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Optimizing target nodes selection 
for the control energy of directed 
complex networks
Hong Chen & Ee Hou Yong*

The energy needed in controlling a complex network is a problem of practical importance. Recent 
works have focused on the reduction of control energy either via strategic placement of driver nodes, 
or by decreasing the cardinality of nodes to be controlled. However, optimizing control energy with 
respect to target nodes selection has yet been considered. In this work, we propose an iterative 
method based on Stiefel manifold optimization of selectable target node matrix to reduce control 
energy. We derive the matrix derivative gradient needed for the search algorithm in a general way, 
and search for target nodes which result in reduced control energy, assuming that driver nodes 
placement is fixed. Our findings reveal that the control energy is optimal when the path distances from 
driver nodes to target nodes are minimized. We corroborate our algorithm with extensive simulations 
on elementary network topologies, random and scale-free networks, as well as various real networks. 
The simulation results show that the control energy found using our algorithm outperforms heuristic 
selection strategies for choosing target nodes by a few orders of magnitude. Our work may be 
applicable to opinion networks, where one is interested in identifying the optimal group of individuals 
that the driver nodes can influence.

Complex networks have been extensively studied in recent decades owing to its modeling utility towards social 
 systems1, biological  systems2,  Internet3, and man-made technological  systems4. Usually, these networks are mod-
elled as coupled system of ordinary differential equations. The state vector elements are represented as nodes or 
vertices in graphs and the coupling interaction between state vector elements are represented as links or edges in 
graphs. The state vectors of such a coupled ordinary differential equation serve to represent a myriad of quanti-
ties, depending on the complex dynamical system being considered at hand. For example, they can represent the 
probability of a person being infected in a social network system, or they can represent the expression level of 
a gene in a regulatory  network5. The motivation to study and understand these complex systems can be traced 
to our desire to obtain control over  them6. In this case, control refers to exerting influence on the networked 
system via external control signals to steer the state vector of the networked system from its arbitrary initial, to a 
predefined goal state vector in finite time [t0, tf ]6. It follows then, that if the nodes of a network could be steered 
towards the predefined goal state vector in finite time, the network is deemed controllable.

Achieving control over a complex network with as few control signals as possible is desirable. In 2011, Liu 
et al. proved that the unmatched nodes from maximum matching  algorithm7 of a bipartite representation of 
a complex network needed to receive external influence to ensure network structural  controllability6,8. The Nd 
number of unmatched nodes in need of control signals are thus termed the minimum driver node set, or simply 
the driver nodes. Soon after, Sun and Motter explored the numeric success rate of network controllability when 
numerically computing the controllability Gramian matrix when using energy optimal control  signal9,10 to steer 
the  network11. They found that for a complex network with more than a handful of nodes, using the minimum 
driver node set is computationally insufficient as the computation of the controllability Gramian will become 
ill-conditioned or nearly singular. Instead, beyond using the Nd number of minimum driver nodes, additional 
control signals are needed to ensure numeric success when computing the controllability Gramian.

Since the problem of minimum driver node set to guarantee controllability for an arbitrary sized complex 
network was  solved6, several other prominent research works have  followed12–14. Notably, the investigation into 
the energy cost required for control has been a subject of investigation by several  groups14–19. In these studies, 
the energy cost is defined as a measure of proportionate effort required by each of the control signal over the 
considered  time9,10. It was found that if the number of control signals is small, the energy cost demanded of 
each of the signal could be prohibitively  high18. In fact, the energy cost is reduced exponentially as the number 
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of control signal  increases18. Thus, attaching additional control signals onto a networked system beyond the 
minimum driver node set is one way to achieve network control with reduced energy cost.

The way in which the additional control signals are attached can also result in reduced control energy. Lind-
mark and Altafini considered the eigenvalues of the network and proposed strategies for selecting the placement 
of additional control signals to minimize control energy  cost20. Chen et al. analyzed stems, obtained from mini-
mum driver node  set6, and calculated all possible direct shortest paths from driver nodes to non-driver nodes 
to obtain the Longest Control Chain (LCC), which is the longest path from the obtained all possible shortest 
direct  paths21. They found that by adding additional control signals in such a way that the length of the LCC is 
minimized, control energy can be reduced significantly. Li et al. proposed an algorithm using matrix derivative 
projected gradient descent to iteratively search for the energy optimal placement of control  signals17. This opti-
mization model was later simplified by Ding et al.15 and Li et al.16. In 2018, Li et al. proposed an improved and 
generalized approach based on previous works to again obtain the energy-optimal placement of control  signals22. 
The problem of reducing control energy by strategic placement of additional control signals has been extensively 
researched. However, in all of these works, complete control was considered, where the control signals steer the 
full node set towards the predefined goal state vector.

While full control may be necessary in some types of engineered  systems23, controlling just a subset of 
nodes (typically termed target control or targeted control) may be more sensible in large complex dynamical 
systems. In 2014, Gao et al. proposed an alternate k-walk theory and a greedy algorithm to obtain the minimum 
number of driver nodes to control just a subset of the full node set in a complex  network24. In 2015, Iudice et al. 
presented a geometric framework to find the driver node set, limited by practical constraints, to reach as many 
target nodes as  possible25. In 2017, Liu et al. considered the controllability of the giant connected component in 
a directed complex  network26. With regards to energetic considerations, Klickstein et al. showed that the energy 
cost scales exponentially with the cardinality of the target node  set19. Gao et al. proposed an algorithm to obtain 
the placement of control signals to optimize the energy cost when controlling just a subset of nodes in directed 
complex  networks27. Furthermore, recently, the controllability Gramian of lattice graphs was studied, which 
turns out to be useful when the number of target nodes is  small28. While target control has been researched 
extensively, how to optimize control energy with respect to the selection of target nodes in a complex network 
is still an open question.

Thus, different from all previous works, we wish to ask a slightly different question: How can we pick the target 
node set in such a way that the control energy is minimized? To that end, we will be employing a cost function 
optimization model based on projected gradient descent, similar to earlier  works15–17,22,27. The main difference 
between our work and the existing literature is the variable matrix being optimized: While previous works have 
focused on optimizing the choice of input signal (matrix B), we optimize the choice of target nodes (matrix C). 
Furthermore, previous derivations of the index notation gradient information uses the I-Chain rule, which can 
be difficult to understand. Here, we derive the index notation gradient information using the standard chain 
rule and product rule in a general way, which is simpler to follow.

In this paper, we will be examining how the choice of target nodes could be optimized to minimize the energy 
cost function. Using the formulated energy cost function, we derive the matrix derivative of the energy cost 
function with respect to matrix C, which is the energy cost function gradient information. With the gradient 
information obtained, we perform an iterative search using the trace-constraint-based projected gradient method 
(TPGM) proposed in Ref.22 to obtain target nodes which are energetically favorable. We then compare the energy 
cost that we would have gotten from choosing to target control nodes using a heuristic selection scheme such 
as random selection, and node degree-based selection. Our simulation results show that the solution obtained 
from TPGM reduces the energy cost by a few orders of magnitude.

Problem formulation
In standard complex network controllability literature, we are interested in studying N coupled system of equa-
tions whose dynamics are linear and time invariant (LTI):

where x(t)∈RN×1 is the time-varying state vector, y(t)∈RP×1 ( P ≤ N ) is the the subset of time-varying output 
state vector that we want to target control. u(t)∈RM×1 ( M ≤ N ) is a time-varying external control signal which 
we use to drive the network. The time invariant A ∈ R

N×N matrix represents the network topology, where for 
directed complex network we have nonzero matrix element {aij} when there is a directed link from node j to 
node i, and zero element if no link exists from node j to node i. Since many complex systems tend to enjoy pas-
sive stability, our modeling also allows for self-links, where {aii} is a negative real  number12. The time invariant 
matrix B ∈ R

N×M reflects the coupling between nodes and M number of external control signals u(t) , where 
matrix element {bij} = 1 if node i receives a time-varying control signal from control input j, and zero element 
otherwise. Finally, we have the the control matrix C ∈ R

P×N which tells us the choice of the P number of subset 
of nodes that we wish to target control, where matrix element {cij} = 1 if node j is the i-th node out of all pos-
sible P nodes that we want to target control and zero otherwise. We note that matrix B and matrix C are column 
and row linear independent, where if {bij} = 1 ( {cij} = 1 ), then no other nonzero entries may exist for column 
j and row i in matrix B (C). We require this linear independence to reflect our modeling choice for one-to-one 
connection between control signals and nodes, and for one-to-one connection to individually target control 
each of the P number of  nodes19.

We are interested in the energy cost needed to drive the states of the network using the control signal u(t), 
which is defined to be the cost  function9

(1)
ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t),
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This is the energy cost function that we want to optimize, with respect to the choice of target nodes (matrix 
C). Similar to previous works which considered trace constraint projected matrix gradient cost function 
 optimization15–17,22,27, here we assume that the initial state vector x0 ∼ N(0, 1) . The energy cost is

where tf  is the total control time and initial time is set to zero throughout the rest of the paper, t0 = 0 . The energy 
cost is a function of the control trajectory, i.e. the state space pathway between x0 and yf  . It should be noted that 
(3) is the expected energy cost over all realizations of initial state vector x0 , picked under standard normal distri-
bution. In general, the cost function E (tf ,B,C) is dependent on the matrix B and the final time tf  . However, in 
this paper, we are focusing on optimizing the cost function with respect to matrix C while keeping input matrix 
B and final time tf  fixed. Thus, for clarity, we drop these two dependencies and write the cost function only as a 
function of either E (C) or E (CT ) throughout the paper.

Consequently, the energy-optimal control signal, derived from optimal control  theory10,19 can be calculated as

The N × N controllability Gramian matrix

is an important quantity in control theory, well-known to be real, symmetric, and semi-positive definite. In 
practice, we can use the controllability Gramian matrix to verify that the choice of matrix B is ensuring network 
(target) controllability by checking that the (output (CWCT ) ) controllability Gramian matrix is  invertible9,19.

We optimize the cost function as follows:

where we have constrained the solution produced by the gradient descent iterative algorithm to stay on the 
manifold tr(CCT ) = P.

Results
The energy cost function can be obtained by substituting the energy-optimal control signal u∗(t) into the cost 
function E (CT ) = E[

∫ tf
0 uT (t)u(t)dt]:

By varying Eq. (7) with respect to CT , we find that

The full derivation can be found in the Supplementary Information. Using (7) and (8) and applying it to 
the TPGM algorithm, we solve for the energy-optimal target node matrix and obtain the optimal solution, 
C∗ . In the simulations, we have set the control time to be tf = 2 , and the desired final output state vector is 
yf = [1, 1, . . . , 1]T.

Algorithm. To optimize the control energy by varying the selection of target nodes, we modified the trace-
constraint-based projected gradient method (TPGM) formulated by Li et al.22, to focus on CT , the target nodes 
choice. Let C̃T be the basis of the target control matrix CT . We can obtain C̃T by performing Gram Schmidt 
orthogonalization on matrix CT29. Define the projection operator TC̃T = (IN − C̃T C̃) , where IN is the N × N 
identity matrix. The operator TC̃T projects any arbitrary matrix onto the space that is perpendicular to the 
manifold tr(CCT ) = P . For two arbitrary matrices A and B which have the same dimension, an angle between 
them can be defined as:

where 0 ≤ θ ≤ π , ‖.‖F denotes Frobenius norm, and we note that the matrices are perpendicular if 
θ = π/2 = 90◦ . The TPGM optimization is given in Algorithm 1.

(2)J =

∫ tf

t0

uT (t)u(t)dt.

(3)E (tf ,B,C) = E

[
∫ tf

0
uT (t)u(t)dt

]

,

(4)u∗(t) = BTeA
T (tf −t)CT (CWCT )−1(yf − CeA(tf −t0)x0).

(5)W =

∫ tf

t0

eA(tf −t)BBTeA
T (tf−t)dt

(6)min E (CT ) subject to tr(CCT ) = P,

(7)E (CT ) = tr((CWCT )−1yf y
T
f )+ tr(CT (CWCT )−1CeAtf eA

T tf ).

(8)

∂E (CT
k )

∂CT
=− 2WCT (CWCT )−1yf y

T
f (CWCT )−1

− 2WCT (CWCT )−1CeAtf eA
T tf CT (CWCT )−1

+ 2eAtf eA
T tf CT (CWCT )−1.

(9)θ = arccos

(

tr(ATB)

�A�F�B�F

)

,
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In TPGM step 1, by random initialization of matrix CT
0  , we mean that we start with a N × P matrix of zeros 

and randomly set matrix element [CT ]ij = 1 , where node i is chosen to be the j-th target node. Once node i is 
chosen, we maintain row and column linear independence, and thus do not allow for the selection of the same 
node i to be target controlled. In the numerical experiments that we tried, while starting from a pure random 
dense matrix is possible when system size is small or the network topology is sparse, it is computationally inef-
ficient. Furthermore, when starting from a pure random dense matrix, we are not able to obtain a sensible sparse 
optimal matrix at the end, when converting from dense optimal solution C∗ to sparse binary optimal solution 
(see “Selecting binary optimal target node set from  C*” section).

In TPGM step 4, the numerical value of the learning rate or step size η is chosen empirically. When η is too 
large, convergence is not guaranteed and the algorithm will fail. While convergence is guaranteed when η is suf-
ficiently small, the time taken to complete the iterative search will suffer if η is too small. Typically, we choose 
the learning rate to be between 1e−8 and 1e−3 , depending on the fraction P/N to be target controlled as well as 
the complex network topology. In general, the learning rate η can be varied to speed up the iterative process. For 
example, starting at η = 1e−8 , and then changing to η = 1e−4 when enough iterations have been run. As 
observed during experimentation, the convergence of η scales inversely proportional to the numerator of the 
cos(θk) : tr

(

[∇E (CT
k )]

T
TC̃T

k
∇E (CT

k )

)

 . In TPGM step 4, ĈT
k+1 is a non-normalized quantity, while in step 5, 

the updated solution is constrained onto the manifold surface tr(CCT ) = P , obtaining the normalized CT
k+1.

In TPGM step 6, the angle θk between k-th step gradient matrix ∇E (CT
k ) , and the projected gradient matrix, 

TC̃T
k
∇E (CT

k ) is calculated to check for convergence. If cos(θk) approaches zero, or equivalently, when θk 
approaches π/2 = 90◦ , the algorithm is deemed to have converged. Numerically, the while loop terminating 
condition, ξ , refers to a small positive quantity, for example, ξ = 1e−2 . For some networks where the algorithm 
is unable to converge towards ξ = 1e−2 , we may relax this condition to ξ = 1e−1.

TPGM will iteratively update the initial proposed solution C0 in the direction of quickest decreasing energy 
cost based on cost function derivative with respect to matrix variable C. When the search has finally converged, 
the obtained optimal target control matrix C∗ corresponds to reduced control cost of a dense matrix of real num-
bers, which corresponds to many-to-many connections from output nodes to complex network nodes of varying 
link strength. Based on the obtained optimal solution C∗ , the challenge is to obtain a one-to-one connection of 
output nodes and nodes with unity link strength, a sparse binary optimal solution, C∗

binary , while maintaining 
the characteristics of reduced control cost.

Selecting binary optimal target node set from C∗. We propose two methods to find C∗
binary from C∗ . 

The first method is based on suppressing insignificant matrix elements in C∗ , and then evaluating the normalised 
quantity importance index vector, r:

where ri =
∑

j |[C
T ]ij| is the non-normalised importance score of node i being selected as a target node, and 

we are taking the row summation of the absolute of the transpose matrix, CT . |[CT ]ij| represents the numerical 
contribution towards C∗ for node i, target node j. Therefore, to find binary optimal solution that remains similar 
to C∗ , we want to find the nodes with the highest numerical contributions.

In our experimentation, we found that directly passing C∗ into (10) to find C∗
binary usually does not allow us to 

find the optimal target node set. This is because of the row summation of the absolute of the numerical contribu-
tion. For example, if row a has predominantly absolute values of around 0.2 in all its columns, while row b has 
an absolute value of around 0.9 in one of its columns, and mostly negligible numerical values close to zero in all 
of its other columns, then by Eq. (10), node a will be ranked higher than node b. Based on experimentation with 
elementary topologies, we find that numerical contribution characteristics similar to row b usually correspond 
to an optimal target node. Thus, we want the row summation to reflect that: we suppress the numerical values in 
each matrix element of C∗ if they fall below a certain value. (For a more detailed discussion, see Supplementary 
Information.).

(10)r =
[r1, r2, . . . , rN ]

max(r1, r2, . . . , rN )



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18112  | https://doi.org/10.1038/s41598-020-75101-w

www.nature.com/scientificreports/

We compute the suppressed optimal matrix by setting [C∗]ij = 0 iff [C∗]ij <= d σ , where σ is computed from 
the standard deviation of the absolute of all matrix elements [C∗]ij , and d = {0.0, 0.1, 0.2, . . . , 1.1, 1.2, . . . , 3.0} . 
For each suppressed matrix, we check that the rank of the matrix is P, before considering it as a viable candidate 
solution. If the suppressed matrix has rank P, then we pass the suppressed matrix into (10), and pick P nodes 
with the highest importance index. The case when k = 0 is similar to the proposed importance index vector 
formulation in Refs.16,17,30 for finding optimal driver nodes.

The second method is based on selecting the matrix elements with the largest absolute numerical values. The 
process is as follows: First, begin with optimal matrix transpose, |[C∗]T | . Then, search for the absolute largest 
matrix element in each column, and order the columns in descending order, keeping track of the associate row 
indices. Start with a N × P zero matrix, CT

binary , and set the matrix element for position (i, j) to be one, start-
ing from the columns with the largest absolute matrix elements |[C∗]Tij | . At each step, check that for assigning 
position (i, j) to be one, no other nonzero element exists along row i or along column j. If there exists another 
nonzero matrix element along the row i or column j, then do not assign position (i, j) to be one, and record 
down column j which did not get filled. If rank (CT

binary) = P , then stop the process; otherwise, repeat the process 
described for unfilled columns j’s for the case of second largest absolute matrix elements, third largest,...., until 
rank (Cbinary) = P.

At the end, we pass all the obtained binary target node set candidate solutions into the objective cost func-
tion, Eq. (7), and pick the target node set which yields the lowest energy cost, denoting it [C∗

binary ]
t , where 

t = {1, 2, . . . , 10} represents each independent iterative search. For the simulation results showing C∗
binary , we 

choose the best solution out of all [C∗
binary ]

t.

Numerical experiments on elementary network topologies. To understand the arrangement of 
energy optimal target node set, we perform the TPGM iterative search on elementary network  topologies6,30. 
They are: directed stem, circle, and dilation. A stem requires just a control signal, placed at the root, to become 
mathematically (but not necessarily numerically)  controllable11,26,31. A circle is controllable with just one control 
signal attached to any of the nodes in the circle. A dilation requires a minimum of two driver nodes to become 
controllable. We select the driver nodes to be placed in such a way that their path distances are evenly spaced, 
which corresponds to the most energy efficient set up as the longest path distance from driver to non-driver 
nodes is  minimized21. The set of driver nodes is assumed to be fixed (B fixed), and the target node set, consisting 
of 66.7% of all nodes, is our variable, e.g. find C.

For each of the 8 elementary topology labelled (a1–c2) to as shown in Fig. 1, we repeat the numeri-
cal experiment independently for 1000 times in order to find the optimal target node set C∗

binary , given that 
driver nodes position are fixed. (a1) is a N = 9 directed stem network, with M = 3 driver nodes, and P = 6 
optimal target nodes. (a2,a3) represent {N = 9,M = 2,P = 6} and {N = 6,M = 1,P = 4} directed stem net-
work respectively. (b1–b3) represent circle topology with {N = 9,M = 3,P = 6} , {N = 9,M = 2,P = 6} , 
and {N = 6,M = 1,P = 4} respectively. (c1,c2) represent dilation topology with {N = 9,M = 2,P = 6} and 
{N = 9,M = 3,P = 6} respectively. Because the system sizes are small, the global optimal target nodes can 
be corroborated through brute force computation: (a1)—{1, 2, 4, 5, 7, 8} , (a2)—{1, 2, 3, 5, 6, 7} , (a3)—{1, 2, 3, 4} , 
(b1)—{1, 2, 4, 5, 7, 8} , (b2)—{1, 2, 3, 5, 6, 7} , (b3)—{1, 2, 3, 4} , (c1)—{1, 2, 3, 6, 7, 8} , (c2)—{1, 2, 4, 5, 6, 7} . Corre-
spondingly, TPGM was able to find the energy optimal target nodes configurations with success rates: (a1)—
probability 58.9% , (a2)—66.0% , (a3)—85.9% , (b1)—41.0% , (b2)—40.1% , (b3)—67.4% , (c1)—91.2% , (c2)—69.1% . 
Evidently, as seen in Fig. 1, the energy optimal target nodes tend to minimize their  geodesic32 path distances 
from the driver nodes. Our findings are consistent with literature, which states that control energy cost increases 
exponentially with path  distance21,33.

To test the robustness of the algorithm, we repeat the experiments for elementary topologies with fixed driver 
nodes placement similar to configurations (a1,a2,b1,b2,c1,c2) shown in Fig. 1, but with total target control 
nodes changed from P = 6 to P = 5 . In general, the conclusion that energy-optimal configurations correspond 
to minimized path distances from driver to target nodes still holds. For the stem network with 3 driver nodes, 
the optimal configurations of target nodes are {1, 2, 4, 5, 7} , {1, 2, 4, 7, 8} , and {1, 4, 5, 7, 8} , given in ascending 
order of energy costs, with the first node set being the true optimal. TPGM was able find the optimal configura-
tions with probabilities 30.8% , 15.2% , and 0% respectively. For stem network with 2 driver nodes, the optimal 
configurations are {1, 2, 3, 5, 6} and {1, 2, 5, 6, 7} , with the former being the true optimal. TPGM success rates 
are 15.1% and 55.3% respectively. Thus, while control energy is minimized when target nodes are close to their 
nearest driver nodes, for stem network, there is a slight reduction in control energy when the target nodes are 
also closer to node 1, which is the root node needed to ensure controllability. It should be noted that the energy 
cost difference between local optimal configurations and global optimal configurations is typically smaller than 
10% . For circle topology with 3 driver nodes, the optimal configurations are {1, 2, 5, 7, 8} , {2, 4, 5, 7, 8} , {1, 2, 4, 5, 8} 
and {1, 2, 4, 7, 8} , {1, 2, 4, 5, 7} , {1, 4, 5, 7, 8} , with the first three node sets being the true optimal. TPGM was able 
to find node sets belonging to true optimal energy cost 29.6% of the time, and optimal configurations with prob-
ability 5.7% . Circle topology with 2 driver nodes has optimal configurations {1, 2, 3, 5, 6} and {1, 2, 5, 6, 7} , with 
the former being the true optimal. Correspondingly, the search success rates were 5.5% and 34.0% respectively. 
While a circle is controllable with just one driver node placed anywhere, the difference in energy cost can be 
accounted for by grouping all output nodes to their nearest driver nodes: {1, 2, 3, 4} to node 1, and {5, 6, 7, 8, 9} 
to node 5. Thus, for energy-optimal control of 5 target nodes, the first 4 have to be picked to be close to their 
nearest driver nodes, and for the fifth node, a slight preference is given to picking target nodes belonging to the 
group with the lower directed path distance. In all of these, the control energy difference between true optimal 
and optimal are at most 2% . For dilation networks with 2 driver nodes, the optimal configurations are {1, 2, 6, 7, 8} 
and {1, 2, 3, 6, 7} , with the former being the true optimal. They were respectively found by the algorithm 32.7% 
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and 59.6% of the time. The optimal configurations of dilation networks with 3 driver nodes are {1, 2, 4, 6, 7} , 
{1, 2, 4, 5, 6} , and {1, 4, 5, 6, 7} , given in ascending order of energy costs. The first node set was found 97.0% of the 
time and the latter two are never found. The difference in energy cost between the true optimal and optimal is 

Figure 1.  Energy optimal target nodes configurations when driver nodes are fixed. (a1) depicts a N = 9 
directed stem network, with M = 3 driver nodes depicted by the cyan (grey in grayscale) control signals, 
and P = 6 optimal target nodes depicted by the magenta (dark grey) output nodes. (a2,a3) represent 
{N = 9,M = 2,P = 6} and {N = 6,M = 1,P = 4} directed stem network respectively. (b1–b3) represent circle 
topology with {N = 9,M = 3,P = 6} , {N = 9,M = 2,P = 6} , and {N = 6,M = 1,P = 4} respectively. (c1,c2) 
represent dilation with {N = 9,M = 2,P = 6} and {N = 9,M = 3,P = 6} respectively.
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about 10% , and analogous explanation for grouping output nodes to their nearest driver nodes, similar to circle 
topologies, can be used to explain the slight difference in control energy.

Simulations on a small random network. Next, we repeat the numerical experiment 1000 times for 
target controlling 5 nodes in a N = 10 random network (ER network), with average degree �k� = 2 , as shown 
in Fig. 2. The driver nodes position are fixed, and generically ensures full controllability of the network, regard-
less of the choice of C. The global energy-optimal configuration of target nodes placement is {1, 2, 4, 8, 10} and 
TPGM was able to find this configuration 7.1% of the time. However, TPGM was also able to find the next-best 
performing configuration, which yields energy cost of the same order of magnitude, {2, 4, 6, 8, 5} , with success 
rate of 13.9% . Thus, generally, it can be seen that when path distances are reduced, control energy is minimized.

We quantify the performance of TPGM on the small random network in Fig. 3. In Fig. 3a, we display the 
probability mass function of TPGM obtaining all the solutions found, C∗

binary , and their associated energy costs, 
indexed in ascending order in energy, TPGM Eindex i . It should be noted that all 25 TPGM energy cost indexes 
are found from 1000 independent iterative searches, and are not exhaustive. Figure 3b shows the energy costs 
associated to each TPGM Eindex i . The full range of all possible energy costs is 10C5 = 252 , so 25 is roughly the 
top 10% best solutions. For comparison, the average energy cost of selecting 5 target nodes randomly without 
repetition, 〈E(Crand)〉 , is also plotted and represented by the black dashed lined on the same graph. In Fig. 3c, 
we show all 252 energy costs found from a brute force search. Matching the solutions found from TPGM to 
the true list of all possible energy costs, we find that the top 6 solutions from TPGM belong to the true top 10 
energy costs, as shown in Fig. 3d. Therefore, while the rate of TPGM finding suboptimal solutions is high, the 
energy costs performances of the suboptimal solutions are in general comparable to the true optimal energy 
cost, Eindex 1 . From inspection, we see that the top 15 solutions have very similar energy, which may explain why 
TPGM only found the global solution (index 1) 7.1% of the time. In addition, the solutions found from the search 
algorithm also tend to lie within the neighborhood of the lower end of all possible energy costs. Besides, they 
also outperform the random selection scheme by at least a few orders of magnitude.

Simulation results on complex networks. We apply the TPGM to different complex networks such as 
random networks (ER network), scale-free networks (SF network), as well as various real networks spanning 
a diverse range: electronic circuit networks, food web networks, and social networks. For each network, we 
perform the iterative search 10 times and compare the performance of the obtained solution C∗ as well as the 
associate binary optimal solution C∗

binary and compare them to heuristic selection schemes such as random selec-
tion (repeated over 100 independent realizations) and degree-based selection of target nodes. We select 40% of 
the nodes to be driver nodes using the standard  way6,7 to ensure controllability, and pick the remaining nodes 
randomly. For each network, once the driver nodes are picked, they remain fixed.

For the model networks of N=100 SF ( γ = 2.8 ) and ER, with average degrees kav = 2.5 , we plot the control 
energy needed for controlling target node set of varying cardinality P/N = {0.1, 0.2, . . . , 0.9, 1.0} in Fig. 4a,b. 
Consistent with the previous  findings19, we find that the control energy scales exponentially with the cardinality 
of the target node set, regardless of the target node selection scheme chosen. However, when comparing the 
control energy of various selection strategies, our results show that generally, as compared to heuristic selection 
schemes, the energy cost for controlling target node set as found by TPGM, C∗ and C∗

binary , is lower by a few 
orders of magnitude. For the result of Fig. 4b, the performance of the in-degree descending selection scheme 
(meaning that we choose P/N% of nodes that are ranked within the top P/N% of largest in-degrees) in the 

Figure 2.  Energy-optimal configuration of driver/target nodes in a random network with N = 10 nodes and 
average degree �k� = 2 , with fixed driver nodes at nodes {2, 8} . Driver nodes are represented by cyan (grey in 
grayscale), and target nodes are magenta (dark grey).
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region P/N = {0.1, 0.2, 0.3, 0.4} is generally similar to optimal target node set C∗
binary . This is likely due to the 

fact that the driver nodes which were randomly selected happened to coincide with the nodes which have high 
in-degrees, which results in reduced path distances between driver nodes and target nodes, and thus reduced 
control energy cost.

Finally, we apply TPGM to real networks and model networks of N=300, and compile the obtained results in 
Table 1, comparing with the control energy of initial random selection E (C0) and random selection E (Crand) . 
With the exception of Circuit-s838 and Teacher-student, where we drive the network with M/N = 0.5 and 
M/N = 0.6 fractional number of driver nodes to target control P/N = 0.7 and P/N = 0.75 fractional num-
ber of nodes, each of the network is driven by M/N = 0.4 fractional number of driver nodes to target control 
P/N = 0.6 fractional number of nodes. The energy cost of target node set selected by degree-based selection 
scheme is presented in Table 2.

The heuristic selection schemes lead to target control matrices Crand , Cin.asc , Cin.dsc , Cout.asc , Cout.dsc . Respec-
tively, Crand corresponds to random selection of target nodes, where repeats are disallowed; Cin.asc refers to target 
nodes chosen in ascending order according to their weighted in-degrees. Thus, when choosing target nodes for 
Cin.asc , nodes with the lowest weighted in-degrees are selected. Likewise, Cin.dsc is associated with target nodes 
chosen in descending order of weighted in-degrees, and nodes with the largest weighted in-degrees are selected. 
Analogously, Cout.asc relates to target nodes picked in ascending order of weighted out-degrees; and Cout.desc 
identifies target nodes of descending order of weighted out-degrees. 

Examining Table 1, we observe that for any network, starting from its initial, E (C0) , TPGM algorithm itera-
tively updates the Ck matrix in the direction of quickest decreasing control energy until we obtain the convergent 
solution, E (C∗) , where the energy cost is typically reduced by a few orders of magnitude. Based on “Selecting 
binary optimal target node set from  C*” section, we can choose the target nodes from the obtained optimal 

Figure 3.  Performance of TPGM for small random network. (a) Plot of the probability of finding a specific 
target node set corresponding to each TPGM energy cost index i, TPGM Eindex i , given in ascending order of 
energy cost. (b) Plot of associated energy costs to each TPGM energy cost index. (c) Plot of all 252 energy costs 
in log scale for each named true Eindex i , given in ascending order of energy cost. (d) Plot of the 10 lowest true 
energy cost as shown by the red dots, of which 6 are found by TPGM, represented by blue circles.
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solution, C∗ , to obtain C∗
binary . While the conversion from dense real matrix solution to sparse binary matrix 

will in general result in increased control energy, comparing the energy cost E (C∗
binary) to heuristic selection 

strategies of target nodes, such as E (Crand) in Table 1 and degree-based selection in Table 2, we observe that 
the control energy compares favourably.

Discussion
When the learning rate η is chosen appropriately, TPGM is convergent. To be illustrative, the success rates of 
convergence as a function of η for different network topologies are shown in Fig. 5 Generally, when η is lower, 
the success rate is higher. Furthermore, when P is lower and the search space is smaller, higher η tend to be 
accommodated. All C∗ results presented in this work are convergent, even though the chosen η parameter may 

Figure 4.  Control energy needed for controlling target nodes of increasing cardinality. Optimal target node sets 
control energies, E (C∗) and E (C∗

binary) , are generally a few orders of magnitude better than selecting target 
node set from heuristic selection schemes. (a) SF network and (b) ER network.

Table 1.  Control energy needed in various networks when different strategies are applied to selecting target 
control matrix C. 〈E (C0)〉 is the average control energy from 10 independent initializations of random 
matrix without optimization. �E (C∗)� is the average control energy from 10 independent iterative search 
using TPGM. We then convert these ten solutions into binary matrices E ([C∗

binary]
t) , for t = 1, 2, . . . , 10 . 

The lowest of these is chosen as E (C∗
binary) . 〈E (Crand)〉 is the average control energy of 100 independent 

realizations of selecting target nodes randomly. Additional information such as standard deviations and mean 
of E ([C∗

binary]
t) is presented in Supplementary Information.

Network N Edges 〈E(C0)〉 �E(C∗)� E(C∗

binary
) 〈E(Crand)〉

Model

SF300 300 750 8.11E07 2.88E03 2.65E05 1.48E08

ER300 300 750 1.88E06 5.34E02 1.24E05 2.27E06

Electronic circuit34

Circuit-s838 512 819 6.02E05 4.48E02 1.97E04 1.45E06

Circuit-s420 252 399 6.01E04 1.33E02 6.92E03 8.97E05

Circuit-s208 122 189 2.34E04 6.90E01 1.99E03 1.74E08

Food web35–37

StMarks 54 356 4.83E03 6.31E01 2.77E02 5.54E03

Maspalomas 24 82 1.76E03 3.72E01 3.65E01 2.59E04

Rhode 19 53 8.07E02 2.00E01 3.65E01 1.46E05

Social influence38,39

Phys-discuss-rev 231 565 1.90E04 1.99E02 4.11E03 1.49E05

Teacher-student 60 94 1.41E02 3.96E01 6.60E01 1.78E02

Social38,40

Phys-friend-rev 228 506 2.61E04 2.46E02 3.59E03 2.55E04

Highschool 70 366 4.32E04 1.91E02 5.45E02 4.06E04
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not have unity success rate. This is because, programmatically, for each independent iterative search, we can 
check the number of steps that the algorithm has taken; if the number of steps is abnormally small, the iteration 
is deemed to be non-convergent and to have terminated prematurely due to computation errors. Accordingly, 
we repeat the search iteration and in this way, convergence is always guaranteed.

The convergence process is shown in Fig. 6a,b. In Fig. 6a, the k-th step cosine angle, cos(θk) , between energy 
gradient ∇E (CT

k ) and projected energy gradient TC̃T
k
∇E (CT

k ) , approaches zero as TPGM iteration increases. 
The algorithm is deemed to have converged when the gradients are perpendicular. In Fig. 6b, we observe that 
each iteration of TPGM brings the matrix Ck towards a lower energy cost, starting with a steep decrease in energy 
cost which becomes less steep with each iteration, until convergence.

It is important to initialize CT
0  properly. In our experimentations, all elements of CT

0  are chosen randomly and 
set to be CT

ij = 1 if node i is chosen to be the j-th target node initially, otherwise all other elements are set to be 
zero. We ensured row/column linear independence, which necessitates that no nodes are chosen repeatedly. If 
row/ column linear independence is not adhered, computations would not proceed due to mathematical error. 
While TPGM can accommodate initial CT

0  to be a random matrix with dense entries of random variables, this is 

Table 2.  Control energy needed in various networks when degree-based selection strategies are applied to 
selecting target control matrix C. E (Cin.asc) refers to choosing target nodes in ascending order according to 
their weighted in-degrees. E (Cin.dsc) , E (Cout.asc) , and E (Cout.dsc) follows analogously, where dsc refers to 
order of descending and out refers to weighted out-degree.

Network N Edges E(Cin.asc) E(Cin.dsc) E(Cout.asc) E(Cout.dsc)

Model

SF300 300 750 2.99E08 1.35E07 2.29E08 5.23E07

ER300 300 750 4.18E06 9.18E04 6.51E05 2.39E06

Electronic circuit

Circuit-s838 512 819 4.77E05 4.99E05 4.06E04 4.80E05

Circuit-s420 252 399 8.67E04 6.68E04 8.78E05 9.59E04

Circuit-s208 122 189 3.20E06 2.65E04 4.00E04 3.20E06

Food web

StMarks 54 356 4.73E02 4.53E02 7.16E02 5.19E02

Maspalomas 24 82 7.52E02 1.34E03 1.04E03 9.37E02

Rhode 19 53 6.52E07 1.35E06 6.11E07 5.94E06

Social influence

Phys-discuss-rev 231 565 4.29E04 2.62E04 1.11E04 2.95E05

Teacher-student 60 94 8.89E01 7.21E02 4.14E02 9.41E01

Social

Phys-friend-rev 228 506 6.57E03 1.02E05 7.49E03 6.99E04

Highschool 70 366 9.45E04 1.55E03 4.10E03 1.55E05

Figure 5.  The success rates of convergence as a function of log10 η for ER10 network (of Fig. 2) for target 
controlling 3 and 5 nodes, and rhode food web network (of table 1) for target controlling P/N = 0.6 number of 
nodes. η varies from 1e−8 to 1e−3 . Each data point is calculated based on 100 independent iterative searches.
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ill-advised as the computation starting from a dense matrix is in general inefficient. Furthermore, the solutions 
C∗ and its associated C∗

binary also tend to perform poorly when compared to the former approach. However, no 
matter the initial condition, convergence is only affected by the learning rate parameter η.

When the number of nodes are small, such as in those shown in Figs. 1 and 2, we can systematically verify 
TPGM’s searched solutions and compare them with the true optimal target node set, which can be found via a 
brute force exhaustive search approach. As N increases, the N choose P brute force search is no longer viable. 
However, such limitation should also be viewed as a strength, because it shows the difficulty of the search prob-
lem due to its infeasibly large search space; by relaxing matrix C into continuous search space, TPGM is able to 
search for C∗ in the direction of quickest energy cost decrease. Correspondingly, C∗

binary is recovered as the ‘best 
signal’ from C∗.

The computational complexity of TPGM is O (N3) owing to its iterative matrix multiplication. It should 
be noted that the computations of the controllability Gramian matrix, W =

∫ tf
t0 eAτBBTeA

T τdτ as well as the 
calling of the exponential function for computing eAtf  ( eA

T tf  ) are costly, which can result in bottlenecks when 
calculating them in the loop each time. An efficient way to code the TPGM is to compute the controllability 
Gramian W and eAtf  ( eA

T tf  ) outside the while loop and storing them as variables to be retrieved within the loop. 
Furthermore, instead of directly computing the integral, an efficient way to compute the controllability Gramian 
is to use the method of Ref.41.

The condition number of the controllability Gramian matrix plays an important role in our numerical experi-
ments. When trying to target control a network using only driver nodes found from structural  controllability6, 
the condition number of the Gramian may be too high and results in an infeasibly high control  energy31. Increas-
ing the number of control signals can lower the condition number and render the computation of the Gramian 
 feasible11,31. Note that the condition number is dependent on matrices A, B, as well as time horizon tf  . For some 
networks, despite increasing the number of driver nodes, the condition number of the Gramian may still be 
infeasibly high. To lower the condition number, we can normalise the link weights of the connection matrix, {aij} , 
by dividing throughout a normalization constant. For networks whose connection strengths are not specified, 
we set {aij} = 1 if there is a directed link from node j to node i. However, if this results in an infeasible condition 
number, then we will set the link strength to be random uniform [0.5, 1.5], which tends to make the condition 
number feasible.

Building a connection between target and driver node set optimization could be very interesting. Drawing on 
driver nodes optimization of previous  works15–17,22,30 for controlling the full node set, the conclusions formed are 
as follows: when driver nodes are placed in such a way such that they are evenly spaced out, the control energy is 
most optimal. Thus, by grouping controlled nodes to their nearest driver nodes and arranging the driver nodes 
in such a way that no groups have excessive geodesic  paths32 from drivers to controlled nodes, energy cost is 
most optimized. We expect the same conclusion to hold even for the case of target control, because full control 
and target control are not fundamentally different. Further, we expect that for the reverse problem of optimiz-
ing B, given that C is fixed, the same energy-optimal configurations, as presented in Figs. 1 and 2, to be found. 
In other words, whether optimizing driver nodes placement, or target nodes arrangement, the energy-optimal 
configurations are the same. Therefore, energy cost minimization could be an important mechanism in explain-
ing structural self-organized configurations of driver/ target nodes in a natural or man-made complex system.

In conclusion, this paper demonstrate the possibility of minimizing control energy of directed complex 
networks by optimizing the target node matrix C, given that network connection matrix A, driver node place-
ment B, and time horizon tf  are fixed. We achieve this by adapting target  control19, as well as deriving the energy 
gradient ∂E (CT

k )

∂CT = ∇E (CT
k ) into the TPGM  algorithm22. By ascribing target nodes to their nearest driver 

nodes, a directed complex network driven by driver nodes can be decomposed into elementary  topologies6,30, 

Figure 6.  An illustration of one particular iterative search’s convergence process on the electronic circuit 
network, Circuit-s208. (a) cos(θk) moves closer to zero with iteration, although it is not always non-increasing. 
(b) Control energy is always non-increasing with each iteration, moving in the direction of largest decreasing 
energy cost. Insets show the first 0.3× 105 iterations.
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such as stem, circle, and dilation. Through extensive simulations on elementary topologies, our results reveal 
that control energy is most optimal when target nodes are chosen such that path distances from driver nodes to 
target nodes are minimized, corroborating existing literature  results21,33. Furthermore, we validate our results 
on model networks (ER and SF) and real networks and show that optimal target node set (both C∗ and C∗

binary ) 
has control energy of a few orders of magnitude lower compared to target nodes chosen from heuristic selec-
tion schemes, such as random or nodes degree-based selection. Compared to previous works of control energy 
 optimization16,17,20,22,27, which focus on driver node set optimization, our work is different in the sense that we 
instead considered target nodes selection optimization. Furthermore, our work show that in the context of target 
control, the choice of target nodes can account for variability of the control energy of a few orders of magnitude.

The problem of optimizing target nodes in the interest of control energy could be applicable to linear opinion 
 networks42–44, where the state vector represents opinions of individuals, and the driver nodes are modeled as 
agents of influence. In such a system, we may be interested in influencing a certain fractional share of opinions 
to align with a pre-defined favorable opinion. Much like a voter model  problem45, where we are only interested 
in obtaining the majority share of opinions, the specificity of which individuals to target control is not so much 
important as the control energy, which we would like to minimize. There are some avenues of research which 
appear to be promising. For example, within the framework of network controllability, recent works have incor-
porated conformity  behavior46,47, where individuals’ opinions adapt over time to mirror the average of their 
neighbors’, thus making the network dynamics richer and more realistic. It would be interesting to explore how 
optimal target nodes relate to a linear opinion network, both with and without conformity behavior in the future.

Methods
Model networks. Similar to recent  works18,19, the model networks considered in this paper are modeled 
with stable dynamics, i.e. {aii} < 0 ∀i . Specifically, we choose the diagonal of the connection matrix A to be cho-
sen random uniformly from [−1, 1] , and then stabilize the nodal dynamics with {aii} = δi + ǫ , where ǫ is chosen 
such that the eigenvalues of A are all negative and the largest eigenvalue is −1 . The scale-free model network is 
constructed from the static  model48,49, and the link weights {aij} are drawn randomly from a uniform interval 
[0.5, 1.5].

Input nodes. The driver nodes selected are chosen using the method detailed in Ref.6, which uses the Hop-
croft-Karp  algorithm7 to find the driver nodes to ensure controllability. To be specific, the driver nodes found in 
the research work presented in this paper are an overestimation, and guarantee full controllability of the com-
plex network. Thus, controllability is always ensured, regardless of the choice of target node set C, and the term 
(CWCT ) is always invertible.

Weighted nodes degree. When considering nodes degree in the degree-based selection strategies, we 
computed the weighted link weights of each node to determine the in-degree (out-degree). For example, the in-
degree of node i is computed as: =

∑N
j=1,j �=i{aij} . Note that self-links, {aii} , do not count as node degree as they 

arise from categorically different  sources12.

Gramian computation. The controllability Gramian can be efficiently calculated using the method of 
Ref.41:

where each block partitioned matrix of (11) is a N × N matrix. The controllability Gramian is computed using 
(12).
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