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Sampling of the conformational 
landscape of small proteins 
with Monte Carlo methods
Nana Heilmann, Moritz Wolf, Mariana Kozlowska, Elaheh Sedghamiz, Julia Setzler, 
Martin Brieg & Wolfgang Wenzel*

Computer simulation provides an increasingly realistic picture of large-scale conformational change 
of proteins, but investigations remain fundamentally constrained by the femtosecond timestep 
of molecular dynamics simulations. For this reason, many biologically interesting questions 
cannot be addressed using accessible state-of-the-art computational resources. Here, we report 
the development of an all-atom Monte Carlo approach that permits the modelling of the large-
scale conformational change of proteins using standard off-the-shelf computational hardware and 
standard all-atom force fields. We demonstrate extensive thermodynamic characterization of the 
folding process of the α-helical Trp-cage, the Villin headpiece and the β-sheet WW-domain. We fully 
characterize the free energy landscape, transition states, energy barriers between different states, 
and the per-residue stability of individual amino acids over a wide temperature range. We demonstrate 
that a state-of-the-art intramolecular force field can be combined with an implicit solvent model to 
obtain a high quality of the folded structures and also discuss limitations that still remain.

Conformational change is one of the most prominent mechanisms of protein function and  regulation1–4. The 
stability of the protein as a whole, as well as the stability of its particular conformational sub-ensembles is essential 
to understand and regulate protein function. Due to its dynamic nature, it is difficult to observe conformational 
changes directly at the single molecule level in  experiment5,6, while computational methods, generally, struggle 
with the timescales  involved5,7–10. However, the benefits of the simulation are prominent, as it provides detailed 
information on the mechanism of the protein folding, and identifies key intermediates and barriers to folding. 
In the last 20 years, there have been an enormous number of studies focused on the folding of small peptides 
using specialized force fields and simulation  methods11–18, reflecting a small subsection of an active field that has 
evolved over decades. The universal workhorse of all these methods is the molecular dynamics (MD) method 
that remains constrained by the admissible timestep, which is limited by the fastest frequency of the system, i.e. 
typically bond-stretch vibrations in the  1014 Hz  range19. At the same time, the vast majority of natural processes 
have a much larger inherent timescale, ranging from microseconds to  seconds20.

To capture a single folding event, long MD simulations are required, which incurs either extreme computa-
tional cost or the need for a specialized supercomputer  architecture21. The development of the supercomputer 
Anton permitted observations of many folding transitions for a range of small fast-folding  proteins22, and even 
larger proteins, e.g. G-proteins23, using transferable biophysical force fields such as CHARMM and AMBER 
and explicit solvent  models24,25. Where such hardware is not available, many strategies have been developed to 
circumvent the time/length scale problem by either simplifying or coarse graining the force field to accelerate 
the simulation  protocol26–28, or to subdivide the simulations in many small non-equilibrium  simulations29. MD 
simulations with implicit solvent also enable faster conformational  sampling30. Indeed, the accuracy of the fold-
ing mechanism and the size of the simulated protein are limited, i.e. ~ 100  residues27,31, which depend on the 
protein complexity and the quality of the solvent  model32,33. Some other methods, such as enhanced sampling 
 techniques34, make it possible to reach longer timescales, but none of the above-mentioned approaches offer 
the same straightforward analysis provided by the “virtual” experiment of simulating the process as it occurs 
in  nature35.

As an alternative, Monte Carlo (MC) simulation, which has no inherent timescale, has been explored as a 
simulation approach. MC simulations yield all thermodynamic data that can be extracted from MD simulations, 
and permit reconstruction of the kinetic information on long-time scales, such as folding, association or func-
tion, but do not provide direct insights into  kinetics36. Many biological processes can be described as transitions 
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between a few distinct conformational sub-ensembles. The barriers between these ensembles, which are directly 
sampled in MD, can be computed from thermodynamic averages in MC methods, which permits reconstruc-
tion of large scale kinetics even on the basis of a thermodynamic  simulation37. In MC, special moves may be 
designed, which do not follow the local force, hence the change of the conformation per energy evaluation in 
each step may be larger, and the simulation may concentrate on a few particularly important degrees of freedom, 
such as dihedral angles for peptides. These advantages have the potential to accelerate molecular simulations 
for peptides and proteins, provided that a suitable force field can be found. Typically, in MC simulation, only a 
small part of the system in a single move is modulated. Efficient algorithms for multi-particles moves become 
more and more expensive with the number of molecules, therefore, MC with explicit solvent is particularly 
 problematic38,39. Instead, implicit solvation models are well suited for MC simulations and can frequently speed 
up simulations by orders of magnitude. However, this is often connected to limited hydrogen bonds representa-
tion, over-stabilized salt bridges, incorrect ion distribution and neglection of the temperature dependence of 
the solvation free  energy31,40,41.

Since the 90 s, the MC folding algorithms have been applied to peptides and proteins using different MC 
program packages developed to model aggregation and folding/unfolding behavior of peptides. Both, all-atom 
and coarse grained representations of proteins are used, e.g. as is known for the Rosetta  model42–44. It implements 
a knowledge-guided Metropolis Monte Carlo sampling approach using a phenomenological energy function 
and relies heavily on the data derived from the experimental structure. Therefore, users must incorporate other 
biochemical information to obtain native-like models, especially for large and complex proteins. For instance, 
it is difficult to model and design a topology or structure that has never, or only very rarely, been observed in 
the Protein Data  Bank44.  PROFASI15, an all atom MC based C++ code, and  SMMP45, a FORTRAN based MC 
code, are also known for simulation of small proteins. They are computationally fast methods and able to cap-
ture structural and thermodynamic properties of a diverse set of sequences. At the same time, coarse grained 
models for protein  folding46,47, e.g. CABS (C-alpha, beta, and side chain)48, which uses various MC schemes, 
were reported with successful performance in binding studies of intrinsically disordered proteins (IDPs)49. By an 
efficient treatment of large time scale dynamics, they provide significant extension of the structural transitions 
and better conformational sampling while maintaining sufficient  accuracy47,50. All atom/coarse grained multi-
scale modeling techniques, such as reported by Zacharias et al.51 and Feig et al.52 (MMTSB model), applied for 
the scoring of the protein conformation, peptide folding and prediction of the missing protein fragments, have 
been also  developed52,53. All reported MC simulations are limited to employ specifically designed force fields 
and algorithms, which may impact their common usage.

The improvement and the development of force fields has been an instrumental step in the advances made 
in protein simulation. It is therefore important to investigate whether state-of-the-art force fields, that were 
originally designed for explicit solvent simulations, can also be employed in accurate and predictive MC. In this 
context, two important questions naturally arise in the use of Monte Carlo methods: (1) will the combination of 
an accurate intramolecular force field, developed for all-atom MD simulations, together with the implicit solvent 
models yield to quantitative results, and (2) can the free-energy landscape be sampled sufficiently well, relying 
on simplified moves defined in MC protocols independently on the forces on the atoms?

In the following, we aim to answer these two questions by employing a Monte Carlo based  protocol54, using 
an accurate implicit solvent model and a transferable all-atom intramolecular AMBER99SB*-ILDN force  field55. 
This force field, in the most cases in the combination with explicit water, has been shown to perform well in 
mimicking experimental data using MD simulations of different  peptides24,55. Here, we show the sampling of the 
conformational landscape of three conventional peptides: the 20 amino acid Trp-cage miniprotein (PDB code 
1L2Y)56, the Villin headpiece (PDB code 1vii) comprising of 36 residues (including N-terminal methionine)57, 
and the 35-residue WW-domain (PDB code 2f21)58. All of the proteins belong to widely studied all-helical and 
β-stranded mini-proteins42,59–62. We focus on the reproducing of their folding free energy landscapes, barriers, 
and transition states in order to demonstrate thermodynamic characterization of small proteins using Monte 
Carlo simulations with an all-atom force field.

Results and discussion
We investigated the conformational landscape of three, well studied, proteins of different size and tertiary struc-
ture: Trp-cage56, Villin  headpiece57 and WW-domain58, using Monte Carlo simulations starting both from folded 
and unfolded structures. For each protein we sampled a wide temperature range to characterize the folding and 
unfolding equilibria. The computational methodology used is described in detail in section “Methods”. We start 
with the Trp-cage protein, being the smallest peptide investigated, and then focus on the Villin headpiece and 
WW-domain to show transferability and efficiency of the all-atom force field in Monte Carlo approach.

Trp-cage protein. The Trp-cage protein (PDB 1L2Y)56 has been of high interest for both experimental-
ists and theoreticians as this short, 20 amino acid, protein is a fast folding protein (ca. 4.1 µs), enabling the 
introduction of different protein mutations to understand the ways of enhancing protein stability or improving 
drug binding efficiency (e.g., in treatment of type II diabetes mellitus)63,64. Moreover, this miniprotein has been 
used for the last two decades to benchmark force fields and modeling techniques against detailed structural, 
thermodynamic and kinetic  data65–74. MC simulations of Trp-cage in the current study were performed in the 
temperature range of 330 K–410 K and sampling of 200 Million MC steps on the AMD EPYC 7551P node using 
15 or 30 cores required for 181 h and 108 h of CPU time, respectively.

Trp-cage consists of a short α-helix between residues 2–9, a single turn of  310-helix (residues 11–14), and a 
hydrophobic core made of proline residues (Pro-12, Pro-18, Pro-19) and Tyr-3, Trp-6 (see the structure in blue 
in Fig. 1a). Its folding is known to be modulated by cooperative interactions between water molecules and polar 
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groups of a protein, therefore, proper treatment of the solvation environment is essential to get the correct fold-
ing  behavior75–77. Indeed, several implicit solvent models, used in all-atom MD simulations, have been reported 
to yield correct refolded structures of Trp-cage78–80. Here, we use the AMBER99SB*-ILDN force field with the 
generalized Born based implicit solvent model with a solvent accessible surface area term for nonpolar solvation 
effects (see “Methods”). Figure 1a depicts the overlay of the native (in blue) and the refolded (in red) structure of 
1L2 after its full unfolding (in green). The respective MC simulation run was performed at 370 K (see Fig. S1a) 
starting from the unfolded Trp-cage with the fraction of native contacts of 0.07. The refolded structures match 
good with the native Trp-cage (Cα-RMSD of the refolded protein, depicted in red in Fig. 1, is of 0.86 Å) with 
small deviations around the helix turn. This shows high quality of the force field and the sampling efficiency of 
the MC algorithm with the accumulated acceptance ratio of 60%.

To establish the folding temperature of the protein, the free energy profile was calculated using the potential 
of mean force (PMF) projected on the fraction of native contacts, Q. This measure is a widely used reaction 
coordinate for the folding  process77,81 (see Fig. 1b). It reflects the similarity between the native and the predicted 
structure of the protein, i.e. Q ~ 0.9–1.0 is the closest to the native structure obtained in NMR. Two main states 
of the conformational ensemble describing its folded (Q ~ 0.73) and unfolded states were observed. We also 
find a partially unfolded state (Q ~ 0.45) with an energy barrier of 1.20 and 0.80 kcal·mol−1 at 370 K and 390 K, 
respectively. Similar states of Trp-cage with the free energy barrier of 0.80 kcal·mol−1 were reported by  Zhou82 
using highly parallel replica exchange MD with explicit solvation and in  experiment83. We note that the primary 
minimum at Q ~ 0.73 is rather broad, which results from the relatively weak stabilization of the native structure 
in this small protein because of the implicit solvation. This was overcome in MD with explicit water, where 
Q ~ 0.9–1.0 of the folded Trp-cage was  reported75. Nevertheless, the absolute value of the Q at the minimum 
depends on the details of the definition of the native contacts taken from the NMR ensemble.

We also observe the broad range of the folding temperature of the protein, starting from 370 K. At low 
temperature, i.e. 330 K, we observe essentially only a single minimum, which gives way to a free energy surface 
with two minima around 350 K. The estimated folding temperature, i.e. the temperature when both minima 
are equally probable, is significantly higher than was experimentally observed, i.e. 315–317  K64,69, or calculated 
using all-atom force fields with explicit solvation, i.e. 321–326  K76,84, but it is in line with the folding temperatures 
obtained using implicit solvent models (375–400 K)85,86. This may result from the lack of the temperature depend-
ence of the implicit solvent  model31. The generalized Born solvent-accessible surface area (GBSA)-type implicit 
solvation models, used here, are known to over-stabilize the folded states of proteins, especially those stabilized 
by solvent-exposed salt  bridges85,87,88. The breaking/formation of such H-bonded salt bridge, formed between 
Asp-9 and Arg-16 (N–H· · · O bond of 1.79 Å in Fig. 2) outside of the central hydrophobic core region exposed to 
the solvent, regulates Trp-cage folding and refolding, inducing the observed increase in the folding temperature.

A detailed analysis of the refolded Trp-cage demonstrates the accuracy of the force field and MC approach 
with respect to structure. Several refolded structures are depicted in Figs. 2 and S2. The Cα-RMSD of the refolded 

Figure 1.  Sampling of the conformational landscape of the Trp-cage miniprotein. (a) Overlay of the native 
structure of 1L2Y (in blue) compared to the refolded structure (in red) obtained in MC simulation run at 370 K 
(full MC trajectory is given in Fig. S1a) started from the unfolded protein structure marked in green. (b) Free 
energy profiles as a function of the reaction coordinate Q (fraction of native contacts) at different temperatures 
computed from the Monte Carlo simulations. Refolded and intermediate ensembles were found at Q ~ 0.73 and 
0.45, respectively. Visualization was done in VMD (version 1.9.2beta1) https ://www.ks.uiuc.edu/Resea rch/vmd/.

https://www.ks.uiuc.edu/Research/vmd/
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protein is 0.97 Å with the average Cα-RMSD deviation during the MC run, started from the unfolded structure 
(shown in green in Fig. 1a), is 1.96 (0.44) Å. Secondary structure of both, α-helix and proline-end, are repro-
duced correctly in the refolded protein (see Fig. 2) with backbone RMSD of 0.73 Å and 0.47 Å, respectively. This 
is connected to the helical propensity of the helical domain of Trp-cage, which was shown to be stable even at 
400 K in MD simulations with explicit water, which results from the force field parameterization that is largely 
helix-based89. Among the most flexible residues in the refolded protein, marked in Fig. S2, is Arg16, which 
participates in the salt bridge formation of the Trp-cage. This results in the lack of salt bridge formation in the 
refolded structures, as shown in Fig. 2, where the H⋯O distance between Asp-9 and Arg-16 was found to be far 
larger than the native one. This result probably originates from the drawbacks of the implicit solvation model, 
as mentioned above. Even though the salt bridge is unstable in our MC simulations, the refolded structures of 
Trp-cage conserve the two main secondary elements, with the most notable difference in a  310-helix-like turn, 
and form the tertiary structure due to the stability of other H-bonding interactions present in Trp-cage. Among 
them is a N–H⋯O hydrogen bond between Trp-6 (H-bond donor) and Arg-16 (H-bond acceptor) with the 
length of 2.03 Å in the NMR-structure (marked in Fig. 2), which is stable in the refolded Trp-cage (see Fig. S2). 
Together with the salt bridge between Asp-9 and Arg-16, this H-bond regulates fast folding of Trp-cage78,89.

Villin headpiece. Next, we generated multiple long MC trajectories of the Villin headpiece, known as 
HP-3657: the smallest autonomously folded protein without disulfide bonds, oligomerization or stabilizing 
ligands, at a wide range of temperatures (360–460 K). The Villin headpiece consists of three helices: (i) between 
residues 4–8, (ii) 15–18 and (iii) 23–30, as depicted in Fig. 3c. Loop, turn and a closely packed hydrophobic core 
held the helices together in a compact structure. Most MD simulations observe one and/or two, two-phase, fold-
ing pathways of HP-36, where helix2 serves as the structural starter of the Villin folding through intermediate 
and transition states to the folded  structure8. Recently, Wang et al. have shown the third folding pathway, which 
starts from the hydrophobic core or/and  helix390.

The main aim of our analysis was to predict the near-native refolded structure of Villin using efficient sam-
pling of its conformational space performing MC simulations with all-atom force field. Our MC algorithm results 
in the multiple transitions between different states of the protein (see Fig. 3a,b), enabling quantitative prediction 
of the protein thermodynamics. The quality of the refolded structures is good, we find an all-atom/backbone 
RMSD of 1.49 Å/0.76 Å after refolding to the NMR  structure57, and unfolded conformations with RMSD > 12 Å 
(all-atom/backbone RMSD) are observed (see Fig. 3a). Excluding the first three unstructured residues, the 
refolded conformations agree to an all-atom/backbone RMSD of 1.12 Å/0.46 Å. In the high RMSD ensemble, 
all elements of the tertiary structure and significant fractions of the secondary structure are lost. Refolded con-
formations, see Fig. 3c, completely recover the native secondary and tertiary structure.

Similarly to the longest, presently available, molecular dynamics  simulations21,22,90,91, in all simulations we 
observe multiple folding and unfolding events, which we use to extract thermodynamic information via the 
PMF projected on the fraction of the native contacts, Q (Fig. 3b). The free energy profile obtained, depicted in 
Fig. 4a, features three distinct minima corresponding to the native ensemble N (Q ~ 0.8), the denatured ensemble 
D (Q ~ 0.2) and a folding intermediate I (Q ~ 0.45). The existence of intermediate conformations is difficult to 
observe both in experiment and theory, but they have been clearly identified through kinetic  analysis91.

To demonstrate the shift of the folding temperature as the result of the implicit solvation, as we have shown 
also for Trp-cage, we computed the specific heat capacity of the HP-36 as a function of temperature (see Fig. S4) 
and performed temperature calibration of the MC simulations by 83 K. In such a way, we established the folding 

Figure 2.  Local minima representing refolded conformers of the Trp-cage in MC simulation started from the 
unfolded protein structure with Q = 0.07 at 370 K (see Fig. S1a). The native structure is in blue, while refolded 
representatives are in red. Asp-9 and Arg-16 residues forming hydrogen-bonded salt bridge (with the length in 
the native state of 1.79 Å) and Trp-6 forming hydrogen-bond with Arg-16 (with the length in the native state 
of 2.03 Å) are colored in yellow. Visualization was done in VMD (version 1.9.2beta1) https ://www.ks.uiuc.edu/
Resea rch/vmd/).

https://www.ks.uiuc.edu/Research/vmd/
https://www.ks.uiuc.edu/Research/vmd/
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temperature of the Villin headpiece as 354 K (see Fig. 4a), which is only 12 K shifted in comparison to the 
experimental value (342 K)57.

At this temperature, the native state is stabilized by the energy barrier of ∆GN,I = 1 kcal·mol−1, what is in 
agreement with the experimental data and all-atom simulations using the same intramolecular force field and 
explicit  water8,20,91,92. We also observe smaller energy barrier between the intermediate and the denatured state, 
i.e. ∆GI,N = 0.4 kcal·mol−1 (as also known from experiment)91.

To better understand the most significant structural changes and residues responsible for the protein folding, 
we performed the detailed analysis of each of the three ensembles extracted from the trajectories. In Fig. 4b, 
the contact maps of the unfolded, intermediate, and folded ensemble are given, while in panel in Fig. 4c, the 
differences between the unfolded and intermediate, as well as, the intermediate and folded ensembles are dem-
onstrated. In the folded ensemble (last panel in Fig. 4b, refolded structure with the lowest Cα-RMSD), we see a 
good agreement between the contacts of the folded ensemble in the simulation and the native contacts derived 
from the NMR structure. The unfolded ensemble shows residual secondary structure with significantly decreased 
probability, in comparison to the other ensembles, and essentially no tertiary contacts. As the fraction of native 
contacts increases, helix2 forms, but few tertiary contacts are present. This is better seen in the difference maps 
between the unfolded and the intermediate (left panel in Fig. 4c) and the intermediate and folded ensemble 
(right panel in Fig. 4c). There, large changes in the stability of tertiary contacts finally lead to the stabilization 
of the native conformation.

The stability of the individual residues, measured by the presence of local contacts, as a function of tempera-
ture (Fig. 5a), offers a view on the parts of the protein relevant for protein folding and their thermal stability 
with detailed structural information on protein folding transition states. The complementary per-residue stabil-
ity of individual residues at the transition temperature of 354 K, as a function of the reaction coordinate Q, is 
shown in Fig. 5b. There, the transition state ensemble near Q ~ 0.6 is clearly visible as a light vertical band, where 
native contacts are diminished partially reforming in the intermediate state. Identification of the transition state 
ensemble between the intermediate and the native conformation permits a computation of the ϕ-values, which 
are the measure of the presence of native contacts in the transition state. ϕ-values are descriptors widely used 
as experimental perturbation (mutation) to probe the free energy landscape. They are also used to check on 
simulation  accuracy93. As shown in Fig. 5c, the computed ϕ-values using our approach (marked in red), show 
good agreement with experimental  observations91. Combining the data obtained, the contribution of individual 
amino acids to protein stability is analyzed in detail: Residue Ala-18, for example, is found to be thermally highly 
stable (averaged over all conformations, Fig. 5a), but diminishes significantly in its native environment in the 

Figure 3.  Section of a trajectory of the Villin headpiece simulations started from the native 1VII at 360 K 
(including temperature shift shown in Fig. S4): (a,b) RMSD and fraction of the native contacts, Q, as a 
function of step-size showing many transitions between well-defined native and non-native ensembles. At 
the right side in (b), the occupancy of the sub-ensembles, corresponding to the folded, intermediate and 
unfolded conformations are shown. (c) Overlay of the refolded (in red, Q = 0.8) and the experimental (in blue) 
conformation of the protein. Visualization was done in VMD (version 1.9.2beta1) https ://www.ks.uiuc.edu/
Resea rch/vmd/.

https://www.ks.uiuc.edu/Research/vmd/
https://www.ks.uiuc.edu/Research/vmd/
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transition state (light band at Q ~ 0.6 in Fig. 5b), in comparison to both, the native and intermediate ensemble, 
where its ϕ-value is correspondingly low.

The folding equilibrium at a wide range of temperatures can be also characterized by investigating the helical 
content of a protein via the circular dichroism (CD)  spectroscopy94. In order to directly compare our data with 
experiment, we have computed the ellipticity of Villin headpiece, shown in Fig. 6 (see section “Methods” for 
details). Strong peaks in all three α-helical bands at 190 nm, 208 nm and 220 nm have been found. The signals 
weaken as a function of temperature, confirming denaturation of the protein, being in a good agreement with 
experimental  measurements57,91 and MD  simulations92. The temperature dependence of ellipticity as a function 
of temperature (panel on the right in Fig. 6) demonstrates the ellipticity decrease with temperature increase since 
all three helices lose their stability.

Figure 4.  Analysis of conformational landscape of the Villin headpiece. (a) Free energy profiles as a function 
of the reaction coordinate Q at different temperatures and at the interpolated folding temperature (marked 
with dashed line). Native, intermediate, and unfolded ensembles were found at Q ~ 0.8, 0.45, 0.2, respectively. 
(b) Contact maps of the unfolded, intermediate, and folded ensemble (left to right) weighted by the occurrence 
in the ensemble (bottom right half of the figures) in comparison to the native contacts derived from the NMR 
structure (top left parts of the figures). (c) Contact difference maps showing the changes in secondary and 
tertiary contacts in the unfolded-intermediate transition and intermediate-native transition.
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WW domain. We have observed that the folding of both Trp-cage and Villin headpiece, which are alpha-
helical proteins, was in good agreement with the native structures. As a third example, we investigated the fold-
ing of a β-sheet-containing protein, i.e. the WW-domain, shown in blue in Fig. 7a. The WW domain is often 
used as a model protein in the investigation of β-sheet  folding58,95,96. We performed folding simulations of the 

Figure 5.  Thermal stability of Villin headpiece from MC simulations. (a) Probability the residue is in its native 
environment as a function of temperature. (b) Probability the residue is in its native environment as a function 
of established native contacts Q. White horizontal stripes in the data occur for residues that have few native 
contacts. (c) ϕ-values at the folding temperature, obtained from the Boltzmann-weighted fraction of native 
contacts for each residue for all ensembles at and close to the transition state barrier. Values in blue correspond 
to experimental values at 310  K70, red symbols result from the simulation.
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GTT mutant of the WW-domain97 in the regime 1 > Q > 0.4 at the temperature range of 400–600 K (every 20 K), 
which allows enhanced sampling of the refolding events between the native and the intermediate configura-
tions. In most cases, the outer strands of the WW-domain unfold, while the core stays intact. We restrained 
the Q range for this protein because we observed that simulations that reached Q < 0.4 did not return to Q > 0.4 
within the allocated computational time. This may be related to the fact that for Q < 0.4 most of the β-sheet 
character is lost and the nucleation of β-sheets from random coil structures is a rare event. In the following, we 
therefore confine the investigation to the refolding of the native configuration from partially unfolded configu-
rations which retain some β-sheets (see below). The issue of nucleation of β-sheets from random coils has been 
addressed  elsewhere98. It is known that the β-sheet nucleus is stabilized by a solvent exposed N–H⋯O hydrogen 

Figure 6.  Calculated circular dichroism (CD) spectra of Villin headpiece. Left panel: Ellipticity as a function 
of wavelength at different temperatures of MC simulation. Right panel: ellipticity at 220 nm as a function of 
temperature.

Figure 7.  Conformational space of the WW domain in the MC simulations started from the native structure 
(see Fig. S6). (a) Representative structures of the intermediate energy minimum at Q = 0.44 (in green), refolded 
protein at Q = 0.80 (in red) compared to the native structure (in blue). Other refolded local minima are depicted 
in Fig. S5. (b) The free energy landscape of the WW domain mutant for different temperatures as a function of 
the fraction of established native contacts Q computed from the Monte Carlo simulations. Visualization was 
done in VMD (version 1.9.2beta1) https ://www.ks.uiuc.edu/Resea rch/vmd/.

https://www.ks.uiuc.edu/Research/vmd/
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bond between Ser-13 to Arg-17 (see Fig. S7) which may be difficult to stabilize on its own in an implicit solva-
tion  model99. It has also been reported that implicit solvation models struggle with a correct description of the 
transition state of WW  domain100. To overcome this limitation, we confined the simulation to the window in Q 
reported above, corresponding to the intermediate ensemble through implemented a repulsive potential in Q 
that drives the simulations back to Q > 0.4.

We performed MC simulations for a set of different temperatures to estimate the equilibrium folding tem-
perature. The eight resulting free energy landscapes are shown in Fig. 7b. The minimum of the free energy surface 
with the highest fraction of established native contacts (Q ~ 0.80–0.85) corresponds to the global free energy 
minimum at low temperatures. By increasing the temperature up to 510 K, a second minimum is observed at 
Q ~ 0.6, where the outer two strands of the WW domain detach from the protein core.

A further minimum in the free energy landscape of the protein, i.e. at Q ~ 0.45, is observed at around 530 K. 
At higher temperatures, the protein is more prone to stay in the unfolded state. The simulations at 530–550 K 
result in multiple partial unfolding and refolding of the WW domain even during Monte Carlo simulations with 
64 million MC steps (see Fig. S6). The refolded structures of the protein, for example at 530 K, with the fraction 
of the native contacts of Q ~ 0.8 (see Fig. 7b), are in a good agreement with the reported crystal structure of 
WW domain (PDB code 2f21)80 with the Cα-RMSD < 2.0 Å, as shown in Fig. 7a and S5. The equilibrium fold-
ing temperature was found at 530 K, again higher than known from experiment (345 K) and MD simulations 
(395 K)98,101. At the same time, we observe the free energy barriers of folding up to 2kBT (see Fig. 7b), i.e. up to 
2.1 kcal·mol-1 at 530 K, similarly as was reported by Shaw et al.22.

Discussion
In summary, we have found that the combination of a state-of-the-art intramolecular forcefield with an accurate 
implementation of an implicit, physics-based solvent model leads to reproducible refolding of the Trp-cage, Villin 
headpiece and WW domain proteins. While the refolded structures are in good agreement with the experimental 
data, in comparison to other MC predictions, and can be recovered from unfolded configurations for helical 
proteins and partially unfolded β-stranded structures, the folding temperatures are systematically overestimated. 
Our data show that using off-the-shelf computational hardware and the combination of the intramolecular part 
of the all-atom AMBER99ILDN* force field with an implicit solvent model can characterize the relevant states of 
helical proteins with sufficient accuracy. The reasons for the deviation in the folding temperatures are presently 
unclear. While the implicit solvent model has no temperature dependence, it should perform well near room 
temperature where most of these proteins fold. An overestimation of the folding temperature in  simulation85–88 
with an intramolecular force field that performs better in explicit solvent, means that the entropy of the unfolded 
configurations is underestimated. Implementation of other force fields, e.g. CHARMM with CMAP correction 
may improve dynamical and structural properties of proteins in their unfolded state, thus, increase the quality 
of MC sampled  configurations102. Further studies will consider also the folding behavior of large proteins, which 
may differ significantly from those studied here.

One remaining problem is therefore the accuracy of the implicit solvent model that lacks temperature depend-
ence and the proper description of the solvent exposed hydrogen bonding, which may lead to folding at the 
elevated  temperatures103. Moreover, the differences may arise from the imbalance of the intramolecular energies 
of the force field calibrated for explicit water simulations and the implicit solvent model. The use of the recently 
reported implicit solvent models, e.g. ff14SBonlysc + GB-Neck231,33,104, where advanced fitting of GB solvation 
energies and the relative solvation energies to Poisson-Boltzmann method for a set of proteins and peptides 
has been made, should be tested. Improvement in the accuracy of the solvation energies and effective radii may 
result in better agreement of conformational sampling in comparison to MD with explicit solvation than in 
GBSA. Moreover, the computational cost of more advanced models like the three dimensional reference interac-
tion site implicit solvent model (3D-RISM)105, especially with the closure relation proposed by Kovalenko and 
Hirata (3D-RISM-KH)105–108, need to be considered. The latest version of this approach operates with the solvent 
representation by the spatial distributions of the solvent molecules around a solute macromolecule, therefore 
results in better solvation structure of a protein and its thermodynamics. To our knowledge, the accuracy of the 
3D-RISM-KH was demonstrated for the folding of the miniprotein 1L2Y and protein  G106. Further investiga-
tions regarding the efficiency and accuracy of implicit solvent models are needed, which further improve the 
MC approach using the standard off-the-shelf computational hardware and standard all-atom force fields as 
demonstrated in the present report.

Conclusions
We have demonstrated that Monte Carlo simulations make it possible to efficiently sample the conformational 
landscape of the folding of small proteins using standard hardware without the need of extreme high-perfor-
mance computing. There are two contributing factors that make the reported simulations fast. First: the efficient 
implementation of an implicit solvent model that significantly reduces the number of degrees of freedom (pres-
ently MC simulations are not feasible in explicit water, because there are no efficient collective moves for all the 
water coordinates). Secondly: acceleration by the usage of the Monte Carlo algorithm with its large effective time 
step, i.e. near the folding equilibrium temperature, the trajectories show a transition approximately every 5 × 107 
energy evaluations for the Villin headpiece. Correlating this with the experimental folding time, a single MC 
step covers the same distance in conformational space as an MD simulation of 5 × 10−13 s. The “time step” in MC 
is, thus, about two orders of magnitude larger than the typical MD timestep. More improvement of the current 
model is needed, including implementation of the algorithm for GPU acceleration.
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Methods
Force field. The simulations were performed with the AMBER99SB*-ILDN force  field40 and an implicit 
solvent model consisting of a generalized Born (GB)80,109 term that models polar solvation effects and a solvent 
accessible surface area (SASA)110 term that models nonpolar solvation effects. The Born radii were computed 
with the PowerBorn  method111 and the SASA with the PowerSASA  method97. The dielectric constant of the 
protein was taken to be εp = 1 and that of water εw = 80. The surface tension of the nonpolar solvation term was 
γ = 5.42 cal/mol·Å2. No long-range cutoffs or approximate methods were used in the evaluation of the force field 
or implicit solvent model. In Monte Carlo simulations sometimes, large moves on atoms or groups of atoms 
are proposed that lead to near-zero atomic distances, which leads to infinite potential energies. To enhance the 
numerical stability of the simulation, the distance computation between atoms was modified, and a constant 
offset of 0.001 Å was added to each interatomic distance for the computation of the Coulomb, Lennard–Jones, 
and GB terms. This small offset has negligible numerical effects in the low energy regions, but modifies the force 
field in the unphysical cases when atoms are clashing.

Simulation protocol. All calculations were performed with the  SIMONA54 code, which is available under 
https ://www.int.kit.edu/nanos im/simon a. The Trp-cage, Villin Headpiece and WW domain simulations were 
based on the pdb-files with codes  1L2Y56,  1VII57 and  2F2158, respectively. The force field parameters were 
assigned with the pdb2gmx program of  Gromacs112. The structure was minimized with  Gromacs19 and relaxed 
with backbone or sidechain moves using SIMONA at 50 K. The structure with the lowest energy was used as the 
reference for the native structure. We performed five to ten simulations each comprising 200 million MC-steps 
at different simulation temperatures, depending on the protein, i.e. 330–450 K, 360–460 K and 400–600 K for 
Trp-cage, Villin Headpiece and WW domain, respectively. An individual MC step comprises either a randomly 
selected backbone and sidechain dihedral rotation or a concerted move with equal probability. The angle change 
in the dihedral moves was drawn from a Gaussian distribution with a width of 18.3° for Villin Headpiece and 
20° for Trp-cage and WW domain. In a “concerted move” a segment of 4 amino acids modified, changing all 
dihedral angles under the constraint that the endpoints of the segment do not change. In addition, rigid body 
rotations were applied by rotating the molecule around a random axis through its geometric center with a uni-
formly distributed rotation angle of up to 5°. The Metropolis acceptance criterion with Markov chain model was 
used to construct collective moves with the acceptance probability of 0.6 (60%), preserving detailed balance. The 
simulations operated at an effective time step of 260 fs/MC step, accelerating the sampling of the conformational 
space by about two orders of magnitude over all-atom explicit-solvent MD simulations. The first 10% of the steps 
of each simulation was discarded to permit equilibration. The elliplicity and CD spectra were computed with the 
analyses program  CdPro113. Visualization of proteins was done using  VMD114.
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