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A systems genomics approach 
to uncover the molecular properties 
of cancer genes
Felix Grassmann*, Yudi Pawitan & Kamila Czene

Genes involved in cancer are under constant evolutionary pressure, potentially resulting in diverse 
molecular properties. In this study, we explore 23 omic features from publicly available databases 
to define the molecular profile of different classes of cancer genes. Cancer genes were grouped 
according to mutational landscape (germline and somatically mutated genes), role in cancer initiation 
(cancer driver genes) or cancer survival (survival genes), as well as being implicated by genome-wide 
association studies (GWAS genes). For each gene, we also computed feature scores based on all omic 
features, effectively summarizing how closely a gene resembles cancer genes of the respective class. In 
general, cancer genes are longer, have a lower GC content, have more isoforms with shorter exons, are 
expressed in more tissues and have more transcription factor binding sites than non-cancer genes. We 
found that germline genes more closely resemble single tissue GWAS genes while somatic genes are 
more similar to pleiotropic cancer GWAS genes. As a proof-of-principle, we utilized aggregated feature 
scores to prioritize genes in breast cancer GWAS loci and found that top ranking genes were enriched 
in cancer related pathways. In conclusion, we have identified multiple omic features associated with 
different classes of cancer genes, which can assist prioritization of genes in cancer gene discovery.

One of the main challenges in cancer genetics is the identification of genes involved in cancer risk and prog-
nosis and to characterise their molecular function in health and disease. While our knowledge on the function 
of a small number cancer genes is quite substantial, little is known about the role of most cancer genes due to 
the identification of an ever-increasing number of cancer genes, which outpaces functional  characterization1,2. 
However, the presently large number of known or suspected cancer genes also has the potential to enable the 
broad and comprehensive characterization of those genes to identify the molecular and evolutionary patterns 
underlying either all cancer genes or specific classes thereof.

Generally, cancer genes can be divided into several distinct classes according to their involvement in can-
cer risk or prognosis as well as according to their molecular function, mode of inheritance and mutational 
 landscape3,4. Recent large-scale sequencing efforts in tumour cells and tissue provided a comprehensive assess-
ment of aberrations in somatic cancer genes and their influence on different hallmarks of  cancer5. Further 
advances in bioinformatic and experimental approaches allowed to leverage those large datasets which led to 
the description of new cancer driver  genes3,6. While somatically acquired mutations in cancer genes are impor-
tant for the initiation and progression of tumours, they also seem to play an important role in cancer specific 
 survival7,8. Furthermore, the expression levels of thousands of genes are involved in survival from cancer, often 
with pleiotropic and contrasting effects on different types of  cancer9,10.

In addition to genes mainly involved in cancer prognosis and aggressiveness, an ever-expanding number of 
genes are identified which play a role in cancer risk and thus are mostly responsible in disease processes before 
diagnosis. The occurrence of tumours is heritable, with heritability estimates ranging from 9 to 57%11. A siz-
able portion of familial cancer risk can be attributed to rare mutations in germline cancer  genes4, although only 
around a hundred germline cancer genes have been identified so  far12 most of which are tumour  suppressors13. 
Conversely, a significant part of the remaining heritability is likely attributable to common cancer risk increasing 
 variants14, which are routinely identified by genome-wide association studies (GWAS). In contrast to germline 
mutations which are usually located within the coding region of a gene and thus directly implicate the responsi-
ble gene, common cancer variants do not directly implicate a particular gene target or even molecular pathway 
due to extensive linkage between variants. Consequently, an association signal may span a large region in the 
genome covering many potentially relevant genes, thus posing an obstacle for future in-depth functional char-
acterisation of the casual gene(s). Therefore, in order to prioritize the most likely cancer gene within a region, 
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multiple algorithms have been developed which implicate genes according to mutational load, molecular func-
tion, involvement in specific pathways or  expression15–20. Alternatively, understanding the molecular character-
istics of typical cancer genes promises to allow the prioritization of genes within those regions by implicating 
those genes which most closely resemble other typical cancer genes.

Therefore, to further characterize the molecular properties of cancer genes, we systematically investigate the 
multiple omic features of different classes of cancer genes. We then aggregate the effect of those features to rank 
genes within breast cancer GWAS regions and perform pathway enrichment on genes to illustrate the utility of 
our findings.

Methods
Cancer gene definition. 658 genes frequently mutated in tumours (somatic genes) as well as 107 genes 
that often harbour rare mutations causing hereditary cancer (germline genes) located were extracted from the 
Catalogue of Somatic Mutations in Cancer (COSMIC, URL: https ://cance r.sange r.ac.uk/cosmi c) Cancer Gene 
Census (CGC)5. We considered both, Tier 1 and Tier 2 genes (i.e. genes with strong indications of a role in 
cancer) in our analyses as cancer genes in order to maximize the number of observations (i.e. genes) in each 
cancer class. Furthermore, we included 294 genes recently described to harbour cancer driver mutations (driver 
genes)2. Several germline, somatic and driver genes were identified to be part of multiple gene sets and we made 
the following exclusions: 64 genes which were listed as both germline and somatic were excluded from both lists 
to create a clean somatic and germline gene set, respectively. In addition, we excluded 188 genes from the driver 
gene list since they are also considered either somatic or germline genes as well as 137 genes from the somatic 
gene list which are driver genes.

The associations of gene expression with cancer survival in The Cancer Genome Atlas (TCGA, URL: https ://
porta l.gdc.cance r.gov/) were extracted from GEPIA (Gene Expression Profiling Interactive Analysis, URL: https 
://gepia .cance r-pku.cn/)10. We considered 1719 genes which are significantly associated with survival (false dis-
covery rate < 0.01) in at least two datasets to be cancer survival genes to reduce the number of false positives and 
to include genes with a strong evidence for their involvement in cancer survival. We also separately investigated 
cancer survival genes whose expression is significantly positively (i.e. hazard ratio greater than one) or negatively 
(hazard ratio smaller than one) correlated to survival from cancer. 451 survival genes which are also deemed 
germline, somatic or driver cancer genes or which are located in cancer GWAS loci (see below) were excluded 
from their respective analyses to create a clean set of genes involved in cancer survival.

Finally, we included genes within cancer loci identified by genome-wide association studies. In order to 
account for the large number of associations tested in GWAS, the accepted threshold for a significant association 
with a trait (i.e. genome-wide significance) is 5.00 × 10−08. Therefore, we extracted all genome-wide significant 
variants associated with any cancer from the GWAS  catalogue21 (accession date: 2018-06-25, URL: https ://www.
ebi.ac.uk/gwas/) and removed variants associated with cancer severity/aggressiveness, survival and other non-
disease-risk associated outcomes. Furthermore, we only considered association signals primarily identified in 
Europeans.

We grouped the cancer association signals into 20 clusters according to their respective tissue: breast, skin, 
colorectal, ovarian, uterus, testicular, thyroid, oesophageal, lung, renal, prostate, pancreas, oral, bladder, cervix, 
haematological and central nervous cancer as well as meningioma, sarcoma, and uveal melanoma. We separately 
investigated genes in GWAS regions with cancer association signals for only one tissues (GWAS genes) or with 
multiple signals from cancers of different tissues or types of cancer (pleiotropic GWAS genes).

The lower and upper boundaries of a cancer GWAS locus were defined by the most distant variants in mod-
erate linkage disequilibrium to the index GWAS variant (D’ < 0.5). We then merged GWAS loci with genomic 
overlap and considered a total of 4075 genes within those loci as cancer genes in case the transcription start 
site (TSS) or the transcription terminator of the longest transcript is located within the locus boundaries. In the 
analysis of GWAS cancer genes, we excluded 1702 genes which were considered germline, somatic, driver or 
survival cancer genes.

Extraction of features. All genomic coordinates mentioned in the manuscript are based on hg19, since 
various databases reported their features based on the hg19 genome assembly at the time of analysis. Liftover 
from other builds was performed with the rtracklayer library (version 1.42.1) as implemented in R (version 3.5.1, 
URL: https ://www.R-proje ct.org)22. The necessary liftover chain files were downloaded from UCSC Genome 
browser (https ://hgdow nload .cse.ucsc.edu/golde npath /hg19/liftO ver/). We used  biomaRt23 (version 2.38.0) 
implemented in R to extract genomic features from the ENSEMBL database. In particular, we extracted the size 
of the gene body (i.e. genomic distance between transcription start site and transcription terminator of the long-
est transcript) and the number of isoforms and exons of each protein coding gene. Furthermore, we documented 
the percent GC content of each gene within the gene body and recorded the mean length of the 3′ and 5′ UTR as 
well as the average size of all exons of all isoforms.

In addition, we calculated the number of orthologues within the family Hominidae to address recent evolu-
tionary conservation as well as the number of paralogues within the human genome to investigate the presence 
of potentially redundant gene copies.

In order to investigate the linkage disequilibrium structure within cancer genes, we computed the average and 
standard deviation of the LD Scores derived from European  populations10 of all variants within the gene body.

Genes which have fewer mutations than expected are considered essential and mutation intolerant. The degree 
of intolerance can be expressed as a Z Score of intolerance. For each coding gene, we extracted the Z scores for 
synonymous, non-synonymous as well the loss of function mutations from  gnomAD10.

https://cancer.sanger.ac.uk/cosmic
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://gepia.cancer-pku.cn/)10
https://gepia.cancer-pku.cn/)10
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://www.R-project.org
https://hgdownload.cse.ucsc.edu/goldenpath/hg19/liftOver/
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Next, we computed multiple measures to summarize gene expression and regulation of cancer genes across all 
tissues included in  GTEx24. We computed the mean and standard deviation of gene expression values (expressed 
as Transcripts Per Kilobase Million, TPM) across all 44 tissues and also counted the number of tissues a gene is 
expressed in (i.e. TPM > 1). Furthermore, we extracted the number of unique variants across all tissues that are 
significantly correlated to gene expression (expression quantitative trait loci, eQTL) for each gene.

We also calculated the number of transcription factor (TF) binding sites (identified by ChIPSeq experiments) 
reported in the Gene Transcription Regulation Database (GTRD)25 either within the gene body, within the 
promotor (i.e. 1000 bp up- and downstream of the TSS of a gene) or within the distal region of a gene (within 
100,000 bp up- and downstream of the TSS or transcription terminator, respectively). The number of TF sites 
in the gene body as well as in the distal region was then normalized/divided by the gene length. Transcription 
factors were also grouped into canonical classes according to Lambert et al.26 and we estimated the association 
of TF binding sites in the promotor from individual classes with cancer genes.

Finally, for each gene, we computed the total number of common post-translational protein modifications 
reported by  dbPTM27 as well as the occurrence of individual modifications reported in at least 10 genes.

Computation of scores from cancer features and statistical analyses. All analyses were restricted 
to protein coding genes outside of the highly pleiotropic MHC region on chromosome 6 (hg19 coordinates: 
25,477,797 bp–33,448,354 bp). All features were scaled to have a mean of zero and a standard deviation of one in 
order to account for differences in the scale of the underlying data. The association of the features with the binary 
cancer gene status was evaluated with logistic regression as implemented in R, since logistic regression does not 
assume a specific distribution of the predictor variables, many of which are potentially not normally distributed. 
The outcome (dependent variable) of those models was the binary assignment to either the respective cancer 
class or to the background gene set. The exposures in the models were the different omic features and the effect 
sizes were visualized as a correlation plot with the corrplot function from the corrplot package (version 0.84). The 
association of genomic features with GWAS cancer genes as adjusted for the number of genotyping probes from 
genotyping chips within each gene body to account for potential confounding effects due to coverage.

Similar to the computation of genetic risk  scores28,29, we computed genomic cancer feature scores of all cancer 
gene classes for each gene. We multiplied (weighted) the value of each feature by the respective effect size (log 
odds ratio) derived from the association of the feature with the respective cancer gene class (see Formula 1). 
Missing continuous features were imputed to the median to facilitate the computation of cancer feature scores 
for all genes. The correlation between the scores were visualized as a correlation plot (see above).

where βi is the log odds ratio of association of the nth feature with the respective cancer class and xi is the numeric 
value of the respective feature. The variation explained by each score was estimated by fitting a logistic regres-
sion model with the respective cancer class as the outcome and the score as the exposure. From those models, 
we report the Nagelkerke pseudo  R2 measures which denotes the proportion of the variability in the outcome 
that is explained by model.

Gene prioritization and pathway enrichment analyses. As a proof-of-principle, we extracted 1250 
genes located within 156 loci with genome-wide significant association signals for breast cancer and ranked 
those genes according to the GWAS cancer score. We recorded the top two ranked genes (high GWAS cancer 
score set,) as well as all remaining genes (low GWAS cancer score set). We then performed pathway enrichment 
analyses on both gene sets separately with the gprofiler2 package (version 0.1.4), as implemented in R using 
standard settings. Similarly, we performed pathway enrichment analyses in 1640 high- or low-ranking genes in 
147 loci associated with coronary artery disease (CAD). We only considered pathways with a maximum term 
size of 1000 genes and a precision of at least 2.5% (i.e. at least 2.5% of all genes in either gene set need to map to 
the respective pathway).

In addition, we investigated the enrichment of pathways using a gene set enrichment algorithm implemented 
in Webgestalt 2019 (www.webge stalt .org30. We submitted the list of breast cancer genes ranked by the GWAS 
cancer score to Webgestalt. The gene set enrichment analysis was performed with standard settings but we only 
considered pathways with a maximum term size of 1000 and a minimum term size of 20.

The pathway definitions were downloaded from MSigDB (URL: https ://www.gsea-msigd b.org/gsea/msigd 
b)31. In total, we included 15,922 Gene Ontology Biological Process (GO:BP) pathways, 4582 Gene Ontology 
Molecular Function (GO:MF) pathways, 50 Hallmark pathways, 186 Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways, 2186 Reactome pathways (REAC) and 521 Wiki Pathways (WP).

Results
First, we established a set of 23 distinct omic features from publicly available databases and evaluated the pairwise 
correlation between those features. The features were broadly clustered into four major groups (Fig. 1) accord-
ing to their correlation coefficients. As expected, measures of the structure of genes such as size and number of 
isoforms/exons was highly significantly correlated with another. Similarly, genes which are intolerant towards 
deleterious mutations are also sensitive to synonymous and missense mutations and generally have fewer para-
logs in the genome.

Next, we defined 4247 genes to be cancer genes according to expert curated databases as well as published 
large scale sequencing efforts and genome-wide association study results and grouped them into six cancer gene 

Score =

n∑

i=1

βi × xi

http://www.webgestalt.org
https://www.gsea-msigdb.org/gsea/msigdb)
https://www.gsea-msigdb.org/gsea/msigdb)
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classes. In total, we included 43 genes which are often harbouring rare cancer predisposition mutations (germline 
genes), 457 genes frequently mutated in tumours (somatic genes), 106 cancer driver genes as identified by Bailey 
et al.  20182 (driver genes), 1268 genes whose expression levels are associated with cancer mortality (survival 
genes) as well as 2373 genes located in cancer GWAS loci (GWAS cancer genes, 901 pleiotropic and 1472 non-
pleiotropic). We also established a non-cancer background gene set consisting of 14,110 genes. We evaluated 
the association of 23 omic features (Fig. 1) with cancer gene status and found multiple statistically significant 
correlations (Fig. 2 and Supplementary Table 1). In general, compared to the non-cancer genes, cancer genes 
are longer and have more isoforms and therefore are characterized by more numerous and shorter exons. While 
the GC content of the gene body of cancer genes seems to be lower than in the GC content observed in control 
genes, we observed the opposite effect for cancer genes found within GWAS loci. Interestingly, cancer genes seem 
to have fewer paralogs within the genome and as such are expected to be less tolerant towards deleterious muta-
tions. Indeed, our results confirm that most types of cancer genes are indeed more intolerant towards missense 
and loss-of-function mutations. However, we found no such effect for germline genes (Fig. 2).

Furthermore, we observed that cancer genes are likely not located on longer haplotypes since variants in the 
gene body do not have a higher average LD Score than control genes. However, we observed an increased vari-
ation of the LD Score of variants within the gene body of cancer genes, indicating that those regions harbour a 
larger diversity of differently sized haplotypes.

The average expression as well as the number of genes expressed across 52 tissues from the GTEx project 
was significantly increased in cancer genes, highlighting their importance for homeostasis in multiple tissues. 
As such, cancer genes also harbour more transcription factor binding sites within the promotor across most 
transcription factor classes (Fig. 2). However, the spread/variation of expression across all GTEx tissues was 
lower for germline genes, indicating a more uniform expression throughout the body. Notably, we observed a 
reduced number of transcription factor binding sites in the gene body and in the distal regions of a gene as well 
as a reduced number of unique eQTL variants in somatic genes. Therefore, somatic cancer genes seem to be 
preferentially regulated by their promotor, which may indicate more direct and immediate expression control 
and less influence of distal regulatory processes. Finally, we also observed that cancer genes in general have more 
post-translational modification.

The identification of features which are able to distinguish between cancer and non-cancer genes as well as 
between different classes of cancer genes allowed us to compute cancer feature scores for each gene by multiplying 

Figure 1.  Correlation between omic features. 23 Omic features of 19,271 protein coding genes were extracted 
from multiple databases and the pairwise correlation was computed. The features were ordered and four distinct 
clusters were highlighted according to the hierarchical clustering as implemented in the corrplot function. 
The colour and the size of the circles represent the strength of the correlation (i.e. correlation coefficient) and 
statistical significance is indicated with asterisks in the upper triangle. Significant correlations (P < 0.05) are 
indicated by a black border in the lower triangle. TF transcription factor; LOF loss of function; TPM transcripts 
per kilobase million; S.D standard deviation *P < 0.05; **P < 0.01; ***P < 0.001. Generated with the corrplot 
function from the corrplot package (version 0.84).
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the observed effect size (log odds ratio, Fig. 2 and Supplementary Table 1) with the value of the respective feature 
and calculating the weighted sum. By computing those scores, we effectively create an omic feature profile for 
each gene which summarizes how strongly a gene resembles a typical cancer gene for a given cancer gene class. 
We found a generally positive pairwise correlation between all score with the strongest correlation observed 
between somatic and driver cancer genes. In contrast, the correlation was weakest between the scores for ger-
mline and somatic as well as driver cancer genes (Fig. 3). Of note, the correlation between the pleiotropic and 
non-pleiotropic GWAS cancer scores to other scores were similar, although the non-pleiotropic GWAS score was 
more strongly correlated to the germline score and the pleiotropic GWAS score showed stronger correlation with 
the somatic and driver score. Thus, genes in pleiotropic GWAS regions seem to be more similar to somatic and 
driver genes while genes in cancer GWAS regions with an association for a single type of tumour more closely 
resemble germline genes. The scores explained between 2 and 14% of the observed variation (Nagelkerke pseudo 
 R2), implicating that the scores are not completely capturing all molecular properties of cancer genes or that 
many cancer genes have yet to be identified.

Our GWAS Cancer Score is derived from a pan-cancer approach and thus can potentially be applied to rank 
candidate genes in a variety of different types of tumours. However, as a proof-of-principle, we chose to prior-
itize genes in breast cancer loci for potential functional studies, since the number of independent, genome-wide 

Figure 2.  Omic features of cancer genes. The size and colour of the circle represent the log odds ratio of 
the association of 23 omic features with different classes of cancer genes compared to non-cancer genes. 
Associations which were statistically significant (P < 0.05) are marked with a black border around the circle. TF 
transcription factor; LOF loss of function; TPM transcripts per kilobase million. Generated with the corrplot 
function from the corrplot package (version 0.84).
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significant signals identified to be associated with breast cancer is among the largest compared to other types of 
cancer. Therefore, we ranked 1250 genes located within 156 loci with genome-wide significant association signals 
for breast cancer according to the (non-pleiotropic) GWAS cancer score. We created two gene sets, one includ-
ing the top two highest-ranking genes within each region (i.e. genes which most closely resemble typical GWAS 
cancer genes) and another including the remaining genes, which share less similarities with other GWAS cancer 
genes according to the 23 omic features (Supplementary Figure 1). We then performed a pathway enrichment 
analysis on both, 254 high-ranking and 834 low-ranking genes which mapped to any given pathway (Fig. 4). 
Importantly, we found no significant enrichment of any investigated pathway in the low cancer score gene set 
but instead multiple significantly enriched pathways for high ranking genes (Fig. 4). In particular, we found an 
enrichment for multiple pathways which play a role in cancer initiation and propagation such as pathways related 
to development, proliferation, cell cycle control, sex hormones as well as transcription factor binding (Supple-
mentary Table 2). To contrast those results to similarly sized gene sets, we investigated the pathway enrichment 
of 1640 genes (284 high ranking and 1356 low ranking) within 147 loci associated with coronary artery  disease1. 
While only the high-ranking gene set of breast cancer GWAS genes showed significantly enriched pathways, we 
found statistically significant enrichment in both, high- and low-ranking gene sets for coronary artery disease 
(Supplementary Figure 2). The most significant pathways in both gene sets were related to epithelial cell migration 
and angiogenesis, transcription factor binding, apoptosis as well as immune response, enzyme inhibition, steroid 
metabolism and coagulation. Finally, we used a different pathway enrichment algorithm agnostic to our stratifica-
tion method. To this end, we performed a gene set enrichment analysis on the full breast cancer gene list ranked 
by the GWAS cancer score (Supplementary Figure 3 and Supplementary Table 3). Similar to the results above, 
we observed a statistically significant enrichment of pathways relevant to breast cancer in high ranking genes 
and, conversely, and enrichment of less relevant pathways such as olfactory perception in low ranking genes.

Discussion
In this study, we have shown that multiple omic features are associated with different classes of cancer genes 
and that cancer genes, in general, occupy a larger region in the genome with a lower GC content, have more 
isoforms and thus more and shorter exons and are higher expressed across all tissues with more transcription 
factor binding sites than non-cancer genes. Investigating those features also revealed that germline and somatic 
as well as driver genes share the least similarities among cancer gene classes and that single tissue cancer GWAS 
genes more closely resemble germline genes while pleiotropic cancer GWAS genes are more similar to somatic 
genes. Thus, our approach not only provides novel insights into the molecular properties and differences between 
cancer gene classes but also allows the prioritization of cancer genes according to their feature profile.

Figure 3.  Pairwise correlation between cancer feature scores. For each gene, seven different cancer feature 
scores were computed by calculating the sum of 23 omic features, weighted by the respective log odds ratio 
estimated from the association with the cancer gene class (see Fig. 2 and Supplementary Table 1). The size and 
colour as well as the number in the lower triangle represent the correlation coefficient. Statistical significance is 
indicated with asterisks. *** = P < 0.001. Generated with the corrplot function from the corrplot package (version 
0.84).
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The investigated omic features are not completely independent of each other and as such show a varying 
degree of correlation. While we were able to cluster those features into broadly four groups, the underlying 
reason for the grouping is not immediately obvious. For instance, in the first large cluster we found that larger 
genes have more isoforms, are expressed in more tissues with higher levels, are regulated by more eQTL variants 
and are located on larger haplotypes with more extensive LD. Having more isoforms would allow a gene to have 
more functions in different tissues and therefore is expected to be expressed at higher levels overall and that this 
expression is influenced by more eQTL variants, potentially targeting specific isoforms. At the same time, genes 
with a higher isoform count need to occupy a larger region in the genome in order to fit more alternatively spliced 
exons within the gene body. Those genes also tend to be under stronger recent positive selection as is evident by 
their larger extend of LD across the gene  body32,33 and are more essential due to increased mutation intolerance.

In contrast, genes in the second large cluster are characterized by a higher variation in expression across 
tissues with more paralogs, a higher GC content in their gene body as well as larger exons and longer 3′ and 
5′ UTRs and are more tolerant towards deleterious mutations. Since there are multiple potentially redundant 
genes present, those genes do not need to rely on multiple isoforms to perform a broader range of functions. As 
such, they are more likely expressed at high levels in fewer tissues and therefore their variation of expression is 
larger. Furthermore, their regulation is less guided by eQTL variants but rather by factors binding to the longer 
UTR regions such as microRNAs or regulatory proteins. Those observations point towards genes which have 
long been established in the genome and are thus under less positive selection, as is evident by their diminished 
extend of LD in the gene body.

Multiple omic features showed a high degree of correlation and as such there will be redundancy in the 
resulting score, potentially amplifying the effect of some features and leading to decreased accuracy or stability 
of the  estimates34. However, the germline cancer gene class has only 43 genes and thus approaches such as lasso 
regression or multivariate logistic regression to extract the most informative features would not be feasible. 
Nevertheless, we observed that the condition number (the ratio of the largest to the smallest singular values) 
of the gene × 23 omic feature matrix was 12.01 and thus way below  3035,36, indicating that the degree of collin-
earity is not too high to fit multivariate logistic regression models for outcomes (i.e. cancer classes) with more 
observations. Therefore, we fit a multivariate logistic regression model for GWAS cancer genes with all 23 omic 
features as exposure variables. When we used the resulting effect sizes in the score calculation, we found that 
this approach only marginally increased the explained variance from 2.4 to 2.9%. This increase is also likely 
inflated due to the effect sizes being estimated in the same dataset the score was evaluated. Furthermore, the 
resulting score was highly correlated  (R2 0.79) to the score computed from a linear combination of predictors, 
implicating that our current approach sufficiently captures the underlying molecular properties of cancer genes 
according to the 23 omics features.

Among the most significant finding is the observation that the features of cancer genes are generally similar 
but also exhibit noteworthy differences. Although all cancer feature scores were positively and significantly 

Figure 4.  Pathway enrichment analyses for high- and low-ranking breast cancer genes. 1250 genes within 156 
breast cancer loci were ranked according to the GWAS Cancer Score (see Fig. 3). Within each locus, the two 
highest ranking genes as well as the remaining lower ranked genes were extracted. Pathway enrichment for (A) 
high- and (B) low-ranking genes were conducted with gprofiler2 and visualized as a Manhattan plot. Pathways 
with a Q-value smaller than 0.05 are plotted above the dashed horizontal line and are deemed statistically 
significantly enriched. GO:BP gene ontology biological process; GO:MF gene ontology molecular function; 
HALLMARK MSigDB hallmark gene set; KEGG KEGG pathways; REAC reactome pathways; WP wikiPathways; 
TF transcription factor; Panc. pancreatic; diff. differentiation.
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correlated with each other, we found the lowest correlation coefficient between germline and somatic as well 
as driver genes, which can be attributed to multiple observations: while both, germline and somatic genes are 
expressed at higher levels across all investigated tissues, the variation in expression was markedly reduced for 
germline and not somatic genes. Therefore, germline genes are expressed at more stable levels since their func-
tion in development and maintenance is of importance in almost all tissue types, as previously  described37. In 
general, we observed that genes which are more essential (i.e. have a higher LOF intolerance and are thus more 
intolerant towards mutations) have fewer paralogs thus fewer potential redundant gene copies which would be 
able to compensate for a potential loss of function in case those paralogues are actually functional and expressed. 
Whereas somatic genes are indeed less tolerant towards mutations and have fewer paralogs than background 
genes, we observed an opposite effect in germline genes, highlighting their unique evolutionary path in humans.

By ranking genes within breast cancer GWAS regions, we effectively identified and prioritized a set of genes 
which share more features with typical GWAS cancer genes. Indeed, pathway enrichment analyses confirmed 
that the high GWAS gene score set is enriched for multiple processes known or suspected to be involved in 
breast cancer. Our prioritization approach selected the two top ranking genes within each locus (if present) in 
order to significantly reduce the number of potential cancer gene candidates for future in-depth characterisa-
tion. Alternatively selecting the top 10% ranked genes within each locus resulted in similar enrichment across 
the regions (data not shown), although the total number of implicated genes within each region varied greatly. 
We also observed a significant enrichment of breast cancer relevant pathways in a gene set enrichment analysis 
of the breast cancer genes ranked by the GWAS cancer score, which should be agnostic to specific gene score 
cut-offs. Those results indicate that different selection and ranking procedures or pathway enrichment proce-
dures should not greatly influence the observed results. Since genes with similar function are often aggregated 
in the same genomic region it is possible that more than two genes within a given locus are influenced by the 
associated variants and thus play a role in disease risk. Therefore, for a given locus, the overall distribution of the 
cancer score should be considered when selecting candidates for further fine-mapping, functional annotation 
or experimental approaches.

In this study, we used the GWAS cancer score to prioritize breast cancer genes as a proof-of-principle since 
the number of independent loci is among the largest for breast cancer compared to other types of tumours. While 
our GWAS cancer score is based on features associated with GWAS genes in any type of cancer, we cannot state 
with certainty that our approach will work in a similar fashion for other cancer types or for the other classes of 
cancer genes. Notably, we found that the somatic score is able to explain around 10.5% of the variance of the 
driver gene class status, probably because they share very similar feature profiles. The driver gene set is based on 
a pan-cancer approach and includes driver genes from all cancer types included in TCGA, implicating that our 
algorithm may indeed be applicable in a pan-cancer setting as well.

Our current approach can potentially be augmented by including additional databases with additional and/
or more specific features. For instance, aggregating codon level information to gene level from  SNVBox38 or by 
downloading bulk gene information via  BioThings39 may provide increase discriminatory power to distinguish 
cancer from non-cancer gene. Importantly, our methodology can be applied to other gene sets as well, which can 
be constructed from genes involved in various diseases or disease groups, from genes located in certain regions 
of the genome or from genes within specific pathways or processes.

Conclusion
In conclusion, we have identified multiple omic features of different classes of cancer genes, which reveal novel 
insights into the molecular properties of cancer genes. Those features are generally similar between all investi-
gated classes of cancer genes, although germline and somatic cancer genes share the fewest features, thus poten-
tially reflecting different evolutionary pressure on those two classes of cancer genes. Importantly, the features can 
be utilized to prioritize candidate genes for future functional studies and may potentially be useful to support 
(pan-)cancer gene discovery in large-scale sequencing efforts of cancer patients. Our approach can possibly be 
applied to other gene sets as well to establish unique and shared genomic feature profiles.

Data availability
The data was exclusively retrieved from public repositories and can be accessed from the sources as mentioned 
in the Methods section. The source code for the computation of the aggregate data will be made available at https 
://githu b.com/Grass mannL ab/Cance rGene Featu res.
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