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Disentangling etiologies of CNS 
infections in Singapore using 
multiple correspondence analysis 
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Central nervous system (CNS) infections cause substantial morbidity and mortality worldwide, with 
mounting concern about new and emerging neurologic infections. Stratifying etiologies based on 
initial clinical and laboratory data would facilitate etiology-based treatment rather than relying on 
empirical treatment. Here, we report the epidemiology and clinical outcomes of patients with CNS 
infections from a prospective surveillance study that took place between 2013 and 2016 in Singapore. 
Using multiple correspondence analysis and random forest, we analyzed the link between clinical 
presentation, laboratory results, outcome and etiology. Of 199 patients, etiology was identified 
as infectious in 110 (55.3%, 95%-CI 48.3–62.0), immune-mediated in 10 (5.0%, 95%-CI 2.8–9.0), 
and unknown in 79 patients (39.7%, 95%-CI 33.2–46.6). The initial presenting clinical features were 
associated with the prognosis at 2 weeks, while laboratory-related parameters were related to 
the etiology of CNS disease. The parameters measured were helpful to stratify etiologies in broad 
categories, but were not able to discriminate completely between all the etiologies. Our results 
suggest that while prognosis of CNS is clearly related to the initial clinical presentation, pinpointing 
etiology remains challenging. Bio-computational methods which identify patterns in complex 
datasets may help to supplement CNS infection diagnostic and prognostic decisions.
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JEV  Japanese encephalitis virus
LGI1  Leucine-rich glioma inactivated 1
MCA  Multiple correspondence analysis
mRS  Modified Rankin Scale
NMDAR  N-Methyl-d-aspartate receptor
PCA  Principal component analysis
RF  Random forest
TB  Tuberculosis
VGKC  Voltage-gated potassium channel
VZV  Varicella zoster virus
WBC  White blood cells

Infections of the central nervous system (CNS) cause substantial morbidity and mortality  worldwide1. They can 
be caused by bacteria, viruses, fungi, protozoa and parasites, but often the etiology remains  unknown2. Patients 
with CNS infections may present with fever, headache, photophobia, and/or neck stiffness, seizures, altered 
consciousness and/or focal neurological signs or a combination of these  features3. Encephalitis, most commonly 
of viral etiology, is associated with poor  outcomes4. In a subset of cases, the presence of autoantibodies to cell-
surface neuronal or glial proteins suggest an autoimmune  etiology2,5.

Concern is growing about novel neurologic  infections6, due to the emergence of new pathogens, the spread 
of existing pathogens to new regions as a consequence of globalization, climate change, increased virulence of 
existing pathogens and increasing numbers of immunocompromised  patients7–9. This is particularly true for 
Southeast Asia, a focal point for zoonotic and vector-borne diseases  emergence10,11. Singapore, a global transit 
hub, has recently experienced outbreaks of CNS infections of public health importance, including encephalitis 
from Nipah  virus12,13, H1N1 influenza with neurological  complications14,15 and meningoencephalitis from Group 
B Streptococcal  infection16,17. However, etiological data of CNS infections in Singapore remain limited. A better 
understanding of CNS infection epidemiology would improve clinical management and public health.

The diagnosis of CNS infection is notoriously difficult, and early treatment is often empirical. Timely identi-
fication of the etiologic agent is crucial to optimize clinical care, as disease outcome often depends on tailoring 
treatment for the infectious  agent18. This challenge is compounded by (1) the limited accessibility of the tis-
sue where pathogen replication occurs, (2) the absence, in most clinical laboratories, of sensitive methods for 
molecular and serological detection of infection and (3) the lack of consensus on case definitions and standard-
ized diagnostic  approaches19. Categorizing patients into the types of CNS infections and postulating stratified 
etiologies based on initial clinical presentation and laboratory results would help rationalize early investigations 
and target treatments for the most likely etiologies.

Here, we report the epidemiology and clinical outcomes of patients with CNS infections from the Singapore 
Neurologic Infections Program (SNIP), a prospective surveillance study. We used multiple correspondence analy-
sis (MCA) and random forest (RF) to uncover patterns in our complex  dataset20,21 and explore the relationship 
between initial clinical presentation, laboratory results, outcome at 2 weeks, and the etiology of CNS infections.

Results
Etiology, demographics and epidemiology. In this study, 2061 patients were screened; 277 were 
recruited and 199 were included in the analysis (Fig. 1). An infectious agent was identified in 110/199 patients 
(55.3%, 95%-CI 48.3–62.0), an immune-mediated etiology in 10/199 (5.0%, 95%-CI 2.8–9.0), and 79/199 
patients (39.7%, 95%-CI 33.2–46.6) had unknown etiology. Among the 110 cases with an infectious etiology, 
bacteria (excluding tuberculosis, TB) was the most common (50/110, 45.5%, 95%-CI 36.5–54.8), followed by 
virus (33/110, 30.0%, 95%-CI 22.2–39.1), TB (22/110, 20.0%, 95%-CI 13.6–28.4) and fungus (5/110, 4.5%, 95%-
CI 2.0–10.2) (Table 1). The most common specific infectious cause was Mycobacterium tuberculosis (22/199, 
11.1%, 95%-CI 7.4–16.1), followed by Group B Streptococcus (17/199, 8.5%, 95%-CI 5.4–13.3), Treponema pal-
lidum (13/199, 6.5%, 95%-CI 3.9–10.9), varicella zoster virus (VZV) (12/199, 6.0%, 95%-CI 3.5–10.2), Strep-
tococcus pneumoniae (11/199, 5.5%, 95%-CI 3.1–9.6) and herpes simplex virus (HSV) (10/199, 5.0%, 95%-CI 
2.8–9.0). The demographic characteristics of the patients were not significantly different across etiologies, except 
for the presence of comorbidities and the HIV status (Supplementary Table 1). In the 14 HIV-positive patients, 
Treponema pallidum was the most common etiology, followed by cytomegalovirus (CMV) and Cryptococcus neo-
formans (Supplementary Table 2). Cerebrospinal fluid (CSF) results are summarized in Supplementary Table 3.

Of the 10 immune-mediated cases, 7 were diagnosed locally based on clinico-serological data: 3 N-methyl-
D-aspartate receptor (NMDAR) encephalitis, and 1 each of voltage-gated potassium channel (VGKC) complex 
encephalitis, glutamic acid decarboxylase (GAD) encephalitis, acute disseminated encephalomyelitis (ADEM) 
and Bickerstaff encephalitis. Results from the Oxford Neuroimmunology laboratory identified additional 3 cases 
with NMDAR encephalitis.

Figure 2A,B show the absolute counts and percentages of patients with meningitis, encephalitis or meningoen-
cephalitis stratified by etiology. Bacterial and TB infections caused both meningitis and meningoencephalitis; 
fungal infections caused only meningitis. Interestingly, viral infections and the unknown etiology group had 
similar proportions of all 3 syndromes.

The counts and percentages of good or poor outcomes (as measured by the modified Rankin Scale (mRS) 
score ≤ 2 or ≥ 3, respectively) at two weeks and six months, stratified by etiology, are shown in Fig. 2C–F. At 
2 weeks, fungal infections caused greatest morbidity, with poor outcomes in more than 75% of cases, followed 
by autoimmune etiology, TB and bacterial infections. Similarly, viral infections and the unknown etiology group 
had similar proportions of good and poor outcomes.
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Figure 1.  Study schematic. Notes: (1) These patients might or might not have fulfilled the study criteria; those 
who were missed either died or were not able to take consent because no legally acceptable representative 
was available or they were transferred out of hospital before taking consent or primary team doctors were not 
agreeable to recruit patients who are in serious condition or prisoners. (2) Patients may have been recruited 
on the discharge date or overlooked or patient withdrew from the study or declined to be followed up upon 
recruitment or demise.
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With univariable regression analysis, the following variables measured at enrolment were significantly associ-
ated with a poor outcome at two weeks: age over 65 years old, immunocompromised, altered mental status, facial 
focal neurological signs, muscle weakness, neck stiffness, abnormal movements and mRS score of 3–5 (Table 2).

Table 1.  Distribution of infectious etiologic agents causing CNS infections.

Etiology n/N % (95%-CI)

Bacterial (N = 50)

Group B Streptococcus 17/50 34.0 (22.4–47.8)

Treponema pallidum 13/50 26.0 (15.9–39.6)

Streptococcus pneumoniae 11/50 22.0 (12.8–35.2)

Klebsiella pneumoniae 3/50 6.0 (2.1–16.2)

Neisseria meningitidis 2/50 4.0 (1.1–13.5)

Haemophilus influenzae 1/50 2.0 (0.4–10.5)

Mycoplasma pneumoniae 1/50 2.0 (0.4–10.5)

Streptococcus galloly ssp pasteurianus 1/50 2.0 (0.4–10.5)

Streptococcus bovis 1/50 2.0 (0.4–10.5)

Viral (N = 33)

Varicella zoster virus 12/33 36.4 (22.2–53.4)

Herpes simplex virus 10/33 30.3 (17.4–47.3)

Enterovirus 5/33 15.2 (6.7–30.9)

Cytomegalovirus 2/33 6.1 (1.7–19.6)

Dengue virus 2/33 6.1 (1.7–19.6)

Epstein-Barr virus 2/33 6.1 (1.7–19.6)

Tuberculosis (N = 22)

Mycobacterium tuberculosis 22/22 100

Fungal (N = 5)

Cryptococcus neoformans 5/5 100

Table 2.  Univariable regression analysis for a poor mRS outcome at 2 weeks. (a) Defined as history of diabetes, 
history of liver disease, history of renal disease, history of bone marrow transplant, history of solid organ 
transplant, or history of steroid use. (b) Compared to normal protein level of 10–40 mg/dl. (c) Defined as < 0.6. 
(d) Defined as < 135 mEq/L. (e) Compared to reference normal range of 3.5–11 × 106/mL. (f) Compared to 
reference of CSF white cells count ≤ 4/ul.

Variable OR (95% CI) p-value

Age > 65 6.8 (2.8–18.0)  < 0.001

Female 1.5 (0.8–3.0) 0.232

Immunocompromised(a) 2.6 (1.2–5.5) 0.015

HIV positive 1.2 (0.2–4.6) 0.842

Altered mental status 34.4 (12.0–125.2)  < 0.001

Facial focal neurological signs 9.0 (4.2–19.9)  < 0.001

Muscle weakness 28.5 (11.0–85.5)  < 0.001

CSF protein  abnormal(b) 1.5 (0.7–3.4) 0.344

CSF to blood glucose ratio  low(c) 1.8 (0.8–4.8) 0.186

Neck stiffness 2.3 (1.1–5.1) 0.035

Poor mRS score at enrolment 128.0 (40.1–582.3)  < 0.001

Low  sodium(d) 1.2 (0.6–2.4) 0.619

Abnormal movement 9.3 (2.1–63.9) 0.007

High CSF pressure 0.5 (0.2–1.2) 0.148

High WBC  count(e) 1.5 (0.8–3.0) 0.237

Low WBC  count(e) 0.5 (0.03–3.4) 0.560

% neutrophils in CSF > 80% 1.1(0.23–4.2) 0.886

CSF white blood cells count 5–200(f) 0.73 (0.24–2.34) 0.576

CSF white blood cells count > 200(f) 0.46 (0.14–1.6) 0.212
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Multiple correspondence analysis. For multivariable analysis, multiple correspondence analysis (MCA) 
was performed. Dimension 1 was composed of variables that pertain to the clinical presentation of the patient, 
such as altered mental status, poor mRS score at enrolment, muscle weakness, facial focal neurological signs and 
comatose state; this dimension captured 17.4% of the variance in the data points. Dimension 2 was composed 
of variables related to laboratory measurements, such as abnormal CSF protein concentration, CSF white cell 
count, CSF to blood glucose ratio, blood white blood cell count as well as HIV status (Fig. 3A,B); this dimension 
captured 10.9% of the variance in the data points. The correlation between the variables of the MCA is presented 
in Fig. 3C. The closer two variables are located on the plane, the more correlated they are.

The distribution of the subjects on the MCA plane was analyzed by clinical outcome at two weeks (Fig. 4A). 
Cases with good outcome at two weeks were mainly grouped on the left-hand side while cases with poor out-
comes were located on the right. As dimension 1 mainly relates to the clinical presentation at enrolment, this 
suggests that clinical presentation at enrolment is indicative of clinical outcome at two weeks.

Figure 2.  Distribution of diagnosis (A,B) and clinical outcomes (C–F) stratified by etiology. Absolute counts 
(A) and percentages (B) of cases with diagnoses of meningitis, encephalitis or meningo-encephalitis, stratified 
by etiology. Absolute counts and percentages of cases with different clinical outcomes at 2 weeks (C,D) and 
6 months (E,F), stratified by etiology.
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Figure 3.  Variables of the MCA—contribution to the first 2 dimensions and correlation. Contribution of 
variables (expressed in %) to the first (A) and second (B) dimension of the MCA. The dotted red line denotes 
the average value expected if all variables contributed equally to the dimensions. Presence or absence of a 
variable is denoted by 1 or 0 after the name, except for the CSF white cell count where 0, 1 and 2 denote ≤ 4, 
5–200 and > 200 cells/ul, respectively. Dimension 1 is related to the initial clinical presentation, dimension 2 is 
related to laboratory measurements (see text for details). On the correlation plot of the variables (C), variable 
contribution to the dimensions of the MCA is indicated in color and distance is inversely proportional to 
the correlation between variables. Variable abbreviations: "poor-mRS-enrol": poor mRS score at enrolment, 
"im-comp": immunocompromised, "hiv": HIV-status, "alt-ment": altered mental status, "comat": comatose, 
"neck-stf ": neck stiffness, "fac-neur-signs": facial focal neurological signs, "musc-weak": muscle weakness, "abn-
mvt": abnormal movements, "csf-abn-prot": abnormal level of protein in the CSF, "csf/bld-glc" low CSF to blood 
glucose ratio, "csf-wc-hi": elevated CSF white cell count, "csf-%ntr-hi": elevated percentage of neutrophils in the 
CSF, "gend-f ": female gender, "wbc-hi": elevated white blood cells, "low-sod": low sodium, "csf-press-hi": elevated 
opening pressure, "age > 65": age over 65.
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Next, the distribution of the subjects on the MCA plane was analyzed by etiology (Fig. 4B). Cases with TB or 
bacterial etiologies occupied the lower section of the graph. Cases with fungal or autoimmune etiology occupied 
the upper section of the graph. The point distribution suggests that patients with CSF white cell count > 200 
and/or neutrophils percentage > 80% were more likely to be of bacterial or TB etiology. Absence of white cells 
in the CSF, absence of abnormal protein level in the CSF, or positive HIV-status were suggestive of fungal or 
autoimmune etiology.

Random forest. Random Forest (RF) analysis was performed with the clinical outcome at 2 weeks or the 
etiology as classifier. The importance of the variables for the different outcomes at 2 weeks (good, poor, dead or 
n.a.) is presented in Fig. 5A. The error rate as function of the number of trees generated is presented in Fig. 5B. 
The overall error rate was close to 25%, but the error rate for classification of good and poor outcome was much 
lower. Collectively, the RF analysis suggests that a poor mRS score at enrolment was strongly associated with a 
poor outcome at 2 weeks. The importance of the variables for the different etiologies is presented in Fig. 5C. The 
high error rate (overall above 50%, Fig. 5D) suggests that the variables available did not reliably discriminate 
between all the etiologies. This is not surprising considering the high degree of overlap observed in the MCA 
between TB and bacterial, viral and unknown, and fungal and autoimmune.

Figure 4.  Individuals on the MCA plane, colored by clinical outcome (A) or etiology (B). Representation of 
the individuals on the plane defined by dimensions 1 and 2 of the MCA, stratified by mRS score at 2 weeks (A) 
or by etiology (B). The larger dot and the ellipse represent the barycenter of the cloud of points, and the 95% 
confidence interval of the barycenter. Dimension 1 is related to the initial clinical presentation, dimension 2 is 
related to laboratory measurements (see text for details).
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Discussion
The identification of CNS infection etiology remains a major challenge in all health systems throughout the world 
due to limited access to the infection site, delay in the timely collection of relevant clinical samples, as well as 
limitations of current diagnostic tests. The practice of early empirical antimicrobial treatment upon suspicion 
of CNS infection is important for optimal patient care, but may confound the diagnostic process. In this study, 
we made an effort to prospectively and systematically define the etiology of CNS infections in Singapore. We 
observed that more than half (55.3%) of the CNS infections had an infectious etiology identifiable with diagnostic 
tests currently available in clinical laboratories. CNS infections were most frequently bacterial, followed by viral, 
TB and fungal. Around two-fifths of patients (39.7%) remained without a definitive etiology, slightly lower than 
the 48% and 52% recently reported in  Vietnam22 and  Thailand23, respectively.

In our cohort, TB was the most frequent specific etiology for CNS infection. The incidence of TB has increased 
in Singapore in recent years, possibly due to factors such as the influx of immigrants from highly endemic coun-
tries, an ageing population and high prevalence of diabetes mellitus, a risk factor for  TB24. Our data suggests that, 
similar to neighboring  Malaysia25, TB is a common etiologic agent for CNS infections.

The high number of Group B Streptococcus detected was linked to the epidemic that occurred in Singapore 
in 2015, which was associated with consumption of raw  fish26. VZV and HSV were the most common viral 
etiologies identified. No Japanese Encephalitis Virus (JEV) was detected in our cohort, possibly because of the 
low prevalence of JEV in Singapore since the elimination of pig  farming27. In the rest of Asia and globally, JEV 
remains a common cause of viral encephalitis, as for example in  Vietnam22. In Taiwan, HSV and VZV were 
the most frequent cause of encephalitis in a hospital-based  study28. In Europe, the most frequent etiologies for 
CNS infections were Streptococcus pneumoniae (8%), Mycobacterium tuberculosis (5.9%), followed by VZV and 
Listeria in the  elderly1.

In our cohort, the most frequent etiology for CNS infection in HIV-positive patients was Treponema pal-
lidum (6/14), with Cryptococcus neoformans accounting for only two cases. This contrasts with studies in the 
United States, Europe and Uganda, where Cryptococcus neoformans was the leading cause of meningitis in HIV 
 patients1,29,30. Surprisingly, despite a high overall proportion of TB meningitis in the SNIP cohort, TB was not 
detected in HIV-positive patients.

Figure 5.  Random forest (RF) analysis for clinical outcome at 2 weeks (A,B) and etiology (C,D). A random 
forest analysis was performed with the clinical outcome at 2 weeks as classifier (A,B) or the etiology as classifier 
(C,D). (A) Variable importance for each of the possible outcomes (poor outcome, dead, good outcome, n.a.). 
(B) Error rate (based on out-of-the-bag cross-validation) as a function of the number of trees generated. (C) 
Variable importance for each of the possible etiologies (autoimmune, bacterial, fungal, TB, unknown, viral). (D) 
Error rate (based on out-of-the-bag cross-validation) as a function of the number of trees generated.
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Immune-mediated causes of encephalitis form a significant proportion of cases of previous unknown cause. 
In our cohort, 10 cases (5.0%) were identified through a combination of tests done as part of clinical evaluation 
and a systematic screen of autoantibodies in a research laboratory. A prospective study from the UK identified 
20% of cases with an immune-mediated cause, including ADEM, NMDAR encephalitis and VGKC complex 
 encephalitis31; another from Thailand, found 24% of patients with encephalitis were associated with immune 
 encephalitis23. A recent retrospective cohort study in the United States also identified 20% with an autoimmune 
 cause32; another from Vietnam found 9.1% had NMDAR  encephalitis33. A systematic approach to autoantibody 
testing in the assessment of acute encephalitis patients may be required as early and accurate diagnosis of 
immune-mediated etiology is important for appropriate immunotherapy rather than empirical administration 
of antimicrobials.

A second major issue in the management of CNS infection is prognostication and resource allocation to 
manage patients. While viral meningitis generally has a good  prognosis34, acute bacterial meningitis or viral 
encephalitis tend to be more severe and can be  fatal18. Therefore, recognizing the clinical syndrome and the 
etiology is crucial to optimize clinical care and improve patient management. In this study, we explored the use 
of bio-computational methods to aid in the diagnosis and prognostication of patients with suspected CNS infec-
tions. Using MCA, we showed that some of the features at the initial clinical presentation, such as altered mental 
status, poor mRS score at enrolment, muscle weakness, focal facial neurological signs, abnormal movements 
and comatose state correlated with a poor outcome at two weeks. RF analysis suggested that poor mRS score at 
enrolment and muscle weakness were the two factors most strongly associated with a poor outcome at 2 weeks, 
followed by age > 65 years, elevated leukocytes in the CSF, altered mental status and focal facial neurological 
signs. Being aware of these features early in the disease course allows clinicians to decide which patients they 
need to be more vigilant with and devote resources to manage them.

To identify possible etiologies, MCA showed that laboratory-related variables were important. Normal CSF 
protein levels, low CSF white cell count (≤ 4) and/or an HIV-positive status was suggestive of fungal or autoim-
mune etiology; very high CSF white cell count (> 200 cells/ul) and/or high white blood cells (> 11 × 106 cells/mL) 
was associated with TB or bacterial etiology. However, RF analysis could not reliably discriminate between all 
etiologies based on the available predictors. This is not surprising as there was considerable overlap observed in 
the MCA between bacterial and TB, fungal and autoimmune, and viral and unknown. It suggests that the predic-
tors available could hint at a bacterial/TB or viral/unknown or auto-immune, but could not further differentiate 
between greatly overlapping groups (Fig. 3B). Nevertheless, this initial stratification may still be helpful to guide 
early clinical care. Interestingly, cases with viral and unknown etiologies were mostly overlapping, and therefore 
mostly similar with respect to the variables measured in our study. This suggests that cases without confirmed 
etiology may have been viral. This hypothesis is also supported by our finding that the distribution of meningi-
tis, encephalitis and meningo-encephalitis was almost identical between CNS of viral and unknown etiologies.

Identifying other clinical, laboratory and investigation parameters for analysis may allow refinement of the 
bio-computational methods. The methods may also be attempted with larger cohorts of CNS infection patients 
for validation. Nonetheless, our data reaffirms that definitive diagnostic tests to reliably discriminate between 
infectious and non-infectious etiologies for CNS infections are urgently needed.

The strengths of our study were its prospective design and multidisciplinary recruitment from all the major 
public hospitals in Singapore, which provides medical care to approximately 70–80% of the population. The 
patients were enrolled by acute care hospitals and therefore are likely to be representative of the range of clinical 
presentations and causes encountered in Singapore. A limitation of the study was the inclusion of only adult 
cases. In addition, the clinical management of the cases was left to the treating physicians, hence the investiga-
tions and treatments would have varied. From an analysis perspective, MCA is a powerful technique to detect 
and represent patterns in large datasets. However, it does not formally prove associations between measured 
variables and outcomes. RF, on the other hand, outputs a ranking of the relative importance of variables in clas-
sifying outcomes, but does not quantify the absolute contribution of each variable in determining the outcome.

In conclusion, this prospective study described the epidemiology of CNS infections in Singapore, and high-
lighted a surprisingly high proportion of TB meningitis in our cohort. Our analysis using MCA and RF also 
suggests that initial clinical features at presentation informs prognosis at two weeks, while laboratory parameters 
may aid stratification to various etiologies and guide early clinical care. Our study supports the utility of bio-
computational algorithms to analyze the wealth of data routinely collected in most clinical settings. However, 
the parameters measured in clinical practice not being able to discriminate completely between the etiologies 
demonstrates the urgent need to develop better diagnostic tests to enhance the current diagnostic toolbox and 
accurately determine the etiology of CNS infection.

Methods
Study design and ethics. We performed a prospective surveillance cohort study in five adult general 
hospitals (Singapore General Hospital, National University Health System, Changi General Hospital, Tan Tock 
Seng Hospital, and Khoo Teck Puat Hospital) and one national tertiary center (National Neuroscience Insti-
tute) between August 2013 and December 2016. The study was approved by the SingHealth Centralized Institu-
tional Review Board (CIRB Ref no. 2013/374/F) and NHG Domain Specific Review Boards (2013/01259) and 
all experiments were performed in accordance with relevant guidelines and regulations. Informed consent was 
obtained from patients or from the next of kin for patients who were unconscious or incapable of exercising 
rational judgment.

Inclusion and exclusion criteria. Inpatients were enrolled if they met the study inclusion criteria: (1) clin-
ical suspicion for CNS infection or (2) any two of the following symptoms—(a) fever or history of fever (≥ 38 °C) 
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during the presenting illness, (b) new onset of seizure, (c) focal neurological deficits, (d) CSF pleocytosis (> 4 
white blood cells/uL), (e) abnormal neuroimaging suggestive of CNS infection, (f) abnormal electroencepha-
logram (EEG) suggestive of CNS infection, (g) depressed or altered level of consciousness, or (3) no alternative 
etiology for acute paralysis identified. Patients were excluded: (1) if they had existing indwelling ventricular 
device or (2) if they or their relatives did not provide written informed consent.

Procedures. Patients were enrolled and followed up at 2 weeks or at discharge, whichever was earlier, and 
at six months (by questionnaire or during a coincident hospital visit). Sera and CSF were collected during acute 
disease at the time of hospitalization and, when possible, convalescent sera were collected 2–4 weeks later. This 
study did not interfere with the clinical management of the patients. The following data were collected: demo-
graphics, presenting symptoms, past medical history, neuroimaging and neurophysiology tests, laboratory inves-
tigations including CSF results and all therapeutic interventions. The modified Rankin Scale (mRS) was used 
to measure the degree of disability and dependence in daily activities at enrolment, two weeks (or discharge) 
and six months. An mRS scores of 0–2 denoted a good outcome, while a score of 3–5 denoted a poor outcome.

Case definition. The clinical diagnosis of patients was classified as encephalitis, meningitis, or meningoen-
cephalitis. No cases of encephalomyelitis were found. Patients with encephalitis, defined as inflammation of the 
brain parenchyma associated with neurologic dysfunction, had altered mental status (decreased level of con-
sciousness, lethargy, personality change, and unusual behavior), seizures, focal neurological signs, and/or fever. 
Patients with meningitis, defined as inflammation of the meninges, had fever, headache, photophobia, and neck 
stiffness. Meningoencephalitis patients had a combination of the above features.

Based on laboratory results, etiologies were classified as bacterial, viral, tuberculosis (TB), fungal or autoim-
mune. Infectious etiologies were classified as “confirmed”: (1) infectious agent detected in CSF by polymerase 
chain reaction (PCR), serological or molecular testing and (2) clinical presentation consistent with infection, or 
“probable”: (1) infectious agent detected extra-cranially (e.g. blood) by PCR, serological or molecular testing or 
(2) clinical presentation consistent with infection and patient responds to specific antimicrobial treatment. Both 
confirmed and probable cases are included in this analysis.

The diagnosis of autoimmune encephalitis was based on (1) conventional clinical neurological assessment and 
standard diagnostic tests, (2) absence of identification of an infectious agent, and (3) presence of N-methyl-D-
aspartate receptor (NMDAR), voltage-gated potassium channel (VGKC) complex, contactin-associated protein 
like 2 (CASPR2), leucine-rich glioma inactivated 1 (LGI1), gamma-aminobutyric acid A receptor (GABAAR) 
or glutamic acid decarboxylase (GAD) autoantibodies in the serum and/or  CSF5. Autoantibody tests were per-
formed in the Singapore hospitals’ clinical laboratories at the managing clinicians’ discretion. All sera samples 
were subsequently tested systematically for the above autoantibodies in the Oxford Neuroimmunology laboratory 
(Oxford University Hospitals, United Kingdom). Live cell-based assay was used for the detection of IgG antibod-
ies binding to the NMDAR NR1/NR2b subunits, CASPR2, LGI1 and α1 and γ2 subunits of GABAAR. Binding 
to the cell membrane was scored by fluorescence microscopy. VGKC complex antibodies was measured using a 
radioimmunoprecipitation assay of VGKC complex proteins labelled with 125I-α-dendrotoxin and precipitated 
with patient serum  samples35.

Statistical analysis. Statistical analysis was performed using R version 3.4.136 and R-packages  ggplot237, 
 FactoMineR38 for the multiple correspondence analysis (MCA) and  missMDA39 for imputation of missing val-
ues. For the random forest (RF) analysis, packages  randomForestSRC40 and  ggRandomForests41 were used. For 
univariable analysis, the association between explanatory variables and poor outcome at two weeks (mRS ≥ 3) 
was assessed by Fisher’s exact test and expressed as odds ratio (OR).

MCA is a non-supervised exploratory principal component method that can be performed on datasets con-
taining qualitative variables. MCA does not require an a priori knowledge of the correlation between variables, 
nor does it make any assumption about their distribution. For these reasons, MCA is particularly useful to analyze 
large epidemiological  datasets20,21. The goal of MCA is to simplify complex datasets by reducing the number 
of variables in order to uncover patterns in the data; results are represented graphically for easy interpretation. 
During MCA, the independent variables are grouped into a smaller number of uncorrelated dimensions (facto-
rial axes) that describe the spread (or variance) of points. Each dimension explains a progressively decreasing 
percentage of the spread of the data points.

All variables used in univariable analysis were used to construct the factorial axes of the MCA. Etiology, 
mRS outcome at two weeks and mRS outcome at six months were outcome variables, and were excluded from 
the factorial axes construction. They were used to classify the individuals on the MCA plane, allowing us to 
explore patterns between individuals with similar outcome or etiologies. Interpretation of the results is based 
on the distance between the data points and their position along the dimensions. Points similar with respect to 
the independent variables are closer to each other. Similarly, the closer the variables are in the MCA space, the 
more correlated they are.

RF is a versatile supervised machine learning algorithm that can be used for classification or  regression42. A 
RF consists of an ensemble of decision trees made of a random sample of the available predictor variables. In 
isolation, the predictive accuracy of each tree is low, but the prediction is vastly improved by growing a large 
ensemble of trees (a forest) and letting them “vote” for the most likely class. RF is widely used in life sciences 
because of its high-prediction accuracy and the fact that it outputs information on the importance of variables 
for the classification problem at hand. Conveniently, the RF algorithm outputs the importance of the various 
predictor variables for each outcome of interest. Error rate for classification can be generated using the built-in 
cross-validation algorithm, where each tree in the forest has its own training (bootstrap) and test (out-of-bag, 
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OOB)  data43. In our study, we used RF to assess the relative importance of the variables used for univariable 
analysis in classifying either the clinical outcome at two weeks or the etiology.

Ethics approval. The study was approved by the SingHealth Centralized Institutional Review Board (CIRB 
Ref no. 2013/374/F) and NHG Domain Specific Review Board (2013/01259).

Consent to participate. Informed consent was obtained from patients or from the next of kin for patients 
who were unconscious or incapable of exercising rational judgment.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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