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Development of a novel 
immune‑related genes prognostic 
signature for osteosarcoma
Zuo‑long Wu2,3,4, Ya‑jun Deng3,4, Guang‑zhi Zhang3,4, En‑hui Ren1,3, Wen‑hua Yuan3 & 
Qi‑qi Xie1,3*

Immune-related genes (IRGs) are responsible for osteosarcoma (OS) initiation and development. We 
aimed to develop an optimal IRGs-based signature to assess of OS prognosis. Sample gene expression 
profiles and clinical information were downloaded from the Therapeutically Applicable Research to 
Generate Effective Treatments (TARGET) and Genotype-Tissue Expression (GTEx) databases. IRGs 
were obtained from the ImmPort database. R software was used to screen differentially expressed 
IRGs (DEIRGs) and functional correlation analysis. DEIRGs were analyzed by univariate Cox regression 
and iterative LASSO Cox regression analysis to develop an optimal prognostic signature, and the 
signature was further verified by independent cohort (GSE39055) and clinical correlation analysis. 
The analyses yielded 604 DEIRGs and 10 hub IRGs. A prognostic signature consisting of 13 IRGs was 
constructed, which strikingly correlated with OS overall survival and distant metastasis (p < 0.05, 
p < 0.01), and clinical subgroup showed that the signature’s prognostic ability was independent of 
clinicopathological factors. Univariate and multivariate Cox regression analyses also supported its 
prognostic value. In conclusion, we developed an IRGs signature that is a prognostic indicator in OS 
patients, and the signature might serve as potential prognostic indicator to identify outcome of OS 
and facilitate personalized management of the high-risk patients.

Osteosarcoma (OS) is a primary bone malignant tumor that most commonly affects children, adolescents, and 
young adults, and it also exhibits a predilection to occur in the metaphysis of long bones, and most commonly 
occurs in the distal femur (43%), proximal tibia (23%), or humerus (10%)1. Additionally, osteosarcoma is aggres-
sive and often metastasizes to the lungs2. In the past 10 years, the incidence of OS has been annually increasing 
by 0.3%3, and it has been consistently ranked as the second deadliest cancer in adolescents and children4. Despite 
advances in multimodal therapy, the 5-year survival of osteosarcoma is approximately 60% to 70%, which has 
remained stagnant over the past three decades, patients with distant metastases still fare poorly, as the 5-year 
survival rate in these patients does not exceed 20%5,6. In addition, patients with the same clinical or pathologi-
cal conditions receiving the same treatment regimen may have different clinical outcomes, due to their genetic 
heterogeneity7. Therefore, in-depth exploration of the molecular mechanisms behind the development of OS 
is crucial to finding effective prognostic biomarkers to guide patient risk stratification, which aligns with the 
concept advocated by precision medicine.

In recent years, biomolecules and risk models have been used to evaluate the prognosis of OS8–11. However, 
they have not yet been used in clinical practice because of unavoidable limitations, such as overfitting due to small 
samples12. In recent decades, increasing evidence has indicated that the immune response is actively involved in 
OS occurrence and progression13. Immune genes act as pivotal regulator of immune response14,15. They maintain 
the body’s self-tolerance by strictly regulating the immune function and reducing the damage inflicted on the 
surrounding tissues16. However, OS cell may use these immune genes to escape the immune system and achieve 
a favorable environment for their growth13,17. Given the critical role of immune molecules in OS prognosis, these 
immune-related genes (IRGs) deserve further study.

Here, were identified differentially expressed IRGs (DEIRGs) in OS and normal muscle tissue samples. Sub-
sequently, an IRGs signature that can predict outcome of OS was constructed by using univariate Cox regres-
sion and iterative LASSO Cox regression analysis of DEIRGs. In addition, based on an independent cohort, the 
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accuracy of IRGs signature in predicting the prognosis of OS patients was verified. Finally, we also evaluated the 
independence, repeatability, and clinical value of the IRGs signature in different clinical subgroups. Our results 
reveal the prognostic value of IRGs signature and provide promising prognostic indicator for OS.

Results
GO and KEGG pathways enrichment analysis of DEIRGs.  All 604 DEIRGs were screened. GO analy-
sis results showed that DEIRGs are involved in biological functions such as cell chemotaxis, leukocyte adhe-
sion, and innate immune regulation. They were also determined to participate in cellular components such as 
the external side of the plasma membrane, MHC protein complexes, endoplasmic reticulum membranes, and 
phagocytic vesicles. Additionally, they are also found to be involved in molecular functions including receptor-
ligand, cytokine, steroid receptor, and nuclear receptor activity (Fig.  1A). The KEGG analysis indicated that 
DEIRGs were mainly enriched in the following signaling pathways: chemokines, PI3K/AKT, MAPK, JAK-STAT, 
and natural killer (NK) cell-mediated cytotoxicity signaling (Fig. 1B).

Figure 1.   GO and KEGG analysis of DEIRGs. (A) GO enrichment analysis of DEIRGs. The color of the 
bar indicates p.adjust: the redder the color, the smaller the p.adjust value; the bluer the color, the larger the 
p.adjust value. The horizontal axis represents the number of DEIRGs under the GO term. (B) KEGG pathways 
enrichment analysis of DEIRGs. Significant gene (p.adjust < 0.05) enrichment to the 10 most important paths. 
p.adjust: adjusted P-value; BP: biological process; CC: cellular component; MF: molecular function.
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PPI network construction, hub IRGs screening, and functional similarity analysis of 
DEIRGs.  The result of these analyses were shown in Fig. 2A. CASP3, TNFRSF10B, and HSP90 had a larger 
weight and a stronger correlation in the PPI network. Ten hub IRGs were obtained, namely CXCR4, CCR5, 
CXCL16, CCL5, CXCL12, CXCL10, CXCR3, OPRL1, S1PR1, and GAL (Fig. 2B, Table 1). To further recognize 
the closeness of the interactions between hub IRGs, which were ranked according to average functional similar-
ity, as indicated by the results, CCR5, CXCL12, CXCR4, SIPR1, and CXCR4 were found to be hub genes with 
cut-off values greater than 0.55, and CCR5, CXCL12, and CXCR4 were the most closely related genes (Fig. 2C).

Identification and assessment of the prognostic signature.  To identify the optimal prognostic sig-
nature of OS based on IRGs, 82 prognostic-associated IRGs were identified by univariate Cox regression analysis 
of DEIRGs. Further, we identified the optimal prognostic signature that consisted of 13 prognosis-associated 

Figure 2.   Protein–protein interaction (PPI), hub IRGs, and functional similarity analysis of DEIRGs. (A) PPI 
network. The size of a node represents the clustering coefficient, the color indicates the degree, the width of the 
line indicates the score; the color of the line represents co-expression. (B) Hub IRGs. The hub IRGs were the 
top 10 DEIRGs scored by the maximum correlation coefficient. (C) Functional similarities of 10 hub IRGs. The 
boxes indicate the middle 50% of the similarities; the upper and lower boundaries represent the 75th and 25th 
percentiles. The two ends of the line represent the maximum and minimum values. The dashed line represents 
the cut-off value of similarity.
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IRGs via the iterative LASSO Cox regression analysis (Fig. 3A, Table 2). ROC curve results showed that the 
accuracy of this signature in diagnosing OS prognosis was high (Fig. 3B, AUC = 0.918). The Kaplan–Meier curve 
indicated that the overall survival of patients in the high-risk group was markedly worse than that in the low-risk 
group (Fig. 3C, p < 0.001). According to the optimal signature, we obtained the risk score distribution (Fig. 4A), 
the survival status (Fig. 4B), and the expression characteristics of the immune genes of OS (Fig. 4C). Com-
pared to the low-risk group, the high-risk group had more deaths. In addition, the expression levels of GNRH1, 
VEGFA, TNFRSF11B, GAL, STC2, BRAF, BMP8A, and CORT were higher in the high-risk group, whereas 
patients in the low-risk group expressed higher levels of PSMD10, TNFRSF21, GRN, VAV1, and SDC3.

Comparison of the IRGs signature with other known prognostic biomarkers and verification 
in independent cohort.  To determine whether the IRGs signature has a better diagnostic capacity for OS 
patient survival, we conducted receiver operating characteristic (ROC) analysis of the IRG signature along with 
other known prognostic biomarkers (SP140, MALAT1, UCA1, and MIR191) in the training cohort. The results 
showed that the area under the curve (AUC) of the IRGs signature was increased compared to that for other 
known biomarkers (Fig. 5A), indicating that the IRG signature was a better prognostic biomarker and provided 
better stability and reliability in predicting the survival of OS patients. To further examine the prognostic value 
of the IRG signature, we conducted the ROC analysis in another independent cohort (GSE39055). The results 
showed that the AUCs were 0.92, 0.93, and 0.89 at 1, 3, and 5 years, respectively (Fig. 5B), suggesting that the IRG 
can also predict the survival of OS patients in other independent cohorts.

Independence of the IRGs signature in survival prediction from clinicopathological fac‑
tors.  An important feature of a good prognostic biomarker is that it should be independent of clinicopatho-
logical prognostic factors. Clinicopathological characteristics, such as the patient’s age, sex, and metastasis, are 
also considered to be the main factors that determine the prognosis of OS patients. To evaluate the independ-
ence and applicability of the IRGs signature, we regrouped patients according to different clinicopathological 
characteristics and performed Kaplan–Meier survival analysis. The Kaplan–Meier curve showed that regard-
less of sex, age, and metastasis, the survival time of OS patients in the low-risk group was significantly pro-
longed (p < 0.05, Fig. 6A–C). All of results indicated that the IRGs signature showed satisfactory applicability 
when grouping patients according to different clinicopathological characteristics. Univariate and multivariate 
COX regression also suggested that the signature is an independent indicator for predicting the prognosis of OS 
patients (Table 3).

Relationship between the prognostic signature and clinical characteristics.  The relationship 
between clinical characteristics, such as metastasis, age, grade, and the risk score based on the prognosis-associ-
ated IRGs signature, was analyzed to validate the accuracy of the prognostic signature further. The results showed 
that metastasis groups had a significantly higher risk score than non-metastasis groups (Fig.  7C, p = 0.001). 
However, no significant association was observed between age (Fig. 7A, p = 0.531), sex (Fig. 7B, p = 0.485), and 
risk score.

Discussion
OS is the most common bone malignancy in children and adolescents, and it is also one of the main causes of 
cancer-related deaths in this age group18. Evidence demonstrates that the immune response defines the tumor’s 
microenvironment. In particularly, immune cell disorders often cooccur with tumors and are considered an 
essential driver of OS development19,20. In this study, we analyzed the DEIRGs of the OS and control samples 
from TARGET and GTEx databases to identify new prognostic biomarkers by constructing a prognostic IRGs 
signature.

Related studies show that chemotaxis, adhesion of leukocyte, and innate immunity are dysfunctional in the 
OS microenvironment, thereby reducing the immune response to OS cells21–23. PI3K/AKT signaling pathway24, 
MAPK signaling pathway25 and JAK-STAT signaling pathway26 have been extensively studied in the OS. 

Table 1.   Functions of 10 hub IRGs.

No Symbol Full name Function

1 CXCL16 C-X-C motif chemokine ligand 16 CXCL16 is highly expressed in osteosarcoma tissues

2 CCL5 C–C motif chemokine ligand 5 High CCL5 expression is associated with osteosarcoma metastasis and poor prognosis of patients with osteosarcoma

3 CCR5 C–C motif chemokine receptor 5 CCR5 controls the proliferation or differentiation of osteosarcoma

4 GAL Galanin and GMAP prepropeptide The overexpression of Gal-1 is well established in many types of cancer progression like osteosarcoma, breast, lung, pros-
tate, melanoma, etc

5 S1PR1 Sphingosine-1-phosphate receptor 1 Downregulated S1PR1 suppresses osteosarcoma metastasis and proliferation

6 CXCR4 C-X-C motif chemokine receptor 4 CXCR4-mediated osteosarcoma growth and pulmonary metastasis

7 CXCL12 C-X-C motif chemokine ligand 12 CXCL12 plays a critical role in mediating tumor progression and the immune response in osteosarcoma

8 CXCR3 C-X-C motif chemokine receptor 3 CXCR3 correlates with immune infiltration and predicts poor survival in osteosarcoma

9 CXCL10 C-X-C motif chemokine ligand 10 CXCL10 plays an important role in cancer and autoimmunity

10 OPRL1 Opioid-related nociceptin receptor 1 OPRL1 plays a key role of pain and injury perception
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Furthermore, the activation of these signaling pathways is strongly linked to the growth and metastasis of OS 
cells. Although natural killer cell-mediated cytotoxicity is the host’s first-line anti-cancer defens27, the immune 
response is a seemingly double-edged sword in the OS microenvironment, as a dysregulated immune response 
is conducive to the occurrence and development of tumors.

In total, in our study, we obtained 604 DEIRGs. Of note, we identified 10 hub IRGs, namely CXCR3, CXCR4, 
CCR5, CCL5, CXCL10, CXCL12, CXCL16, OPRL1, S1PR1, and GAL. Among them, CXCR328, CXCR429, CCR530, 
CCL531, CXCL1632, CXCL1033, CXCL1234 and GAL35 have been widely studied in OS, and are involved in the 
occurrence, metastasis, and angiogenesis of OS. OPRL1 encodes proteins that are endogenous opioid-related 
neuropeptides and nociceptin/orphanin receptors, which plays a key role in pain perception and nociception36,37. 
The high expression of OPRL1 in OS may be related to cancerous pain. The coding product of the SIPR1 gene is 
a receptor protein that is similar to the G-protein-coupled receptor. When SIPR1 was combined with ligand S1P, 
the growth, invasion, and metastasis of lung cancer, ovarian cancer, and colon cancer are enhanced38–40. Hence, 
we can speculate that SIPR1 is pivotal in OS. Considering the similarity between molecular functions and cell 
components of hub IRGs, and through the ranking of semantic similarity, we discovered that CCR5, CXCL12 

Figure 3.   Development and assessment of the prognostic signature. (A) Construction of the prognosis-
associated IRGs signature. The horizontal axis represents the gene frequency and the vertical axis represents the 
AUC. (B) Time-dependent ROC curve for prognosis-associated DEIRGs signature. The horizontal axis indicates 
the FDR, and the vertical axis indicates the TPR. (C) Kaplan–Meier survival curves of overall survival from the 
high-risk and low-risk groups. The horizontal axis represents survival time (y), and the vertical axis represents 
the survival rate (%). ROC: relative operating characteristic curve; AUC: area under the curve. FDR: false 
positive rate; TPR: true positive rate.
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and CXCR4 are the most closely related genes. CCR5, CXCL12 and CXCR4 genes encode chemokine receptors 
or ligands, which plays a vital part role in the initiation and growth of OS29,41,42. These findings further support 
the reliability of our study.

Previous research has shown that IRGs are closely related to OS metastasis and prognosis43. For example, 
Koirala et al.44 found that immune cell infiltration and PD-L1 expression in the tumor microenvironment were 
independent risk factors for OS. Li Bo et al.45 reported that CXC12 acts as a driver in OS metastasis and immune 
response, and knocking down CXC12 could effectively inhibit OS progression. Moreover, IRGs signatures have 
attracted widespread attention and have been used to predict metastasis and prognosis of different tumors46–48. 
Therefore, in order to further explore the value of IRGs in OS prognosis, we constructed a prognostic signature 
consisting of 13 prognostic-associated DEIRGs, which has a high diagnostic prognostic efficacy. The high expres-
sion lever of GNRH149, BRAF50, PSMD1051 and VEGFA52 closely correlated with the growth, metastasis, and 
angiogenesis of OS. The high expression of GAL53,54, TNFRSF11B55 and STC256 are linked to prostate cancer 
and colorectal cancer development and a worse prognosis. The abnormally high expression of BMP8A is an 
independent factor for the progression and poor prognosis of thyroid carcinoma57. CORT is an endogenous 
cyclic neuropeptide that can regulate the growth and metastasis of lung cancer and thyroid cancer58,59, and it 
also regulates the inflammatory response by inhibiting the immune infiltration60. Granulin a (GRNA) is a 6 kDa 
peptide hydrolyzed from PGRN, which can effectively inhibit the growth and invasion of human hepatoma cells61. 
The high expression of VAV1 is a positive prognostic factor for early invasive breast cancer62. Zong et al.63 found 
that the overexpression of SDC3 can significantly inhibit the proliferation and metastasis of mesenchymal tumor 
cells. Wu et al.64 found that miR20a-5p promotes the proliferation, migration, and invasion of head and neck 
squamous cell carcinoma by down-regulating TNFRSF21. Another study found that TNFRSF21 also plays an 
important role in regulating leukocyte infiltration65. obviously, the results of our analysis are consistent with the 
results of previous studies, which further confirms that this signature has a high value for the prognosis of OS.

To date, a lot of OS prognostic molecules have been found, including MALAT19, UCA110 and miR19111. 
Most of these were based on single-gene prognosis studies. Existing studies have found that the occurrence and 
development of tumors are not caused by changes in single genes, but are the result of a series of gene changes66. 
In addition, the use of single genes cannot avoid the differences caused by individual heterogeneity. Most impor-
tantly, these studies did not use large samples to fully explore the relationship between genes and the prognosis 
of OS. In this study, 13 prognostic IRGs were identified by univariate cox regression and iterative LASSO cox 
regression analysis for the risk stratification of OS patients. Extensive analyses proved that this prognostic sig-
nature has a higher diagnostic value than pre-existing models. Recently, Shi et al.67 also constructed a prognostic 
signature that consisted of three DEGs (MYC, CPE, and LY86) in OS. However, the DEGs in their study came 
from metastatic and non-metastatic patients and lacked a normal control sample. Therefore, the gene included 
in the signature did not reflect the pathological characteristics of the occurrence and development of OS. Our 
signature was verified by an independent verification set, which has a high diagnostic efficiency compared to that 
with other biomarkers. However, our research also has some unavoidable limitations and deficiencies. First, in 
the study, we used normal muscle tissue as a control group. Therefore, compared with normal bone tissue, there 
may be a certain difference in the expression of IRGs. In addition, due to the lack of protein expression profile 
data for OS, we used gene expression profile data, which may not fully reflect the biological characteristics of 

Table 2.   IRGs function in the prognostic signature.

No Symbol Full name Function

1 BRAF B-Raf proto-oncogene, serine/threonine kinase Associated with progression and poor prognosis of several cancers

2 CORT Cortistatin Biological activities of anti-inflammation, antioxidation, antitumor 
activity

3 GAL Galanin and GMAP prepropeptide High expression is linked with the initiation and progression of 
prostate cancer and colorectal cancer

4 GRN Granulin precursor Inhibit the growth of hepatocellular carcinoma

5 STC2 Stanniocalcin 2 High expression is associated with progression and poor outcome 
of colorectal cancer

6 TNFRSF11B TNF receptor superfamily member 11b High expression is linked with a worse outcome of colorectal 
cancer

7 BMP8A Bone morphogenetic protein 8a High expression is associated with progression and poor survival 
of thyroid cancer

8 PSMD10 Proteasome 26S subunit, non-ATPase 10 Abnormal expression is linked with metastasis and worse survival 
of osteosarcoma

9 VEGFA Vascular endothelial growth factor A Promotes cell proliferation and migration, inhibits apoptosis of 
osteosarcoma

10 VAV1 Vav guanine nucleotide exchange factor 1 High expression is associated with the prognosis of invasive breast 
cancer

11 GNRH1 Gonadotropin-releasing hormone 1 Associated with vascular invasion and metastasis of osteosarcoma

12 SDC3 Syndecan 3 Overexpression inhibits the proliferation of mesenchymal tumor 
cells

13 TNFRSF21 TNF receptor superfamily member 21 Abnormal expression is coupled with growth, migration and inva-
sion of osteosarcoma
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OS. After all, protein is the executor of the function. Above all, there is still a lack of large sample data sets and 
clinical samples to verify the accuracy of the results of this analysis.

Conclusion
In summary, we developed an IRGs signature that is a prognostic indicator in OS patients, and further verified it 
in an independent cohort. Hence, the signature might serve as potential prognostic indicator to identify outcome 
of OS and facilitate personalized management of the high-risk patients.

Figure 4.   Prognostic analyses of high-risk and low-risk patients. (A) Risk score distribution of patients in the 
prognosis-associated IRGs signature. (B) Survival status scatter plots for patients in the prognosis-associated 
IRG signature. (C) Expression patterns of risk genes in the prognosis-associated IRG signature. Red means high 
expression, green means low expression. OS: overall survival.
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Figure 5.   Comparison of IRGs signature with other prognostic biomarkers and verification in an independent 
cohort. (A) Time-dependent ROC curve of IRGs signature compared to that other prognostic biomarkers. (B) 
The ROC curve of the IRGs signature predicting survival in an independent cohort.

Figure 6.   Kaplan–Meier curves of patients with OS in different clinical subgroups. (A) Kaplan–Meier curve for 
OS patients aged < 18 years and those aged ≥ 18 years. (B) Kaplan–Meier curve of male and female patients with 
OS. (C) Kaplan–Meier curve of metastatic and non-metastatic OS patients.
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Materials and methods
Data processing and screening.  Therapeutically Applicable Research to Generate Effective Treatments 
database (TARGET; https​://ocg.cance​r.gov/progr​ams/targe​t) is an open database for childhood tumors that 
seeks to identify molecular changes in the occurrence and progression of pediatric cancer using an integrated 
genomic approach to assist researchers in developing effective treatments. The Genotype-Tissue Expression 
(GTEx, https​://www.gtexp​ortal​.org/home/) database68 provides transcriptome data of various normal human 
tissues. Gene Expression Omnibus database (GEO, https​://www.ncbi.nlm.nih.gov/geo/) is a gene expression 

Table 3.   Univariate and multivariate Cox regression models of the IRGs signature in predicting survival.

Variables

Univariate Cox Multivariate Cox

HR (95% CI) p value HR (95% CI) p value

Gender 0.712 (0.334–1.516) 0.377869 0.608 (0.273–1.352) 0.222178

Age 0.918 (0.347–2.423) 0.863671 2.231 (0.768–6.478) 0.140079

Metastatic 0.212 (0.099–0.454) 6.61E−05 0.182 (0.077–0.434) 0.000119

Stage 0.398 (0.120–1.326) 0.133626 0.270 (0.0727–1.004) 0.050698

Site 2.241 (1.070–4.494) 0.032372 1.669 (0.737–3.779) 0.218905

Risk score 18.088 (4.273–76.561) 8.39E−05 13.196 (3.010–57.860) 0.000624

Figure 7.   Correlation analysis between prognostic signature and clinical characteristics. (A) Correlation 
between prognosis-associated IRGs signature and age. (B) Correlation between prognosis-associated IRGs 
signature and sex. (C) Correlation between prognostic-associated IRGs signature and metastasis. The boxes 
indicate the middle 50% of the similarities; the upper and lower boundaries indicate 75% and 25%. The two ends 
of the violins represent the maximum and minimum values. n: number of cases of OS.

https://ocg.cancer.gov/programs/target
https://www.gtexportal.org/home/
https://www.ncbi.nlm.nih.gov/geo/
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database created and maintained by NCBI, which contains high-throughput gene expression data and gene 
chip expression data submitted by research institutions around the world. We downloaded the gene expression 
profiles and the corresponding clinical data of OS from the TARGET database, including 88 OS samples, and 
obtained the normal muscle tissue gene expression profile data set from the GTEx database as a control group, 
including 396 muscle tissue samples. Then we applied the R software (Version 3.3.3, https​://www.r-proje​ct.org/) 
sva package69 to merge the raw data (CEL files) of the two sets. Subsequently, we used the Limma package70 to 
screen DEGs between the OS tissue and normal muscle tissue. The cut-off value was | log2 fold change (log2FC) 
|> 1 and adj. p < 0.05. We downloaded and organized the IRGs list from the ImmPort (https​://immpo​rt.niaid​
.niaid​.gov) database, selected DEIRGs from DEGs and used them for our analysis.

Functional correlation analysis of DEIRGs.  GO is a tool for annotating genes and their products, which 
aid the integration and utilization of biological data71. KEGG is a database integrating genomics, chemistry, and 
system function information, which provides currently known biological metabolic signaling pathways72. The 
clusterProfiler package73 was used to perform GO and KEGG enrichment analysis on DEIRGs; p < 0.05 was used 
as a cut-off value for significant gene enrichment. The Search Tool for the Retrieval of Interacting Genes online 
tool (STRING, https​://www.strin​g-db.org/, Version: 11.0)74 and Cytoscape software75 were used to construct 
the PPI network for DEIRGs, and the hub IRGs were screened using the cytoHubba plug-in76. The hub IRGs 
selection criteria shortlisted the top 10 DEGs through the maximum correlation standard algorithm. Based on 
the semantic similarity of GO terms, GOSemSim package77 was used to compute closeness of the relationship 
between the molecular function and cell localization among 10 hub IRGs, and used the average functional simi-
larity to rank the 10 hub IRGs78. The results were visualized by the ggplot2 package79.

Identification and assessment of the prognostic signature.  To develop the optimal signature for 
predicting OS prognosis based on IRGs, we performed univariate Cox regression analysis on the obtained 
DEIRGs, and selected IRGs related to prognosis with a screening criterion of p < 0.05. Next, we used the glm-
net (https​://CRAN.R-proje​ct.org/packa​ge=glmne​t) package80 to perform a machine learning algorithm-iterative 
LASSO Cox regression analysis on prognostic-associated IRGs to construct the optimal prognosis signature. 
LASSO is highly dependent on seeds and requires cross-validation to select samples randomly. Once the seeds 
are replaced, the optimal lambda and resulting features change. Iterative LASSO regression was used to select 
high-frequency features, such as consensus genes, according to the frequency sequence of features after several 
runs of LASSO. Then, the consensus genes were sequentially included in the Cox model. After the AUC of ROC 
reached a peak, the genes were not included. At this point, the model is optimal and contains the least features81. 
We counted the consensus genes for which the frequency exceeded 50 after 500 LASSO regressions. Then we 
fit the expression levels of the consensus genes into a variable through the iterative LASSO cox regression to 
construct the optimal prognosis signature of OS. Next, we scored each sample with the optimal signature and 
divided the patients into a high- or low-risk group, according to the median of the score. Finally, we used R 
software to draw a risk factor association chart to display the survival status.

Comparison of signature with other known prognostic biomarkers and verification in an inde‑
pendent cohort.  Many prognostic markers for patients with OS have been previously determined. SP140 
has been identified as a promising prognostic marker for OS patients8, and the expression of MALAT1 has been 
shown to be associated with a worse prognosis for OS patients9. UCA1 expression may be an independent prog-
nostic indicator for predicting a poor prognosis in patients with OS10. In addition, miR191 is highly expressed in 
the serum of patients with osteosarcoma and is positively correlated with clinical stage11. In order to determine 
whether our signature has a better ability to predict patient survival than known biomarkers, we conducted a 
ROC comparative analysis of the signature and other biomarkers. Good prognostic markers should also have a 
high predictive prognostic performance in other independent cohorts. To test the utility of the signature in this 
study, we verified it with another independent cohort (GSE39055). Details of the GSE39055 dataset are shown 
in Supplementary Table 1.

Subgroup survival analysis, signature clinical value evaluation.  An important feature of a good 
prognostic marker is that it should be independent of the currently used clinicopathological prognostic factors. 
To evaluate the independence and applicability of this signature, we regrouped OS patients according to different 
clinicopathological characteristics, and then performed Kaplan–Meier survival analysis for their subgroups. We 
performed univariate and multivariate Cox regressions on clinicopathological characteristics and the signature 
to evaluate whether the signature is an important prognostic factor.

Correlation analysis of prognostic signature and clinical characteristics.  To further evaluate the 
correlation between the risk score based on the prognosis-associated IRGs signature and clinical characteristics, 
we classified patients according to age, sex, and distant metastatic status. Then we used the ggstatsplot (https​://
githu​b.com/Indra​jeetP​atil/ggsta​tsplo​t) package to analyze the correlation between the risk score and the afore-
mentioned. The results are shown in the ggplot2 package.
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