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Low‑noise tunable deep‑ultraviolet 
supercontinuum laser
Callum R. Smith1, Asbjørn Moltke1, Abubakar I. Adamu1, Mattia Michieletto2, 
Patrick Bowen2, Peter M. Moselund2, Christos Markos1,3 & Ole Bang1,2,3*

The realization of a table‑top tunable deep‑ultraviolet (UV) laser source with excellent noise 
properties would significantly benefit the scientific community, particularly within imaging and 
spectroscopic applications, where source noise has a crucial role. Here we provide a thorough 
characterization of the pulse‑to‑pulse relative intensity noise (RIN) of such a deep‑UV source based 
on an argon (Ar)‑filled anti‑resonant hollow‑core (AR HC) fiber. Suitable pump pulses are produced 
using a compact commercially available laser centered at 1030 nm with a pulse duration of 400 fs, 
followed by a nonlinear compression stage that generates pulses with 30 fs duration, 24.2 μJ energy at 
100 kHz repetition rate and a RIN of < 1%. Pump pulses coupled into the AR HC fiber undergo extreme 
spectral broadening creating a supercontinuum, leading to efficient energy transfer to a phase‑
matched resonant dispersive wave (RDW) in the deep‑UV spectral region. The center wavelength of 
the RDW could be tuned between 236 and 377 nm by adjusting the Ar pressure in a 140 mm length 
of fiber. Under optimal pump conditions the RIN properties were demonstrated to be exceptionally 
good, with a value as low as 1.9% at ~ 282 nm. The RIN is resolved spectrally for the pump pulses, the 
generated RDW and the broadband supercontinuum. These results constitute the first broadband RIN 
characterization of such a deep‑UV source and provide a significant step forward towards a stable, 
compact and tunable laser source for applications in the deep‑UV spectral region.

The importance of a compact wavelength tunable laser source, capable of delivering ultrashort UV pulses can-
not be overemphasized. Furthermore, in order to maximize performance within an intended application, it is 
important that the pulse-to-pulse energy fluctuation, defined by the relative intensity noise (RIN), is as low 
as possible. The semiconductor industry would directly benefit from the advent of such technology, since the 
shorter wavelength radiation allows inspection of nanoscale periodic structures with improved  sensitivity1,2, 
whilst the low RIN ensures high signal-to-noise ratio. Furthermore, the combination of high photon energy 
and ultrashort duration is attractive for materials processing, since this can provide effective energy coupling to 
precise regions of optical  materials3. The inherently high photon energy of UV radiation is sufficient to liberate 
electrons from many materials, thus a stable and tunable UV source would be highly applicable to angle-resolved 
 spectroscopy4. The compact nature of the desired laser would set it apart from large and expensive UV sources, 
such as  synchrotrons5 and free-electron  lasers6. Furthermore, the simplicity and tunability of the source would 
distinguish it from bulk crystal nonlinear frequency conversion  systems7.

A promising approach to develop a tunable UV laser is to utilize and combine the emerging hollow core 
(HC) fiber technology with noble nonlinear gases. This has been achieved at multi-gigawatt peak powers using 
capillary  fibers8,9. HC photonic-crystal fibers (PCFs)10 offer a viable option for lower peak power levels, and 
with improved loss properties they offer a more practical implementation than capillaries. HC PCFs can include 
fibers with guiding based on a photonic  bandgap11, a Kagomé  lattice12, or a negative curvature anti-resonant 
(AR)  structure13. The latter two of these designs can provide low-loss transmission over a broad bandwidth, 
and a relatively low anomalous dispersion environment, which are very attractive attributes for ultrashort pulse 
compression and extreme nonlinear  optics14. Combining a HC fiber with gas allows control over the guiding 
properties of the fiber. The dispersion profile can be tailored via the pressure, allowing smooth control of the 
ratio between the contributions from the filling gas (all normal) and the fiber geometry (all anomalous). Hence, 
it is possible to adjust the guiding properties of the fiber, including the zero-dispersion wavelength (ZDW) 
across the transmission band. Coupling a pump pulse of sufficient energy at an appropriate wavelength within 
the anomalous dispersion regime of the fiber will initiate soliton compression, resulting in extreme spectral 
broadening. A RDW can be generated if the spectral broadening reaches the phase matching frequency, defined 
as the frequency at which the propagation constants of the pump (higher-order soliton) and the RDW are equal 
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in the direction of  evolution15. Consequently, an efficient transfer of energy from the soliton to the RDW ensues. 
The phase-matching frequency occurs on the other side of the ZDW, therefore, the position of the RDW can be 
tuned by simply varying the gas pressure within the HC fiber.

This concept has been employed using a range of gas species to generate UV radiation with broadband guid-
ing HC  PCFs16–22. The majority of these experiments relied on a titanium-sapphire laser to provide the pump 
pulses, resulting in an inherently large footprint and low repetition rate of 1 kHz to achieve the required pulse 
energy. However, a few experiments have utilized the nonlinearly compressed output of ytterbium-based lasers, 
which significantly increases the repetition rate to MHz  regime21,22, an important consideration for maximizing 
signal-to-noise ratio and average power in certain applications. Furthermore, the use of an ytterbium-doped gain 
medium paves the way to a more compact and rugged design, owing to the outstanding performance of these 
lasers at high repetition  rates23,24. Interestingly, despite the impressive results achieved using this technique, the 
pulse-to-pulse stability of the generated UV radiation is only recently gaining attention. One study demonstrated 
a deep-UV RDW at 275 nm with a RIN of 33.3% measured in the time domain, however this poor performance 
was partially attributed to the high RIN of 5.5% of the 2.45 µm pump  laser25. This high RIN value for the pump 
was a result of wavelength conversion from a low-noise titanium-sapphire laser (0.5% RIN) using an optical 
parametric amplifier. Another study quotes a RIN value of 0.4% measured in the frequency domain, for 1030 nm 
pulses compressed to the single-cycle regime using a two-stage AR HC fiber compression  scheme22. However, 
this study did not involve RDW generation and the UV component of the spectrum is not specifically isolated 
and measured.

Unfortunately, there are numerous definitions of noise, requiring different measurement techniques. Thus it 
difficult to compare quoted noise values, especially when there is a lack of information regarding the definitions 
and techniques. Without a clear understanding of what is meant by noise, and how it is measured, little confi-
dence can be given to a quoted value. The RIN can be investigated in the time domain, where a large number of 
pulses are incident on a photodiode. The voltage trace for each pulse is recorded on an oscilloscope, and under 
appropriate conditions, i.e. when the pulse duration is significantly shorter than the photodiode response time, 
the peak voltage is proportional to the pulse energy, thus the RIN can be determined by analyzing the defined 
peak voltage value for each  pulse26–28. Note that in this instance the term RIN is a little misleading, since the 
optical intensity cannot be determined, however despite this misnomer the nomenclature is maintained. An 
advantage of the time domain approach is that a distribution of pulse energies can be obtained. This fact was 
exploited to confirm the presence of optical rogue waves using wavelength-to-time conversion, where the long 
wavelength edge of a generated supercontinuum was spectrally filtered and temporally stretched in a highly 
dispersive  fiber29. The stretched pulses allow real-time observation of the pulse train on an oscilloscope. RIN 
can also be investigated in the frequency domain using an electrical spectrum  analyzer30–34. An advantage of this 
technique is that noise sources can be identified based on their corresponding frequency, i.e. lower frequencies 
could indicate mechanical vibrations, which once identified can be minimized. In this investigation we measure 
the RIN in the time domain (details in Materials and Methods). Note that for several reasons, RIN measure-
ments in the frequency domain can give lower values than measurements in the time domain, especially when 
the integration frequency range does not extend to the laser repetition rate.

Here, we develop a widely-tunable table-top deep-UV supercontinuum source and present an investigation 
into the RIN properties of the generated deep-UV emission in an Ar-filled AR HC fiber, demonstrating that a 
value as low as 1.9% can be achieved under appropriate pumping conditions. Suitable pump pulses were generated 
using a commercially available 1030 nm seed laser operating at 100 kHz combined with a compact nonlinear 
compression stage based on an air-filled AR HC fiber. The energy, duration and RIN of the pump pulses are 
fully characterized, and subsequently used to pump a second AR HC fiber within a gas-cell to generate a super-
continuum containing deep-UV radiation, which is characterized in terms of RIN, tunability, power and beam 
profile. A discussion on these results is presented, alongside corroborating studies from numerical simulations. 
The relatively high repetition rate and compact system format, combined with a detailed noise investigation, 
takes the concept of a tabletop, tunable deep-UV source closer to a commercial reality.

Results
Nonlinear pulse compression. The deep-UV source developed in this investigation was seeded by the 
Origami 10XP (NKT Photonics A/S), operated at 100 kHz, producing pulses with a duration of 400 fs, energy of 
up to 35 µJ and a RIN of 0.5% at a center wavelength of 1030 nm. This pulse duration is too long to initiate the 
required soliton dynamics to achieve RDW generation in our experimental arrangement. Therefore, a nonlin-
ear pulse compression stage was employed to reduce the initial pulse duration, as  in21. This technique utilizes a 
Kerr medium, whereby the spectral bandwidth of the pulse is increased through self-phase modulation (SPM), 
creating a positive linear chirp across the central portion of the pulse. This chirp can be subsequently compen-
sated by a linear dispersive element providing anomalous dispersion, leading to temporal compression. The first 
stage of this two-stage process requires a suitable nonlinear material that supports the peak powers involved 
(~ 80  MW) and allows for subsequent focusing into the UV-generation fiber. Conventional solid-core silica 
fibers are not suitable since the peak powers involved are significantly higher than the critical power for self-
focusing (~ 4 MW)35, thus laser-induced damage is inevitable. There are examples of systems that have achieved 
compression of pulses with similar peak powers in non-guiding bulk media, however these systems have com-
plex multi-pass36 or multi-component37 architectures, and suffer from inherent spatial distortions due to the 
non-guiding  nature38. Despite gas having a significantly lower nonlinear index than silica, gas-filled HC fibers 
can provide high-quality modal guidance over long interaction lengths, thus allowing suitable nonlinear phase 
to accumulate. Additionally, these fibers offer a significantly higher self-focusing critical  power39 and damage 
threshold compared to conventional solid-core fibers, thus HC gas-filled fiber is an attractive platform for pulse 
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compression in this experiment. The compression system can be further simplified by operating without the use 
of a gas-cell, thus the fiber is simply filled with ambient air at atmospheric pressure, as  in40. We employed this 
approach, utilizing a 375 mm length of AR HC fiber (provided by NKT Photonics A/S) with 27 µm core diameter 
and 780 nm capillary wall thickness (CWT). Note that this places the ZDW of the fiber at ~ 940 nm, and thus 
the fiber is pumped in the anomalous region, which is sub-optimal for pulse compression since it does not allow 
linearization of the chirp across the entire pulse. Nevertheless, effective pulse compression is achieved with this 
arrangement. A pair of identical plano-convex lenses with 50 mm focal length were used to couple light into 
the fiber and collimate light out of the fiber. Temporal compression was achieved with a pair of dispersive mir-
rors (HD59, Ultrafast Innovations GmbH). Each mirror reflection provides a group delay dispersion of ~ − 500 
 fs2, with a total of four reflections used in our system to give optimal compression at maximum available pulse 
energy. A schematic of the nonlinear compression stage is included in Fig. 1, with a SEM image of the fiber end-
facet shown (inset).

Throughout this report: transmission efficiencies were recorded by measuring incident and transmitted aver-
age power with a thermal power meter, pulse durations were measured with an intensity autocorrelator, spectra 
were recorded using an integrating sphere fiber-coupled to a CCD spectrometer, and RIN was measured using 
a photodiode connected to an oscilloscope and computer (see Materials and Methods). The RIN measurement 
stage is shown after the UV generation stage in Fig. 1, however RIN measurements are also made after the seed 
laser and after the nonlinear compression stage with a similar arrangement.

The performance of the compression stage is summarized in Fig. 2. An overall transmission efficiency of ~ 69% 
was achieved through the entire nonlinear compression stage, providing a maximum output pulse energy of 
24.2 µJ. The compressed pulse duration at the maximum pulse energy is 30 fs, corresponding to a compression 
factor of 13.3. The fiber length was chosen such that maximum pulse compression occurred at maximum available 
pulse energy, thus generating maximum peak power. The RIN of the compressed pulses tends to increase with 
pulse energy, however it is maintained at < 1% up to the maximum pulse energy of 24.2 µJ as shown in Fig. 2a, 
where the dashed line indicates the RIN of the seed laser. The compressed pulse at 20.9 µJ (gray shaded region 
in Fig. 2a) is further examined in Fig. 2b,c. The broadened pulse spectrum is shown in Fig. 2b, alongside the 
spectrally-resolved RIN, obtained using a monochromator to isolate the spectrum at ~ 2 nm increments with 
an ~ 3 nm full-width half-maximum (FWHM) bandwidth. The power spectral density has the expected features 
of SPM, with additional power distorting the profile between ~ 1020 and 1035 nm. This distortion is attributed to 
the excitation of higher-order modes or cladding light. This undesired light undergoes different spectral broad-
ening and thus creates the observed spectral features. Figure 2c shows the intensity autocorrelation trace of the 
compressed pulse, with a  sech2-shaped pulse profile fit to the central portion of the trace, indicating a FWHM of 
34.3 fs. Despite measuring a total RIN of 0.94%, depicted by a dashed line in Fig. 2b, the RIN of the pulse varies 
considerably as a function of wavelength, within a range of 0.6–13% across the full spectrum. This rather large 
variation can be derived from the power fluctuations of the input pulse through fluctuations in the strength of 
the SPM. As the SPM induced spectral broadening is linear in  power41, the center wavelength of each peak is 
jittering slightly. As a result hereof, the magnitude of the RIN value is correlated with the slope of the intensity, 
as demonstrated numerically  in42. Thus, certain spectral components can exhibit significantly higher or lower 
RIN values compared to the total RIN, corresponding to the correlation within the pulse.

Figure 1.  Experimental set-up: L1, L2, L3 = anti-reflection coated UV-fused silica plano-convex lens, 
L4 = uncoated calcium fluoride plano-convex lens, W1 = anti-reflection coated UV fused silica plane window, 
W2 = uncoated calcium fluoride plane window, DM = dispersive mirror, OAP = UV-enhanced aluminium off-
axis parabolic mirror, BPF = spectral band-pass filter.
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Resonant dispersive wave generation. Figure 1 includes an SEM image of the fiber used in the UV 
generation stage. This fiber (provided by NKT Photonics A/S) was an AR HC fiber, with a 50 µm core diameter, 
860 nm CWT and 140 mm length. The fiber was sealed in a gas-cell, which could be filled with Ar from 1 to 
20 bar. Argon was selected since it is a noble gas and thus Raman-induced energy transfer and noise is avoided. 
The gas-cell was purged with Ar several times prior to experiments to minimize the presence of atmospheric 
air and impurities. Anti-reflection coated UV fused silica and uncoated calcium fluoride were used as input 
and output windows, respectively, allowing the laser beam to enter and exit the gas-cell. The pulses from the 
nonlinear compression stage are coupled into the fiber using a plano-convex lens with a focal length of 100 mm. 
The output beam is collimated using an aluminium-coated off-axis parabolic (OAP) mirror, employed to avoid 
chromatic aberrations, and sent on to the diagnostics. At the maximum input pulse energy of 24.2 µJ, the pulse 
energy at the output of the fiber was 16.9 µJ (70% transmission efficiency), measured by recording the average 
power after the OAP mirror and accounting for losses due to the gas-cell output window and the OAP mirror.

The generation of a RDW requires that the point of maximum compression is reached within the fiber. Thus, 
for fixed pump pulse parameters, this imposes upper and lower pressure limits for achieving RDW generation. 
Increasing the pressure within the fiber increases the nonlinearity and decreases the magnitude of the group 
velocity dispersion (GVD) at the pump wavelength, for pressures below the pressure at which the ZDW is equal 
to the pump. As the ZDW approaches the pump, the magnitude of the dispersion will become insufficient to allow 
compression within the available fiber length, and thus the upper pressure limit is reached. As the pressure is 
reduced, the lower nonlinearity will result in insufficient broadening from SPM within the available fiber length, 
and thus a lower pressure limit is reached. Additionally, it is well known that the RDW wavelength redshifts with 
pressure within these pressure  limits16.

In Fig. 3a we show experimentally that the position of the RDW can be tuned with pressure and pump 
energy. It is well known that the temporal quality of soliton compression depends on the soliton number, with 
an optimum occurring for a soliton number around  443. Therefore, for each pressure the pump pulse energy was 
tuned to an optimum value, provided above each spectrum in Fig. 3a. For the available fiber length of 140 mm 
the lower limit of pressure below which an RDW could not be generated with the available pulse parameters 
was 2.2 bar. At this pressure the optimal pulse energy was the maximum available of 24.2 µJ (30 fs duration), 
resulting in clean RDW generation at 236 nm. Increasing the pressure to 5.7 bar, we observed tunability of the 
RDW to 377 nm for an optimal pulse energy of 18.1 µJ (45 fs duration). This tuning range of 141 nm represents, 
to the best of our knowledge, the largest experimentally reported RDW tuning range for an Ar-filled HC fiber. 
Above 5.7 bar, clear RDW generation was not observed, as the RDW became obscured by other spectral features. 
Figure 3b depicts the measured RDW center wavelength as a function of pressure taken from the data presented 

Figure 2.  Characterization of pulse compression stage: (a) Pulse duration (green dots) and RIN (red dots) of 
compressed pulses as a function of output pulse energy, with the 0.5% RIN of the input seed indicated (dashed 
line), (b) Spectrum (blue line) and spectrally-resolved RIN (red connected dots) of the 20.9 µJ compressed 
output pulse, with the 0.94% RIN of the full pulse spectrum indicated (dashed line), (c) Intensity autocorrelation 
trace of the 20.9 µJ pulse (green line) and  sech2-shaped pulse fitting.
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in Fig. 3a. To confirm and explain the large tuning range, we consider theoretical predictions of the RDW center 
wavelength. In order to achieve RDW generation, the phase-mismatch, Δβ, between the propagation constant 
of the RDW, βRDW, and the nonlinear propagation constant of the pump, βsol, should be zero, described by: 
�β = βRDW (ωRDW )− βsol(ωRDW ) = 0 , where ωRDW represents the frequency of the RDW. Figure 3b shows 
predictions of the RDW based on two different estimates of βsol. The first is a semi-analytical prediction, which 
estimates βsol(ωRDW ) ≈ 2.3γP0N , where γ is the nonlinear coefficient, P0 is the peak power of the pump, N is the 
soliton number, which in this case increases from ~ 3 to 6 as the pressure is increased from 2.2 to 5.7 bar, and the 
factor 2.3 N is a result of numerical simulations as discussed  in44. The second prediction is purely analytical, based 
on a solution for a higher-order  soliton25, and estimates βsol(ωRDW ) ≈ (2N − 1)2|β2|/2T

2
0
 , where β2 is the GVD 

at the pump wavelength and T0 is the pump pulse duration. Note, that for this range of N, the approach based on 
an analytical solution for a higher-order  soliton25 gives a closer prediction. One reason for this impressive tuning 
range is attributed to the choice of pump wavelength, 1030 nm, which is longer compared to titanium-sapphire 
lasers emitting at ~ 800 nm. To demonstrate this we used the more accurate model for RDW center wavelength 
prediction described above and calculated dispersion from the modified capillary  model45, to plot the predicted 
maximum tuning range of the RDW as a function of pump wavelength, as shown in Fig. 3c with (blue line) and 
without (red line) the nonlinear phase contribution. Here we observe that it is important to include the nonlin-
ear contribution below ~ 1.5 um, and the theory confirms an increase in tuning range by 13.4% going from 800 
to 1030 nm. Interestingly, the theory predicts this tuning range could be even further increased by pumping at 
940 nm. Furthermore, fiber design can be optimized to maximize the available tuning range.

RIN investigation. To measure the RIN of the RDW, we used a spectral bandpass filter centered on 280 nm 
with a FWHM of 10 nm. We selected this bandpass filter since we could generate a RDW at this wavelength 
under stable conditions, while still enabling the investigation of the energy dependence. As shown in Fig. 3a, 
RDW generation could be achieved below 280 nm, however this requires the maximum available pump energy, 
and therefore would not allow us to investigate the impact of increasing pump pulse energy on the RDW RIN (as 
investigated in Fig. 5). To tune the RDW to match the spectral filter, the Ar pressure was adjusted to 3.4 bar and 
the pump parameters were set at 20.9 µJ energy and 34.3 fs duration, i.e. the parameters presented in Fig. 2b,c. 
This resulted in a RDW center wavelength of 277 nm with a FWHM of ~ 20 nm. The full spectrum generated 
under these conditions is shown in Fig. 4. Here we observe peaks resulting from the resonances dictated by 
the CWT at 880 nm and 588 nm, labelled R2 and R3 since they correspond to the second and third resonance 
respectively. Furthermore, we observe a clear RDW at 277 nm, albeit with a reduced power spectral density 
compared to other features of the spectrum. This reduced power spectral density can be partially attributed 
to the increased losses of the spectral detection system for deep-UV radiation, arising from the barium sulfate 
internal surface of the integrating sphere, the connecting fiber and the spectrometer. The spectral bandpass filter 

Figure 3.  Tunability of the RDW with Ar pressure: (a) Normalized intensity spectrum of the RDW generated 
at various Ar pressures for optimal pump energy, (b) Measured RDW center wavelength as a function of Ar 
pressure for optimal pulse energy (blue dots) and predicted RDW center wavelength based on semi-analytical 
(green dots) and an analytical solution (red dots), (c) Predicted maximum tuning range of the RDW as a 
function of pump wavelength for a fixed duration (35 fs) and pulse energy (18 μJ) within the available pressure 
range (2.2–5.7 bar).
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was employed to reject all wavelengths outside the transmission band, allowing direct access to the central fre-
quency components of the RDW. This deep-UV radiation was focused onto the photodiode using an uncoated 
calcium fluoride lens with 50 mm focal length. The RIN of this radiation was measured to be 2.7%. Additionally, 
this measurement was repeated at different wavelengths using 10 nm FWHM spectral bandpass filters across the 
spectral bandwidth, as shown in Fig. 4. There are four distinct regions where low RIN, i.e. < 3%, was observed: 
the RDW, R2, R3 and the 1000–1050 nm band, corresponding to the wavelengths present in the pump pulse. 
Outside these regions the RIN is generally higher, with a value exceeding 19% at 650 nm. The histogram plots 
shown in Fig.  4 show the noise measurements conform reasonably to a normal distribution, with examples 
shown for 280 nm, 590 nm and 650 nm, which have RIN values of 2.72%, 1.21%, and 19.01% respectively.

The RIN of the RDW centered around 280 nm was further investigated by varying the pump pulse parameters. 
The pump energy threshold required to generate a RDW at 3.4 bar of Ar within the available length of fiber was 
19.2 µJ, with the onset of RDW distortion occurring above 22.1 µJ, thus the RIN properties were investigated in 
this energy range. The center wavelength of the RDW blueshifts as the pump energy is increased over this range, 
as observed in Fig. 5a, which also shows the FWHM transmission band of the 280 nm spectral filter (shaded 
gray). The evolution of power in the entire UV region, i.e. < 400 nm, was measured by spatially separating 
frequency components using a calcium fluoride prism, allowing UV radiation to be isolated and directed to a 
thermal power meter. As observed in Fig. 5b, the power initially increases rapidly, reaching a maximum level of 
35.4 mW between 20.4 and 20.9 µJ, before decreasing slightly and plateauing at higher energies. This plateau is 
attributed to an increasingly unsmooth pulse self-compression in the UV generation fiber, and consequently less 
efficient energy transfer to the RDW as the pump energy is increased. This power measurement level accounts 

Figure 4.  Spectral and RIN data for the generated supercontinuum: (Top) Spectrum generated for 20.9 µJ 
pulses at 3.4 bar of Ar (blue curve) with spectrally-resolved RIN (connected red dots), (Bottom) A sample of 
histogram plots showing the detected peak voltage distribution.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18447  | https://doi.org/10.1038/s41598-020-75072-y

www.nature.com/scientificreports/

for losses of the gas-cell output window, the OAP mirror and the prism. Therefore, 2.1% of the output power is 
contained within the UV, with an estimated 42% of that UV power contained in the RDW, which has an average 
power of ~ 15 mW, and a pulse energy of ~ 150 nJ. Considering the entire system of pulse compression and UV 
generation, the total conversion efficiency from the 1030 nm seed laser to the RDW at ~ 280 nm is 0.5%. Figure 5a 
also shows the RIN of the radiation transmitted by the spectral bandpass filter, which at threshold is measured at 
11.5%. Initially, increasing the pump energy results in a decreasing RIN, and a minimum value of 1.9% is reached 
at 20.4 µJ, after which a further increase in pump energy leads to an increasing RIN, up to a value of 15.8% at 
22.1 µJ. The high RIN measured at the lowest pump energy can be explained by the fact that the RDW process is 
close to threshold conditions, and thus small changes in pump conditions can have a pronounced effect on the 
RDW generation process. The subsequent decrease in RIN is attributed to two phenomena. Firstly, the energy in 
the RDW increases, as displayed in Fig. 5b, thus the impact of fluctuations on the RIN is reduced. Secondly, the 
wavelength of the RDW is shifted into the center of the filter, providing increased spectral overlap. The increase 
in RIN at higher pump pulse energies can be attributed to the fact that the RDW center wavelength shifts out of 
the FWHM transmission band of the 280 nm spectral filter. Thus, the sampled radiation is not generated from 
the central section of the RDW but actually from the wings and background UV radiation, which does not 
share the low noise properties of the RDW. As observed in Fig. 4, the RIN increases rapidly as the wavelength is 
increased from the RDW central wavelength. Therefore, it is shown that a careful choice of pump conditions is 
necessary to achieve pronounced RDW generation with noise properties considerably lower than the majority 
of the generated spectra. The beam was profiled in the far-field after the 280 nm spectral filter using a CMOS 

Figure 5.  Characterization of UV radiation: (a) RIN and RDW center wavelength (RDW CW) as a function 
of pump energy, with the FWHM of spectral filter the shown (shaded gray), (b) UV power below 400 nm as a 
function of pump energy with far-field beam profile (inset).

Figure 6.  Numerically modelled and experimental obtained spectra and RIN at 3.4 bar Ar: (a) Measured 
spectrum for pumping with 20.9 µJ (blue line) and numerically modelled spectrum assuming 20 µJ pump 
energy (red line), (b) Measured RIN for pumping with 20.9 µJ (blue dots) and numerically modelled RIN 
assuming 20 µJ pump energy (red line). The following regions are indicated: pump (shaded red), R2, R3 and R4 
(shaded gray) and the RDW (shaded purple).
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image sensor to acquire the image shown in Fig. 5 (b, inset), taken for a pump pulse energy of 20.4 µJ. The beam 
displays a reasonably Gaussian profile, indicating excitation of the fundamental mode, which is desirable in 
most applications.

Numerical investigation. Numerical modelling was employed to confirm the low RIN measured at the 
RDW and the resonant peaks. The supercontinuum generation process was simulated using the model described 
by Habib et al.46,47, which incorporates ionization using the Ammosov, Delone and Krainov  model48. The RIN 
model incorporated amplitude and anti-correlated pulse duration noise of 1% and one photon per mode quan-
tum  noise42. The modelling assumed a bandwidth-limited  sech2-shaped input pulse, with 13.6 µJ pulse energy 
and 35 fs pulse duration. Figure 6a shows the simulated and measured spectra between 220 and 1500 nm. Fur-
thermore, the modelled FWHM of the pump radiation (shaded red), the fiber resonances dictated by the CWT 
at 866 nm (R2), 575 nm (R3) and 436 nm (R4) (shaded gray) and the RDW at 254 nm (shaded purple) are 
included. Whilst we note discrepancies between the magnitude of the intensity between the measured and simu-
lated spectra, particularly in the visible region, we observe excellent agreement in the overall spectral bandwidth 
and shape and in the positions of the RDW and the resonant peaks, indicating the developed model is consistent 
at predicting the positions of these important features. The discrepancy in the visible spectrum primarily shows 
the shortcomings of the available analytical descriptions of resonances, which are more pronounced as the pump 
approaches R2. Figure 6b shows the simulated and measured RIN values between 220 and 1050 nm, again with 
the same shaded regions indicated. We firstly note that the magnitude of simulated and measured RIN values 
vary across a similar range, except for narrow discontinuities near the resonances. We observe that the simulated 
RIN drops below 4% in the vicinity of the resonances, the pump and the RDW. This trend is also observed empir-
ically for R2, R3, the pump and the RDW. Note we did not measure an especially low RIN value at R4, attributed 
to suboptimal spectral overlap with our closest available filter at 450 nm, thus we may be sampling the spectral 
edge of the peak at R4. Additionally, the power observed at R4 was considerably lower than at R2 and R3, and 
not significantly higher than the surrounding spectrum. Thus, the low noise properties of R4 could be hidden by 
the higher noise of the background spectrum. Due to the decreasing impact at shorter wavelengths, resonances 
below R4 were not considered. Whilst there are slight discrepancies in the absolute values, the simulated regions 
of low RIN tend to agree with the experimental measurements.

Discussion
The early development of deep-UV supercontinuum laser sources based on gas-filled HC fibers have been 
using < 50 fs pulses from large footprint titanium-sapphire pump lasers with repetition rates around 1 kHz. There 
has been little focus on the noise properties, except for a recent work reporting good long-term stability, but high 
pulse-to-pulse RIN values of 33.3% of a 275 nm RDW, attributed to the large RIN of 5.5% of the 2.45 µm  pump25. 
The technology is now maturing to a level ready for applications, such as imaging and spectroscopy, which has 

Figure 7.  RIN measurement details: (a) Schematic of recorded pulse train, (b) example voltage response 
for pulse 1, (c) example voltage response for pulse 2, (d) example histogram of Vpulse for the Origami 10XP 
operating at 35 µJ.
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seen a recent push towards table-top ytterbium-based lasers with MHz repetition rates as pump lasers, giving few-
hundred fs pulses at center wavelengths of 1030  nm21,22. To get the necessary short pump pulses external pulse 
compression with chirped mirrors and a second gas-filled HC fiber is used the generate < 30 fs pump  pulses21,22. 
With the push towards MHz and applications it has become even more important to assure low levels of RIN of 
the source and one could fear that the external pulse compression module could significantly add to the RIN of 
an otherwise low-noise seed laser. The issue about RIN and in particular the role of the compression module, 
has been the key motivation behind this work.

Here, we firstly demonstrated a compression module using an air-filled HC fiber (i.e. no gas-cell) that could 
give the necessary compression to around 30 fs. At maximum compression we achieved a pulse duration of 30 fs 
for 24.2 µJ pulses at 100 kHz repetition rate with 0.94% RIN. This corresponds to an addition of only 0.44% to 
the low-noise seed, which had a RIN of 0.5%. A thorough spectrally resolved measurement of the RIN of the 
compressed pulse revealed a RIN profile that was strongly oscillating between 0.6 – 13% around the spectrally 
averaged value of 0.94%. This implies that the pump noise can be further reduced by better control of the com-
pression. Using pump pulses with a range of energies between 18.1 and 24.2 µJ and a range of pulse durations 
between 30 and 45 fs, we have demonstrated a wide tunability of the RDW center wavelength from 236 to 377 nm. 
This wide tuning range of over 140 nm is, to the best of our knowledge, the largest achieved using an Ar-filled 
HC fiber. Furthermore, under optimal conditions the RDW could be generated at 280 nm with a RIN value of 
only 1.9%. This is significantly lower than most commercially available supercontinuum source in the visible and 
near-infrared and documents that the tunable RDW technology is ready for applications. We also presented the 
first broadband measurement of the RIN profile of the gas-filled AR HC fiber based UV supercontinuum source 
and demonstrated that the RIN is strongly oscillating because of the spectral dips implicit for such a source, but 
stayed low around the RDW and the resonant peaks around 880 nm and 588 nm, as well as around the pump 
in the 1000–1050 nm band. The RDW and resonance wavelengths and the associated low levels of RIN was 
confirmed by numerical simulations.

Our study presents the first broadband characterization of the noise of these promising deep-UV super-
continuum sources. We have revealed that while the tunable RDW part of the spectrum has low noise and is 
thus ready for applications, the broadband source needs further development if it is to be used in imaging and 
spectroscopy applications requiring low noise over a broad bandwidth, such as in scatterometry-based imaging 
of nanostructures on semiconductor chips.

Materials and methods
RIN measurements. The RIN measurements were performed using a fast silicon photodiode (DET10A2, 
Thorlabs, Inc.) connected to an oscilloscope (HDO9404, Teledyne LeCroy, Inc.). This is shown after the UV 
generation stage in Fig. 1; however note that the RIN measurement was also performed after the seed laser and 
the nonlinear compression stage. When taking RIN measurements, it is important to attenuate the laser power 
to a level suitable for the photodiode, and the method of attenuation varies depending on the measurement. For 
RIN measurements after the seed laser and after the nonlinear compression stage, i.e. those presented in Fig. 2a, 
the laser beam was attenuated by taking a reflection off an uncoated wedge at close to normal incidence, and 
subsequently further attenuated by transmission through absorptive neutral density filters. The initial wedge 
reflection is necessary to decrease the power to an appropriate level not to damage the absorptive neutral density 
filters. For the spectrally-resolved RIN measurement of the pump pulse, i.e. those presented in Fig. 2b, the beam 
was steered to a grating based monochromator (SP-2300i, Princeton Instruments, Inc.) using protected silver 
mirrors. By adjusting the grating angle and the width of an output slit, the wavelength and bandwidth of the 
transmitted radiation can be controlled. The FWHM was maintained at 3 nm throughout the measurements. 
The power of the transmitted radiation is suitable for direct attenuation with absorptive neutral density filters. 
Finally, for the spectrally-resolved RIN measurements of the generated supercontinuum, i.e. those presented 
in Fig. 4, the radiation was spectrally filtered by a bandpass filter and then directly attenuated using absorptive 
neutral density filters. Following attenuation, the laser beam is focused onto the detector, so that its energy falls 
entirely within the active area. We have found that RIN varies significantly across the spatial profile of the beam, 
therefore it is important to ensure the whole beam area is sampled. The photodiode generates a photocurrent in 
proportion to the optical energy on the detector, which is consequently converted into a voltage and displayed on 
the oscilloscope. Thus, the pulse train creates a series of voltage peaks at the laser repetition frequency, as shown 
schematically in Fig. 7a. The rise time of the photodiode is ~ 1 ns and thus several orders of magnitude greater 
than the pulse durations being considered in this investigation. Therefore, the duration of the voltage response 
to each pulse is a characteristic of the photodiode. The oscilloscope was operated at a sampling rate of 40 GS/s, 
corresponding to a sampling period of 25 ps, which was sufficiently short to avoid under sampling of the pulse 
profile. It is important that each pulse is clearly distinguishable from the next, and therefore the repetition rate 
must be suitably low such that adjacent pulses do not interfere. Furthermore, we ensured all our measurements 
were conducted in the linear response regime of the photodiode, a necessity for these measurements. To cal-
culate RIN we require the voltage measurement of a sample of pulses. The oscilloscope runs a MATLAB script 
to identify an individual pulse and record the corresponding voltage response. In the pulse train schematic in 
Fig. 7a the first identified pulse is labeled pulse 1, for which an example of an actual recorded voltage response 
is shown in Fig. 7b. Once this process is complete the script finds a pulse, labeled pulse 2, and again records 
the voltage response, as shown for another example recorded voltage response in Fig. 7c. Note that pulses that 
reach the detector whilst the script is identifying and recording the voltage response of an individual pulse are 
not recorded. This is depicted schematically in Fig. 7a, where we see pulse 1 and pulse 2 are separated by several 
unrecorded pulses. This process continues until a pre-determined number of pulses have been recorded. A volt-
age value is then assigned to each pulse, given by Vpulse, which under the appropriate conditions is proportional 
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to the energy of the pulse. Vpulse is calculated by taking the difference in voltage between the peak of the pulse and 
the floor of the pulse, as indicated in Fig. 7b,c. Thus, an array of voltages is obtained, proportional to the energy 
of each pulse. A typical histogram showing the distribution of Vpulse for 2,000 pulses is shown in Fig. 7d. Here 
we can see that the data conforms to a normal distribution. The example data given in Fig. 7b–d is taken from 
the measurement of the output of the Origami 10XP operating at 35 µJ, i.e. the seed laser. The RIN is calculated 
according to:

where σ is the standard deviation and µ is the mean of the array of Vpulse. Since Vpulse is proportional to pulse 
energy, the RIN of Vpulse will be equal to the RIN of the pulse energies. Thus, the RIN defines the percentage 
change in energy (positive or negative) compared to the mean that will contain one standard deviation, which 
for a normal distribution corresponds to 34.1% of the data. The calculated RIN from the example of the Ori-
gami 10XP seed laser given in Fig. 7 is 0.5%. We maintain this definition and technique for RIN measurements 
presented throughout this paper.

Spectral measurements. For spectral measurements the laser beam was directed into an integrating 
sphere (IC2, StellarNet, Inc.). The integrating sphere was fiber-coupled (QP600-1-SR-BX, Ocean Optics, Inc.) 
to a CCD-based spectrometer. For measurements in the range 200–1070 nm the HR2000 + (Ocean Optics, Inc.) 
spectrometer was used, and for measurements in the range 1070–1400 nm the NIRQuest (Ocean Optics, Inc.) 
spectrometer was used. The spectrum shown in Fig. 4 was joined together by matching the amplitude of the 
spectra obtained for the wavelength range around 1070 nm. All spectra are recorded over integration times sig-
nificantly longer than the pulse period, and thus are averaged over a large number of pulses.

Pulse duration measurements. Pulse durations were measured with an intensity autocorrelator (pulse-
Check 50 USB, A.P.E. GmbH). A  sech2-shaped pulse profile was assumed in order to provide a measure of the 
pulse duration.
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