining fixed values (spatially and 
temporally) for parameters is not realistic as it does not reflect the characteristics of different regions (and over 
different time periods) and can be problematic. The large STD values for a majority of parameters such as I0 , 
CSLA , Pref  , and β can be explained by larger spatial variabilities of the parameters. This is also the case for some 
parameters with smaller weights, e.g., PCI (in HRU2 corresponding to short and shallow-rooted vegetation). 
It can also be seen that parameters with larger variabilities such as CSLA , �ref  , Pref  , β , and I0 demonstrate larger 
sensitivities too (cf. Fig. 1). This means that the model is largely sensitive to the variations of these parameters. 
A few parameters such as αdry , Floss,max , and W0lim , on the other hand, show smaller spatial variabilities and 
can be considered spatially homogeneous. Based on this test, we focus only on the most sensitive and variable 
parameters including CSLA , �ref  , I0 Pref  , and β to be estimated. This allows to efficiently improve the model by 
avoiding estimation of all parameters.

Parameter estimation. The parameter estimation results are presented here. The adjusted parameters and 
their range of variations from the application of the assimilation approach are presented in Table 2. Figure 3 
shows the time evolution of two sample parameters ( β and I0 ) over the assimilation period. The variation of these 
two parameters represents their average at each month for the Mississippi basin. From the figure, it can be seen 
that the parameter estimation process converges the parameters for different assimilation cases, i.e. GRACE, soil 
moisture, LAI only experiments, as well as simultaneous data assimilation. Details of the converged parameters 
over both basins can be found in Table 2. The results are for both multivariate and univariate data assimilation 
scenarios. The STD values show the spread of parameters around the average value, which indicates the vari-
abilities and corresponding uncertainties of the estimated parameters. Table 2 shows that some parameters have 
larger STDs, e.g., β , I0 , �ref  , Pref  , CSLA , which generally suggests more spatial variability. These results suggest 
the ability of the parameter estimation approach to derive different values for parameters by adequately spanning 
the parameter space. Spatially varying parameters can better capture the characteristics of areas with different 

Figure 3.  Average parameter values for β and I0 over the Mississippi basin during the assimilation period 
derived by different data assimilation cases.

Table 2.  Estimated parameters for the multivariate and univariate data assimilation experiments. Each 
parameter is represented using its average values and its uncertainty at the 95% confidence interval. HRU1 and 
HRU2 represents deep-rooted (tall) and shallow-rooted (short) vegetation, respectively.

β I0 �ref Pref CSLA

A/Par

 HRU1 3.35± 1.42 12.78± 7.48 2.24± 1.14 [4.79± 3.55] × 1e+ 5 44.18± 12.63

 HRU2 8.16± 4.59 8.51± 5.08 1.92± 0.56 [4.46± 4.90] × 1e+ 5 52.21± 15.18

GRACE only

 HRU1 3.86± 5.56 15.17± 7.93 2.58± 1.46 [2.29± 2.15] × 1e+ 5 36.22± 16.51

 HRU2 6.20± 7.81 12.86± 5.45 1.50± 0.40 [3.14± 3.73] × 1e+ 5 47.13± 12.95

Soil moisture only

 HRU1 4.84± 4.29 27.82± 4.14 2.43± 0.94 [3.07± 5.29] × 1e+ 3 16.48± 6.16

 HRU2 5.39± 6.77 28.49± 2.38 1.61± 0.21 [3.79± 5.72] × 1e+ 3 21.34± 5.82

LAI only

 HRU1 4.51± 4.47 29.44± 3.18 2.17± 0.73 [2.80± 3.69] × 1e+ 3 24.07± 11.75

 HRU2 4.75± 6.35 31.08± 2.76 1.77± 0.19 [2.72± 3.31] × 1e+ 3 31.65± 9.37
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atmospheric and environmental conditions. Moreover, it is found that the estimated parameters are considerably 
different from the initial values, especially for the A/Par approach, which will consequently affect state estimates 
too. It can also be inferred from the table that each assimilation scenario results in different parameter estima-
tion. Nevertheless, closer results can be found between the multivariate case (A/Par) and GRACE-only assimila-
tion. This can be explained the larger impact of the GRACE data during the assimilation process compared to 
the other assimilated observation. This will be investigated more in the following section. Furthermore, to better 
explore the corresponding impact of the parameter estimation on model simulations, the simulations with (A/
Par) and without (A/O) the adjusted parameters are analyzed (cf. “Results validation–Observations impact” 
sections).

Results validation. Independent in-situ measurements over the Murray–Darling and Mississippi basins 
are also used to evaluate the results for A/O and A/Par approaches. We compare the results of assimilating dif-
ferent observations, i.e. GRACE TWS only, satellite soil moisture only, LAI only, and simultaneous assimilation 
of all three data products. To this end, RMSE and STD values for both the assimilation and forecasting periods 
are computed (Fig. 4). We further compare RMSE values for groundwater wells and the different assimilation 
methods both for the assimilation and forecasting periods (Fig. 5). The figure shows the RMSE reduction for 
each scenario with respect to the open-loop results. Overall, the results highlight the effectiveness of the satel-
lite data assimilation for improving the model simulations, especially over the assimilation period. Moreover, 

Figure 4.  Average groundwater RMSE and STD computed for each method (A/O and A/Par) and multivariate 
(simultaneous assimilation) and univariate (GRACE TWS only, satellite soil moisture only, and LAI only) data 
assimilation using groundwater in-situ measurements for assimilation and forecasting periods.
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multivariate data assimilation clearly achieves the best results over both basins. This can clearly be seen for dif-
ferent locations in Fig. 5. Multivariate data assimilation performs reasonably consistent across the basin for both 
experiment periods. GRACE data assimilation reduces RMSE and STD more than soil moisture and LAI only 
assimilation experiments. This is expected due to the larger impact of GRACE TWS on groundwater storage 
during assimilation. Despite this, it is observed that simultaneous (multivariate) A/Par reduces groundwater 
RMSE 32% (on average) compared to the open-loop run, which is the best performance amongst the different 
assimilation cases. Similar performance can be observed for the two basins. The A/Par method also obtains 
slightly better results compared to the A/O method over the assimilation period. Over the forecasting period, 
however, the multivariate simultaneous data assimilation method performs substantially better, which is evident 
from smaller RMSE values in both basins compared to the open-loop and A/O results. This can also be seen 
in Fig. 5, where simultaneous data assimilation (and to a lesser degree also GRACE only assimilation using A/
Par) results in higher RMSE reductions than A/O. Such superiority can be explained by the positive impacts of 
the new method on model parameters, which allows the model to preserve the adjustment impact during the 
forecast period.

Figure 5.  Percentage groundwater RMSE reduction for each assimilation case for A/O and A/Par over the 
Mississippi basin within the assimilation and forecasting periods.
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The performance of the above data assimilation scenarios is further assessed against in-situ and independent 
satellite soil moisture measurements relying only on the correlation analysis. Correlations between simulated 
soil moisture (with and without data assimilation using different observations) and in situ measurements are 
calculated at different depths and average results are reported in Table 3. For this purpose, the top layer estimates 
are examined against in-situ measurements of 0–8 cm for Murray–Darling and 0–10 cm for Mississippi. The 
estimated top, shallow and a portion of deep-root soil layers are compared with in-situ measurements of deeper 
layers over the two basins (e.g., 0–30 cm and 0–90 cm for Murray–Darling, and 0–50 cm and 0–100 cm for Missis-
sippi). A statistical test is also applied to measure the significance of the results at 0.05 level. In general, assimilat-
ing multiple observations simultaneously leads to higher correlation values, both for the A/Par and A/O methods 
compared to the open-loop results. Furthermore, top layer simulated soil moisture is compared with the surface 
soil moisture L2 product from the Advanced SCATterometer (ASCAT) over the same periods. The ASCAT soil 
moisture products provide an estimate of the water saturation of the 5 cm topsoil layer and are derived from the 
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The correlation between 

Table 3.  Average correlation values calculated from in-situ measurements and soil moisture estimates from 
for open-loop simulations, data assimilation runs using different observations, and data assimilation with and 
without parameter estimation.

Method

Mississippi basin Murray–Darling basin

Assimilation period Forecasting period Assimilation period Forecasting period

Open-loop 0.63 0.61 0.71 0.74

A/O

 GRACE TWS 0.67 0.61 0.75 0.74

 Soil moisture 0.75 0.63 0.81 0.75

 LAI 0.65 0.60 0.75 0.74

 Simultaneous 0.83 0.64 0.87 0.76

A/Par

 GRACE TWS 0.69 0.64 0.78 0.76

 Soil moisture 0.77 0.72 0.83 0.79

 LAI 0.65 0.63 0.73 0.74

 Simultaneous 0.85 0.79 0.88 0.82

Figure 6.  Soil moisture correlation improvement from the open-loop simulation to different cases of data 
assimilation with respect to ASCAT observations.
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the open-loop soil moisture and the soil moisture of the data assimilation scenarios with ASCAT soil moisture 
data is then calculated to derive improvement values, i.e. the difference in correlation for a data assimilation 
approach and the open loop experiment, both for the assimilation and forecasting period (Fig. 6).

According to Table 3, the multivariate data assimilation improves correlation values by 0.21 (on average for 
the cases with and without parameter estimation) over the Mississippi basin and by 0.17 (on average for the 
cases with and without parameter estimation) over the Murray–Darling basin. It can be seen that univariate 
satellite soil moisture data assimilation performs the best among the univariate data assimilation experiments 
by increasing the correlation values from 0.67 (on average for open-loop) to 0.76. Similar results can also be seen 
in Fig. 6, where the multivariate data assimilation obtains the highest correlation improvement followed by soil 
moisture only data assimilation. Limited impacts can be observed by GRACE data assimilation, especially over 
the assimilation period while the LAI only assimilation case has no considerable impact on the results. From 
Table 3, improvements can also be seen in soil moisture estimates from GRACE data assimilation. Overall, it 
is found that GRACE only data assimilation mainly affects the deep-root and shallow soil zones within the 
assimilation period (on average ∼ 9% more than top layer) while soil moisture data assimilation largely improves 
top layer estimates (on average ∼ 12% more than deep-root layer). The former can be explained by the larger 
impact of GRACE TWS data assimilation (as in uni- and multivariate cases) on deeper model soil layers. Satel-
lite soil moisture measurements, on the other hand, mainly reflect the top few centimeter soil water variations 
and correspondingly impact the model top layer. The combination of observations in the simultaneous case 
leads to the better performance of the approach in both A/O and A/Par. Between the experiment periods, more 
correlation improvement (with respect to the open-loop results) is obtained during the forecasting period using 
A/Par ( ∼ 20% for simultaneous assimilation) than A/O ( ∼ 4% ). This shows the importance of multi-mission 
observations during data assimilation. Yet, estimating parameters along with the state effectively improves the 
state-parameter estimates when multivariate data assimilation is assumed. This effect can also be observed in 
Fig. 6. The simultaneous data assimilation, and to a lesser degree soil moisture only scenario positively impacts 
the model top layer simulation by estimating parameters along with states during the assimilation period.

Further result evaluation is done to assess the effect of satellite data assimilation, specifically from the LAI 
products. As shown in  literature90–92, constraining land surface models with LAI observations could result in 
better evapotranspiration predictions. To explore this, the estimated LAI and evapotranspiration by the A/O 
and A/Par approach are compared with AVHRR LAI and evapotranspiration from the MODIS Global Evapo-
transpiration Project (MOD16)93. This is done also for all univariate and multivariate assimilation cases. Average 
correlation improvement with respect to the open-loop results for the Mississippi and Murray–Darling basins are 
depicted in Fig. 7. The analysis is done again separately for the assimilation and forecast periods. One can see that 
data assimilation effectively improves the estimates in most of the cases. The improvements are more pronounced 
for simultaneous and LAI only data assimilation. GRACE only and soil moisture only data assimilation cases 
lead to a small level of correlation enhancement, especially using the A/Par method, which can be explained by 
the updated parameters. Improvements in LAI simulations clearly lead to evapotranspiration estimates closer 
to MOD16. The improvements are found for both the assimilation with and without parameter estimation 
approaches, particularly over the assimilation period. The best results over the forecast period are found for the 
A/Par experiments and for simultaneous data assimilation. The A/O performance is clearly worse compared 
to the A/Par performance over the forecast period. These results are consistent with the previous assessments, 
stressing that multi-satellite data assimilation, especially along with parameter estimation considerably improves 
the model simulations by incorporating various observations. Due to the superiority of the multivariate data 
assimilation cases based on this section’s results, in the following, we focus only on these approaches and espe-
cially A/Par to investigate their performance in more aspects.

Observations impact. The integration of multivariate satellite observations (GRACE TWS, soil moisture, 
and LAI simultaneously) during the assimilation process impacts model simulations. This effect can be seen in 
Fig. 8 over the Mississippi and Murray–Darling basins. In this figure, basin-averaged TWS variations from the 
open-loop run (no data assimilation) are compared with the assimilation results, as well as the GRACE TWS 
data. The error, measured as the absolute difference between the GRACE TWS data and model simulations 
(with and without assimilation) is also plotted in Fig. 8c,d. Note that the forecast period (2013–2016), when no 
assimilation is applied, is separated from the assimilation period (2003–2013). It can clearly be seen in Fig. 8 that 
data assimilation decreases misfits between the open-loop and observations over both basins. Smaller errors 
in Fig. 8c,d confirm the ability of the applied data assimilation method for decreasing discrepancies between 
the model and observations. This improvement can largely be seen for the assimilation period, and to a lesser 
degree, for the forecast period. Importantly, data assimilation leads to a better simulation of anomalies such as 
2011–2012 over the Murray–Darling basin and 2012–2013 over the Mississippi basin.

To further investigate the impact of observations in the assimilation process, TWS ensemble spread over the 
basins is shown in Fig. 9. This is particularly of interest to monitor the influence of data assimilation on estimates 
in the assimilation period and its absence in the forecast period. TWS variations from individual ensemble 
members (shaded blue) and their average (solid blue) are displayed in Fig. 9. To better explore the effect, the 
comparison is done between the A/Par (Fig. 9a,b) and A/O (Fig. 9c,d) approaches. Both methods maintain the 
ensemble spread steadily during the assimilation period. While the pattern for both methods is similar over the 
assimilation period they differ in the forecast period. Larger spreads and corresponding uncertainties can be 
observed for the A/O results compared to the A/Par approach (cf. Fig. 9c,d). It can be inferred from the figure 
that the parameter estimation process along with the assimilation can extend the impact of data assimilation 
during the forecast period. This also reduces model uncertainties in that time period.
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Figure 10 shows the impact of data assimilation on soil moisture components from individual ensemble 
members to further investigate the simulation results (cf. Fig. 9). The correlation improvements over both basins 
are calculated with respect to the open-loop run, i.e., rc − ro with rc being the correlation coefficients between 
the assimilation (A/Par and A/O) results and satellite soil moisture observations and ro being the correlation 
coefficients between the open-loop results and satellite soil moisture observations. This is done separately for the 
assimilation and forecast periods. Figure 10 depicts correlation increases by both assimilation methods over the 
assimilation period. The A/Par method, however, obtains slightly better results, especially over the Mississippi 
basin, with an average increase of correlation of 0.29 compared to 0.25 for A/O. Over the forecast period, on 
the other hand, the new method performs remarkably better than the A/O approach over both basins, which is 
related to the estimated parameters. In addition, it can be seen from the figure that ensemble correlations show 
a larger spread over the forecast period, particularly for the A/O approach. This can indicate the larger stability 
of the A/Par method during the forecast period (as Fig. 9), which can result in smaller model state uncertainties.

Now we explore the influence of the assimilated LAI data products on estimates. To this end, we compare the 
estimated LAI from two assimilation approaches by comparing it with LAI derived from AVHRR data. This is 
again explored over the Murray–Darling and Mississippi basins. Figure 11 shows the correlation improvement 
with respect to the open-loop run. Correlation values are computed for the assimilation period over each grid 
point. Land cover data acquired from Climate Change Initiative - European Space Agency (Version 2.0; http://
www.esa-landc over-cci.org/) is also presented in the figure for a better interpretation of LAI improvement results. 
From Fig. 11, the A/Par method increases the correlation compared to the open-loop results over both basins.
The correlation improvement over the forecast period, however, is smaller, i.e. more than 0.4 improvement over 

Figure 7.  Correlation improvement in LAI and evaporation estimates from different assimilation cases (with 
and without parameter estimation for univariate and multivariate observations) with respect to AVHRR 
LAI and MOD16 observations compared to the open-loop results (averaged) over the Murray–Darling and 
Mississippi basins for the assimilation (2003–2013) and forecasting (2013–2016) periods.

http://www.esa-landcover-cci.org/
http://www.esa-landcover-cci.org/
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Figure 8.  (a) and (b) show average TWS variation with (blue) and without (black) data assimilation, as well as 
GRACE TWS (green) over Murray–Darling and Mississippi basins, respectively. The corresponding errors, i.e., 
the difference between GRACE TWS and those from each method are presented in (c) and (d). Note that the 
solid vertical line at 2003 separates data assimilation and forecast periods.

Figure 9.  Ensemble TWS variations for the A/Par method over Murray–Darling (a) and Mississippi (b) basins. 
(c) and (d) demonstrate ensemble TWS variations for the A/O method over Murray–Darling and Mississippi 
basins, respectively. Solid blue lines show the average ensemble.
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∼31% of grid points (averaged over both basins) against ∼74% for the assimilation period. This is expected due 
to the absence of data assimilation. Nevertheless, correlation increase can be seen across the basins within the 
forecast period. More improvements can be seen over the vegetated areas (containing trees, vegetation, and 
shrubland) in both assimilation and forecasting periods compared to the cropland areas. This can be attributed 
to the higher capability of the assimilated data to reflect the variations of plant canopies. Overall, it can be 

Figure 10.  Soil moisture correlation improvement by assimilation methods, i.e. against the open-loop run with 
respect to the satellite observations over the assimilation and forecasting periods. Each circle and triangle belong 
to separate ensemble members.

Figure 11.  LAI correlation improvement for the A/Par approach. The correlation values are calculated with 
respect to the assimilated LAI data for both the assimilation and open-loop results. The difference is then 
computed as the correlation improvement for the assimilation period over the Murray–Darling (a) and 
Mississippi (d) basins, as well as for the forecasting period over the Murray–Darling (b) and Mississippi (e) 
basins. Land cover data (sampled for 2013) is presented in (c) for Murray–Darling basin and (f) for Mississippi 
basin.
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concluded that the method successfully incorporates observations during the filtering process and estimates the 
associated parameters. This is in correspondence with the previous findings as documented in Figs. 8, 9 and 10.

Evaluation against water fluxes. A successful data assimilation approach for a water balance system not 
only improves the model simulations of various compartments but should also result in a better reproduction of 
water fluxes. To assess this, the updated TWS estimates are compared against flux observations of precipitation, 
evaporation, water discharge, and water storage changes using correlation analysis. Cross-correlation values are 
computed between the simulations (from the open-loop run, as well as assimilation with and without param-
eter estimation) and flux observations used in the second step of data assimilation filtering scheme (cf. “Model 
and data” section). Afterwards, improvement is calculated between the assimilation results with respect to the 
open-loop results for the assimilation (Fig. 12a) and forecasting (Fig. 12b) periods, separately for the Murray–
Darling (indicated by ‘MD’) and Mississippi (indicated by ‘MIS’) basins. Both assimilation methods improve 
the agreement between measured and modelled flux components and storage over the assimilation period. The 
cross-correations increase stronger for evapotranspiration and water storage changes, which can be explained 
by the assimilation of TWS and LAI data from satellite products. The level of improvement over the forecasting 
period is much better for the A/Par approach than for the A/O approach. This can be seen clearly in Fig. 12b, 
where the A/Par results are approximately 12% (on average) better than those of A/O. This shows that the applied 
parameter estimation strategy has more pronounced impacts than A/O on results.

Climate variabilities. In this section, the ability of the multivariate data assimilation with parameter esti-
mation technique (as the best method so far) to accurately reflect inter-annual weather variabilities as well as 
extreme events is assessed. Figure 13 plots average TWS variations from the open-loop and A/Par approach with 
respect to precipitation data over the Murray–Darling and Mississippi basins. This is done separately for the 
assimilation and forecasting periods. Better agreement between the two time series leads to a higher correlation 
between precipitation and TWS anomalies. The assimilation results show a better match than the open-loop 
results between the estimated TWS-variations and precipitation variations. This is clearer over the assimilation 
period, in which the A/Par method increases the correlation by 0.12 (on average) compared to the open-loop 
simulations. Improvement can also be found over the forecasting period over both basins (by 0.08) using the 
multivariate A/Par approach. These results demonstrate that the assimilation results better represent climate-
induced variations compared to the open-loop run.

Another important aspect of successful model simulations is their ability to represent seasonal changes. This 
is evaluated by comparing seasonal variations of the open-loop and A/Par TWS results with those from GRACE 
data (Fig. 14). Results in Fig. 14 depict the average TWS seasonal amplitude (top panel) and TWS seasonal 
changes (middle and bottom panels) for the Murray–Darling and Mississippi basins over the assimilation and 
forecasting periods. Figure 14 illustrates that contrary to the open-loop result, assimilation results show not 
only similar seasonal amplitude but also closer range of variations compared to GRACE. Importantly, such an 
improvement can also be observed over the forecasting period (2013–2016), which is related to the estimated 
model parameters by remote sensing data assimilation.

Better agreement between the assimilation results and observations can also be seen in seasonal changes 
over both study periods. This is more evident for the Murray–Darling basin, where larger discrepancies exist 
between the open-loop results and GRACE data. Data assimilation, thus, has larger impacts in this case even 

Figure 12.  Average cross correlation increase between the estimated TWS and various flux observations within 
the Murray–Darling (with MD subscript) and Mississippi (with MIS subscript) basins. (a) presents the results 
over the assimilation period and (b) shows the results over the forecasting period. Red and blue graphs display 
the A/Par and A/O results, respectively.
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over the forecasting period. It can be concluded that the assimilation results agree better to climatic variations 
due to their better performance in representing seasonal changes, which are triggered largely by climate-related 
components mainly through precipitation.

To further investigate the performance of data assimilation, soil moisture results are compared with aver-
age precipitation changes over two particular time periods, 2009–2013 (in assimilation period) and 2013–2016 
(forecasting period) for the Murray–Darling basin. The former time period is selected due to the occurrence of an 
extreme (or irregular) climatic event namely high precipitation due to El Niño Southern Oscillation between 2010 
and  201294. The latter time period is selected to monitor the assimilation impacts on the forecastings. Figure 15 
shows the top layer soil moisture variations from the A/Par method and the open-loop run, as well as precipita-
tion variations. Based on the figure, the assimilation results give anomalies that better match the corresponding 
anomalies in precipitation data than the open-loop results. This can, for example, be found in 2010 and 2012 over 
the assimilation period. The poor performance of the open-loop results compared to the assimilation outcomes 

Figure 13.  Scatter plots of TWS estimates and precipitation (P) for the assimilation (top panel) and forecasting 
(bottom panel) periods. Solid blue and red lines represent the values for the assimilation and open-loop results. 
The black dashed line indicates the reference values.
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Figure 14.  TWS seasonal amplitude from A/Par (black), open-loop (red), and GRACE (green) in (a) 
(Murray–Darling) and (b) (Mississippi). Corresponding TWS seasonal changes are shown in (c) and (d) for the 
assimilation period and (e) and (f) for the forecasting period.

Figure 15.  Average soil moisture changes from the open-loop and A/Par, as well as precipitation over the 
Murray–Darling basin for the periods of 2009–2013 (a) and 2013–2016 (b).
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can be due to various factors such as erroneous model parameters, over-simplifying physical phenomena, and 
errors in its underlying equations. Better results for the A/Par approach suggest that estimating parameters 
through data assimilation can largely address the issue and consequently reflect anomalies. A similar performance 
can also be seen over the forecasting period, e.g., when positive anomaly in 2013 is clearer in the A/Par results. 
This again confirms the positive impact of A/Par on the parameter estimations.

To better illustrate this, the difference between average soil moisture content in March–April and Janu-
ary–February 2010 over the Murray–Darling basin is shown in Fig. 16, again both for the A/Par method and the 
open-loop run. This is done to investigate the impact of ENSO phenomena on soil moisture changes. Remark-
ably larger positive differences in the assimilation results indicate their better performance in representing the 
phenomena. These results show that assimilating multiple satellite data products can effectively improve the 
model skills to capture inter-annual weather anomalies.

Conclusions
The present study investigated the ability of multivariate satellite remote sensing data assimilation to improve 
predictions with a land surface model. Various observations including GRACE TWS, AMSR-E and SMOS soil 
moisture products, and AVHRR LAI were assimilated individually and simultaneously into the W3RA model 
using the recently proposed A/Par method, UWCEnKF. This was done for (i) state-parameter estimation over 
the assimilation period and (ii) for model predictions over the forecasting period. Different data sets were used 
to assess the data assimilation performance over the Murray–Darling and Mississippi basins. The major findings 
of this effort are:

• In general, it was shown that the application of multi-mission satellite data can successfully improve the mod-
el’s different estimates, both in the assimilation and forecasting periods. On the other hand, univariate data 
assimilation was found to mainly improve the model corresponding variable. Analysing the results against 
the assimilated observations shows that the A/Par method results in a closer correspondence to observation 
data, including independent, not assimilated, data. Thus, this study showed the importance of multivariate 
data assimilation when various water components are targeted combined with parameter estimation.

• In the forecasting period, the joint assimilation and parameter estimation method still improves estimates 
considerably, but the A/O approach does not improve updates. Better TWS and LAI forecasts were obtained 
over the Murray–Darling and Mississippi basins by this method. The use of independent groundwater and 
soil moisture measurements also confirmed this. The UWCEnKF A/Par method demonstrated high capa-
bility to preserve the observations’ impacts over a longer time period, which suggests that the method can 
successfully estimate the model parameters. Furthermore, multivariate assimilation along with parameter 
estimation shows promising performance in reflecting inter-annual weather variabilities as well as weather 
extremes into the state estimates over both assimilation and forecasting periods. Therefore, model parameter 
estimation during data assimilation is crucial for improved predictions.

Overall, based on both assessments against assimilated and independent observations, multivariate data assimila-
tion with model parameter estimation remarkably improved model simulations, e.g., in terms of water storage 
accuracy and forecasting skill. Nevertheless, more investigation is required on the performance of the method 
on hyper-resolution models, where assimilating massive datasets can be problematic. Moreover, the method 
should be tested over various basins with different hydro-climatic conditions to further assess its impact on the 
simulations, especially for the forecasting periods.

Figure 16.  Spatial changes of soil moisture from March–April 2010 to January–February 2010 over the 
Murray–Darling basin for the open-loop, A/Par, and ASCAT observations.
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