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Rotational symmetry of photonic 
bound states in the continuum
Liangsheng Li1*, Yunzhou Li2, Yong Zhu1 & Hongcheng Yin1

The bound states in the continuum (BICs) have been investigated by simulating the optical reflectivity 
of a tri-layer photonic crystal slab. We found that optical BICs can occur in a class of photonic crystal 
systems with cz

1

 , cz
2

 or cz
4

 rotational symmetries, which are constructed by three identical photonic 
crystal slabs. By applying the two mode coupled model, we obtain the reflectivity formula to fit the 
numerical data and evaluate the lifetime of radiation decay. In vicinity of BIC, the lifetime diverges as 
a power law form, when approaching the BIC point. The infinity life time of cz

1

− BIC in the tri-layer 
structure indicate that it is a true BIC. The cz

1

− BIC occurs robustly in tri-layer structures, but the 
resonance frequency of the BICs is dependent on the permittivity of slab, air-hole size and hole shape.

Bound states in the continuum (BICs) were firstly predicted in quantum systems by von Neumann and  Wigner1, 
and were extensively observed in various wave  physics2. Optical BICs have been deeply investigated by simula-
tions and experiments on photonic  lattices2–22,  waveguides23–26, compact  structures27–31, and  metasurfaces32–34. 
A true BIC can be understood as the condition that the resonance width vanishes and leakage is  forbidden2, i.e., 
eigenmodes have infinite both qualify factors and lifetime. The BICs can be easily found in zero permittivity or 
permeability media, when the complex eigenfrequency becomes purely  real27–30. On the other hand, the BIC 
could also occur in photonic crystal (PhC) systems with ideal lossless infinite  structures6,7. Recently, the BICs 
in PhC slabs are related to topological charges, restricted by in-plane point-group symmetries of the  system9,35. 
However, when the in-plane symmetry of structure is broken and become cz1 symmetry (identity), the systems 
can also support high-quality factor  resonances34. This type of BIC can be realized as a quasi-BIC, where both 
the life time and resonance width become finite. The quasi-BICs in metasurfaces by changing the in-plane sym-
metry display extremely high conversion efficiency for the third harmonic  generation36.

In the vicinity of the BIC, these are a series of resonant modes, where the quality factor of modes is still 
very high. These resonant modes, in the near-BIC regime, are similar to quasi-BIC and can be excited by free 
propagating plane waves. The mode with a high quality factor in a large region of parameter space is of practi-
cal importance for building fabricated devices, such as BIC–laser10 and optical  resonators37. Some BICs show 
high quality factor resonances for a very large range of wave vector, because the quality factors of the resonant 
modes satisfy an inverse fourth power law  relation18. The wide parameter range high quality factor resonances 
of BIC play an importance role in device design as fabrication tolerances. The investigations of BICs stimulate 
the significant progress of polarization  vortices38,39.

Results
BICs and rotational symmetry. We show that a true BIC, with vanishing resonance width, can occur in 
broken in-plane symmetry PhC structures. Consider a mechanically tunable tri-layer structure consisting of 
three same PhC slabs, where the middle slab (blue) is able to move along the y-axis, as shown in Fig. 1a. The full 
wave simulation uses CST software. The single PhC slab with finite thickness L has a square lattice (periodicity 
W) of square air holes ( Lx = Ly ) and cz4 rotational symmetry. Here, cz4 means 90o rotation around z-axis. The 
interspaces between near-nearest slabs are identical to keep the mirror symmetry in the z direction. The tri-layer 
structure has time-reversal symmetry ε(�r) = ε∗(�r) , where ε is permittivity of the slab and ∗ is the complex con-
jugate operator. Although the middle slab can move along the y-axis, the tri-layer structure always keep mirror 
symmetry ε(x, y, z) = ε(x, y,−z).

Without loss of generality, we take the dielectric constant of the slab ε = 4.5 , hole sizes Lx = Ly = 2.4L , 
interspaces D = L , and periodicity W = 8L . When light normally incident on the tri-layer PhC structure, Fano 
resonances should be observed in the reflectivity spectra, for the s-polarized mode (the electric field along the x 
axis), shown in Fig. 1b. Those resonances are characterized by the asymmetric profile consisted of blue and red 
branches corresponding to the reflectivity of zero and one, respectively. For various displacements ( y0 ) of the 
middle layer, the tri-layer structures exhibit different waveguide modes as shown in Fig. 1c. The anticrossing 
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behavior of modes indicates that the BIC at  P2 is a Friedrich–Wintgen type  BIC40. Because Fano resonances 
originate from the interference between out-of-plane far-field radiation and in-plane waveguide modes, the 
resonance profiles can be changed by moving the middle layer along the y direction. In this tri-layer structure 
as mirrors to form a tunable optical cavity, the interference is highly sensitive to y0 . When the displacement is 
suitable at the correct phase matching conditions, the blue and red branches should meet each other. Then, a 
BIC occurs. The  y0-dependence interference indicates that the Fabry–Perot-type resonance plays an important 
role in the formation of BICs in the tri-layer structure. By continuously changing y0 , we find three BICs guided 
by the arrows, as shown in Fig. 1b. BICs at  P1,  P2, and  P3 can also be observed for the p-polarized mode (the 
electric field along the y axis) by changing the incident angle ( θ ) shown in Fig. 1d–g. However, when s-polarized 
light normally incident on slabs, Fano resonances with finite resonant width are observed around the reduced 
frequency (0.086) and insensitive to the displacement as shown in Fig. 1f. By changing the incident angle, the 
tri-layer structures exhibit that, for the p-polarized mode, fano resonances still remain the finite resonant width 
shown in Fig. 1i–k.

In order to gain further physical insights of the BIC in the tri-layer structure, we plot the distributions of the 
electric field intensity in yz-plane and xy-plane at BICs in Fig. 2. We clearly see that the field distributions become 
localization inside the structure, while the outside field tends to vanish. Because the tri-layer structure always 
contains a mirror symmetry for different displacements in the z direction, the electric field intensities also have 
the mirror symmetry as shown in Fig.  2a–c. When y0 = 0 , the structure has cz4 rotational symmetry 
ε
(

x, y, z
)

= ε
(

−y, x, z
)

 . The electric field intensity also has cz4 rotational symmetry as shown in Fig. 2d. Then, we 
have ε(�r) = ε(R4�r) where the operator Rn rotates vectors by an angle 2π/n about the z-axis. The appearance of 
a BIC may be understood as the geometric symmetry forbids coupling to any far-field radiation. The electric 

Figure 1.  (a) Schematic of a tunable tri-layer structure consisting of parallel PhC slabs. It is periodic in the x 
and y direction. The interspaces between PhC slabs are identical to ensure the up–down mirror symmetry in the 
z direction. The middle layer is able to move along the y-axis. (b) Numerical reflectivity spectra (R) at normal 
incidence (s-polarized) as a function of incident frequency and displacement of the middle layer. P-Numbers 
within the contour plot indicate the BICs where Fano features disappear. (c) Calculated eigen-frequeucy for 
Γ point of the first Brillouin zone versus displacement of the middle layer. Reflectivity spectra (p-polarized) 
as a function of incident angle and frequency for the various value of the displacement (d) y0/L = 0 , (e) 
y0/L = 2.131 , (f),(g) y0/L = 4 . (h) R at normal incidence (p-polarized) versus frequency and displacement. (i)–
(k), for the various displacement, R (s-polarized) versus incident angle and frequency.
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field of the resonance can be �E = ei
�k·�r �u

(

�r, �k
)

 by using Bloch’s theorem, where �k =
(

kx , ky , 0
)

 and �u is periodic 
function in (x, y)41. Then, we could use the vector field rotator O(R4) to rotate the electric fields �E as 
O(R4) · �E(�r)=R4�E

(

R−1
4 �r

)

 . Because the structure is invariant under transformation R4 , the electric fields 
R4�E

(

R−1
4 �r

)

 are also the solutions of Maxwell’s equations with the same resonance frequency of �E , but they could 
differ by a phase factor �E=eiθ4R4�E

(

R−1
4 �r

)

 . If applying the rotational transformation 4-times, we can return to 
the original electric fields.

When moving the middle layer, cz4 symmetry of tri-layer structure is broken and cz4 − BIC disappears. How-
ever, when y0/L = 2.131 , the accidental phase matching condition is satisfied to cancel the radiation mode and 
the cz1 − BIC occurs. This BIC arises from the interaction of two  modes42.This tri-layer structure only has cz1 
rotational symmetry shown in Fig. 2b, e, which means BICs can be found in the multi-layer structures without 
cz2 rotational symmetry. Here, cz1 means 360° rotation around z-axis. It is noted that the tri-layer structure always 
keeps the time reverse symmetry and the mirror symmetry for the any displacements of the middle layer.

When y0/L = 4 , the symmetry-protected BIC appears since the tri-layer structure recovers cz2 rotational 
symmetry ε

(

x, y, z
)

= ε
(

−x,−y, z
)

 as shown in Fig. 2c,f. Then, we have �E=eiθ2R2�E
(

R−1
2 �r

)

 . If we rotate the 
system twice, the electric fields add another phase factor �E=ei2θ2 �E , so the phase θ2 can only take on values of 0 
or π . In fact, the displacements of middle layer, that break rotational symmetry, reduce the infinite lifetime of 
BICs but add a tuning parameter of resonant state. As a result, optical BICs can occur in the tri-layer photonic 
crystal systems with cz1,c

z
2 or cz4 rotational symmetries. However, the distributions of the electric field intensity at 

BICs are sensitive to the rotational symmetry.
At BICs, the lifetime of radiation decay becomes infinity. Thus, we might apply the temporal coupled mode 

theory to estimate the lifetime from the numerical data. Here, we consider a system that possesses two modes 
coupling with each other, and the non-Hermitian Hamiltonian of the tri-layer structure is

Here, f1 and f2 are the resonance frequencies of the resonators. The radiative-decay lifetime can be defined 
by τi = 1/γj . Due to the energy conservation and time-reversal  symmetry43–45, the reflectivity can be easily 
obtained and given by

(1)H = �− iP =
(

f1
f2

)

− i

(

γ1
√
γ1γ2√

γ1γ2 γ2

)

Figure 2.  (a–c) The electric field intensities at  P1,  P2 and  P3 are presented as functions of the y(z) coordinate 
parallel (perpendicular) to the slabs. (d–f) the electric field intensities in xy-plane at  P1,  P2 and  P3 have cz

4
 , cz

1
 and 

cz
2
 symmetries, respectively. The red (a) and yellow (c) dots mark the cz

4
 and cz

2
 symmetry axes, respectively.
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where

Here, f1 and f2 are the resonance frequencies of the resonators. The radiative-decay lifetime can be defined 
by τi = 1/γj.

Then, we could apply Eq. (2) to fit the numerical reflectivity as shown in Fig. 3a. From the fitting curves, the 
resonance frequencies and the lifetimes might be estimated for various y0 values. The lifetime of the resonance 
goes to infinity at cz1 − BIC shown in Fig. 3b. In vicinity of BIC, the lifetime can be written into a power law 
form as

where yBIC0  is the displacement for the BIC situation. αN/P is the exponent of power law and a positive real 
number. Naturally, τ become infinity, when y0=yBIC0  , and a BIC occurs.

Furthermore, the exponents of lifetime can be estimated by the power law relations shown in Fig. 4. Here, 
we define the dimensionless parameter t =

∣

∣y0 − yBIC0

∣

∣/L . The Log–Log plots of τ versus t  become straight lines 
with slopes αP and αN . For cz4 − BIC , where the tri-layer structure has cz4 rotational symmetry, two exponents 
of lifetime are identical with each other. When the structure is changed and has cz2 rotational symmetry, the 
exponents are still same with each other, but the values become larger. For cz1 − BIC , the estimated exponent is 
αN
1 = 1.7 in the negative region, and the exponent is αP

1 = 2.1 in the positive region.

Size and shape of holes. In order to examine the robustness of the relations between exponents, the size 
of square air hole in the slabs is enlarged, and the reflectivity spectra are plotted in Fig. 5. Then, the lifetime can 
be extracted by Eq. (4), and the exponents of lifetime are also estimated by the power law form. If the tri-layer 
structure has cz4 rotational symmetry, two exponents of lifetime keep a constant value ( αN/P

4 = 2 ) for various 
air hole sizes. The integer form of exponents indicate that the cz4 − BIC can be understood by a topological 
defect  vortex9,35. Then, the tri-layer structure, for various air hole sizes, can be changed to produce cz2 − BIC , 
it is found that two exponents ( αN/P

2  ) still keep identical with each other. When increasing the air hole size, 
the displacement yBIC0  of cz1 − BIC becomes larger. It is noted that there is a transition point Rt= 4 , where 
cz1 − BIC do not be observed. This accidental disappearance of cz1 − BIC might originate from the specially 
required displacement yBIC0 = 4 of cz1 − BIC . When Lx/L ≥ Rt , two cz2 − BICs appear. When Lx/L = 4.4 , for 
the higher frequency cz2 − BIC ( ωL/2πc = 0.0912 ), the exponent is αN/P

2 = 2.0 , but for the lower frequency 
case ( ωL/2πc = 0.0908 ), the exponent becomes αN/P

2 = 2.1 . Furthermore, the cz1 − BIC can appear at vari-
ous air hole size except for the transition point. When Lx/L < Rt , the cz1 − BIC occur at the higher frequency 
mode. However, when the ratio cross through the transition point, Lx/L > Rt , the cz1 − BIC appear at the lower 
frequency mode. When Lx/L = 4.4 , two exponents αN

1 = 2 and αP
1 = 1.8.

(2)R(ω) =
∣

∣

∣

∣

sout1

sin1

∣

∣

∣

∣

2

=
∣

∣

∣

∣

�1 cos θ − i�2 sin θ

�1 + i�2

∣

∣

∣

∣

2

(3)
�1 =

(

f − f1
)(

f − f2
)

�2 = γ2
(

f − f1
)

+ γ1
(

f − f2
)

(4)τ ∝
{

(

y0 − yBIC0

)−αP

y0 > yBIC0
(

yBIC0 − y0
)−αN

y0 < yBIC0

Figure 3.  (a) Reflectivity spectrum upon normally incident wave. Solid line is the analytic expression obtained 
from Eq. (1) and the open circles are the simulation results. (b) The life time as a function of the displacement 
near cz

1
− BIC.
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Considering the PhC slab with rectangle air holes ( Ly/L = 2 and Lx/L = 4 ), the reflectivity spectra of tri-
layer structure are shown in Fig. 6. We can observe three modes and two cz1 − BICs guided by P↑ and P↓ . By 
applying the Eq. (2), the resonance frequencies of cz1 − BICs could be estimated. When the permittivity of slab is 
increasing, the resonance frequencies of cz1 − BICs are decreasing as shown in Fig. 7a, but the difference between 
resonance frequencies is increasing. However, the displacements yBIC0 (P↑) and yBIC0 (P↓) have a non-monotonic 
function of ε shown in Fig. 7b. These results illuminate that the waveguide modes in tri-layer structures can be 
adjusted by changing the permittivity of slab. Thus, the resonance frequencies of BIC can be manipulated by 
choosing various materials.

Figure 4.  Log–log plot of lifetime versus the dimensionless distance. (a) For cz
4
− BIC , we obtain the 

exponents αN
4
= αP

4
= 2 . (b) For cz

2
− BIC , the exponents become αN

2
= αP

2
= 2.2 . For cz

1
− BIC , (c) the 

exponent in the negative region of the dimensionless distance αN
1
= 1.7 is estimated, and (d) in the positive 

region the exponent is αP
1
= 2.1.

Figure 5.  Reflectivity spectra of normal incident light as a function of incident frequency and displacement of 
the middle layer for the various sizes of square air-hole: (a) Lx = 3.6L , (b) Lx = 4L , and (c) Lx = 4.4L.
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Conclusion
In conclusions, we have demonstrated the formation of BICs in tri-layer systems made of three identical PhC 
slabs with square or rectangle air holes. The cz2 and cz4 types of BICs are accessible due to the symmetry incompat-
ibility with the radiation. A distinct characteristic of the cz1 − BICs achieved in this study is that it originates 
from destructive interference of two resonances at the phase matching conditions. We introduce the two mode 
coupled model to obtain the formula to fit the reflectivity data and estimate the lifetime. The tri-layer structures, 
producing the various rotational symmetries, provide a new platform towards the BIC studies.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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