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Cosmological reconstruction 
and energy constraints 
in generalized Gauss–B​onn​et‑​ 
sca​lar–kinetic–matter couplings
Adam Z. Kaczmarek1* & Dominik Szczęśniak2,3

Recently introduced f (G,T) theory is generalized by adding dependence on the arbitrary scalar 
field φ and its kinetic term (∇φ)2 , to explore non-minimal interactions between geometry, scalar 
and matter fields in context of the Gauss–Bonnet theories. The field equations for the resulting 
f

(

G,φ, (∇φ)2,T
)

 theory are obtained and show that particles follow non-geodesic trajectories in 
a perfect fluid surrounding. The energy conditions in the Friedmann–Lemaître–Robertson–Walker 
(FLRW) spacetime are discussed for the generic function f

(

G,φ, (∇φ)2,T
)

 . As an application of the 
introduced extensions, using the reconstruction techniques we obtain functions that satisfy common 
cosmological models, along with the equations describing energy conditions for the reconstructed 
f

(

G,φ, (∇φ)2,T
)

 gravity. The detailed discussion of the energy conditions for the de Sitter and power-
law spacetimes is provided in terms of the fixed kinetic term i.e. in the f (G,φ,T) case. Moreover, 
in order to check viability of the reconstructed models, we discuss the energy conditions in the 
specific cases, namely the f (R,φ, (∇φ)2) and f = γ (φ,X)G + µT1/2 approaches. We show, that for 
the appropriate choice of parameters and constants, the energy conditions can be satisfied for the 
discussed scenarios.

The accelerated expansion of our Universe is one of the biggest challenges in theoretical physics. In particular, 
recent experimental data turns attention of the scientific community to the dark energy (DE) as a new form of 
matter, that drives accelerated phase in cosmology1,2. However, the most popular �-cold dark matter ( �-CDM) 
model suffers from cosmological constant problem and from various observational issues e.g. the missing satel-
lites and the cusp problem3. As a result, a new ways to resolve the DE mystery are desirable. Over the years, a 
large number of possible models and candidates for the dark energy were introduced and studied extensively3,4. 
One of the possible explanations of the DE problem originates from the potential breakdown of the Einstein’s 
general relativity (GR) at the large cosmological scales4,5. This leads to so called modified theories of grav-
ity, where alternative gravitational actions are introduced3,6. Such approach achieved significant attention in 
studying cosmic expansion and other issues in cosmology7. Moreover, important attempts were made to tackle 
unification of current expansionary era with inflationary epoch8. For essential reviews, please see3,4,9,10. In these 
models, source of the dark energy comes from the modified Einstein–Hilbert action, in theory avoiding need 
of the strange types of matter. There is a vast literature exploring different generalisations of the GR, that are 
achieved usually by introducing scalar invariants and their generic functions in action. One of the simplest and 
most popular example is the f(R) gravity, where R is the Ricci scalar introduced by Buchdachl11. Its viability in 
cosmological context, as well as stability, were widely studied12,13. It was shown, that dark energy may be in fact 
geometric effect coming from special choice of the f(R) function14,15. Another interesting theory is the f (G) grav-
ity, where G represents the Gauss–Bonnet invariant16. It is worth to mention that G is the topological invariant 
in four dimensions and is important in higher dimensional brane-world descriptions of gravity. This theory is 
consistent with solar system tests and may describe accelerated expansion of the Universe. Both of these models 
were recently extended to the f (R,G) theory and studied in context of the DE17,18.

Another class of proposals is based on the coupling between matter and geometry, for example the 
f(R, T), f (G,T) and f (R,Lm) theories, where T is trace of the energy momentum tensor and Lm is the matter 
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Lagrangian19–21. These theories are characterised by non-conservation of the energy–momentum tensor. It was 
also shown, that in presence of the geometry–matter coupling, test particles will experience extra force, orthogo-
nal to their four velocities, that leads to the non-geodesic motion22,23. Interestingly, Nojiri et al.24 discussed 
nonminimal coupling of the Lm to the f(R) and f (G) theories, showing that they can unify current accelerated 
expansion with the era of inflation. Moreover, thermodynamical interpretation was recently introduced; addi-
tional terms from curvature–matter coupling may be a way to describe particle production where gravitational 
field is the source of particles25. While searching for alternative matter–geometry couplings, Haghani et al.26 and 
Odintsov et al.27 introduced the f (R,T ,RµνTµν) theory, where besides trace T, matter couples with geometry by 
contraction of the Ricci and energy–momentum tensors ( RµνTµν ). Another approach was recently introduced by 
Xu and collaborators28; the f(Q, T) theory, where trace of the energy–momentum tensor is coupled with the non-
metricity Q. For further and more complex discussion on the geometry–matter couplings we refer reader to6,29.

Slightly different idea was first considered by Jordan et al.30,31. In the so called scalar–tensor theories of gravity, 
scalar field φ is included in gravitational action as a realisation of the Mach’s principle in general relativity32. The 
scalar fields seems to be crucial in explaining inflationary phase of cosmic scenario. In modern literature, the 
scalar-tensor idea is often combined with the approach based on scalar invariants3,9. Besides the f (R,φ) theory, 
the scalar-Gauss–Bonnet gravity (or general f (G,φ) gravity) is very interesting and promising, due to the rela-
tion with low-energy effective action of the string theory33,34. The dynamics of viable inflationary models in the 
scalar-Gauss–Bonnet theory were recently studied by Odintsov and Oikonomou35. Another curious proposal 
was recently presented by Bahamonde et al.36. The generic f (R,φ) function was generalised to the f (R,φ,X) 
theory, where X = (∇φ)2 is the kinetic term. By using the reconstruction techniques, Authors reproduced late-
time acceleration and the �CDM model for simple actions. Spherical symmetric solutions and linear stability of 
the thick branes were studied in context of the f (R,φ,X) gravity37,38; as well as inflation39. Another interesting 
theory, the f (R,RµνRµν ,φ) approach, has been introduced in context of the gravitational waves propagation 
by Lambiase et al.40.

Furthermore, possible geometry–matter–scalar fields couplings were also investigated. They can appear in 
low energy effective limits of string theories41,42 or compactified Kaluza–Klein models43 and may be useful in 
discussing interactions between dark energy and dark matter44. Other approaches to matter–scalar field coupling 
were also investigated45–47. Moreover, the so-called chameleon mechanism is worth emphasis. In this approach, 
the scalar field blends in high density regions with its environment, being in fact invisible48. This is consequence 
of the chameleon scalar field coupling with matter48. This led to introduction of the f (R,φ, (∇φ)2,Lm) gravity49. 
In addition, axion field coupling to matter and geometry may also be interesting50–52. Furthermore, Authors of53 
suggested that shortcomings and issues of the standard f(R, T) gravity may be fixed by inclusion of scalar fields 
in considerations.

The energy conditions play crucial role in the general relativity54,55. Einstein’s field equations admit vast 
number of possible solutions—since geometric side of solution is proper, behaviour of the matter content is a 
possible way to distinguish physical solutions. To do so, specific constraints are imposed on matter distribu-
tion and energy momentum tensor. They originate from the Raychaudhuri equations and are invocations of 
the energy positiveness and the gravity attractiveness. Energy conditions are extremely important in the black 
hole physics, as they are laying foundations of the singularity theorems and play crucial role in the black hole’s 
thermodynamics55,56. There are four fundamental energy conditions54:

•	 the null energy condition (NEC)—asserts that matter density is positive along null (lightlike) curves,
•	 the weak energy condition (WEC)—states that along timelike curves energy density stays positive,
•	 the dominant energy condition (DEC)—states that the speed of energy–mass flow cannot exceed speed of 

light,
•	 the strong energy condition (SEC)—assures that matter gravitates towards matter i.e. gravity is focusing force.

The energy conditions has been studied previously in extended theories of gravity, like the scalar-tensor, f(R) and 
f (G) theories57–64. In context of the FLRW cosmology they were discussed also in the generalised teleparallel 
f (T ) gravity, where T  is the torsion scalar65. For geometry–matter coupling, the energy conditions have been 
considered in context of the f(R, T), f (G,T ) and f (R,T ,RµνTµν) theories20,66,67. Zubair and Kousar68 investigated 
these conditions for the f (R,RµνRµν ,φ) theory and for specific well-known f (R,φ) models; showing that for 
NEC validity, certain conditions on parameters in the f (R,φ) case should be imposed.

In this paper, we introduce formalism of the f
(

G,φ, (∇φ)2,T
)

 gravity, where G , φ , (∇φ)2 , T are Gauss–Bonnet 
term, scalar field, kinetic term and trace of energy–momentum tensor, respectively. We intent to extend previ-
ously considered ideas of scalar field and matter couplings in the f(R) framework to the GB case. As we indicated 
before, there is vast literature exploring scalar fields in the GB theories and recently introduced f(G, T) theory 
grows on popularity as well20,69–74. We derive field equations for this theory and show that test particles follow 
non-geodesic paths. In case of the FLRW metric, we overview energy conditions for the generic function f, and 
discuss them for specific models using reconstruction techniques. Additionally, we discuss energy conditions of 
the f (R,φ, (∇φ)2) gravity for models presented by36. We introduce γ (φ, (∇φ)2)G + g(T) function in the power 
law scenario and study its energy conditions, showing that NEC nad WEC can be satisfied for suitable choice of 
parameters and integration constants.

In present work, ∇α denotes usual covariant derivative with respect to α-th component 
( xα = (x0, x1, x2, x3) = (x0, xi) ), while ∂α = ∂

∂xα  is usual partial derivative. We use units with c = 1 and signature 
of metric (+−−−) . The gravitational coupling is denoted as χ . This paper is organized as follows. In the next section 
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we introduce field equation of the f
(

G,φ, (∇φ)2,T
)

 theory and discuss energy conservation with application to 
the cosmological perfect fluid. Section 3 is devoted to the energy conditions for the cosmological perfect fluid in the 
f
(

G,φ, (∇φ)2,T
)

 theory. In, Sect. 4 we use reconstruction technique and analyze energy conditions in the obtained 
models, while in Sect. 5 we discuss energy conditions of the f (R,φ,X) gravity theory and for the γ (φ,X)G + g(T) 
model. Last section is left for conclusions and summary.

Theoretical model
In order to formulate equations of the theory, we start from the action in the following form:

where R = R
µ
µ denotes Ricci scalar and f

(

G,φ, (∇φ)2,T
)

 is analytical (Taylor expanding) function of the 
Gauss–Bonnet term G = R2 − 4R

µν
µν + R

µναβ
µναβ  . The scalar field φ , its kinetic term (∇φ)2 = gµν∇µφ∇νφ , 

and trace of the energy–momentum tensor T = T
µ
µ ; Lm is the matter Lagrangian density which depends on 

metric tensor gµν and matter fields ψ . The energy–momentum tensor is defined as:

Furthermore, assuming that matter distribution is independent on derivatives of the metric tensor gµν , we obtain:

Next, we vary gravitational action (1) with respect to the components of the metric tensor gµν:

First term on the right hand side of Eq. (4) can be expanded as:

where we assumed that the scalar field is independent of the metric tensor δφ/δgµν = 0 and thus fφδφ = 0 . 
In the above equation, function f

(

G,φ, (∇φ)2,T
)

 for notational brevity is denoted as f and fG = ∂f /∂G , 
f(∇φ)2 = ∂f /∂(∇φ)2 , fT = ∂f /∂T stand for the partial derivatives with respect to the arguments. Variations of 
particular terms are given as:

where K = R
µναβ

µναβ  denotes Kretschmann scalar and tensor �µν is defined as:

Using relations (6) together with Eq. (5), we obtain field equations for the f
(

G,φ, (∇φ)2,T
)

 gravity:

Trace of Eq. (8) is given by:

(1)S =
1

2χ

∫

d4x
√

−g
[

R + f
(

G,φ, (∇φ)2,T
)]

+
∫

d4x
√

−gLm(g ,ψ),

(2)Tµν =
−2
√−g

δ(
√−gLm)

δgµν
.

(3)Tµν = gµνLm − 2
∂Lm

∂gµν
.

(4)

0 = δS =
1

2χ

∫

d4x
[√

−gδ(R + f
(

G,φ, (∇φ)2,T
)

)+ (R + f
(

G,φ, (∇φ)2,T)
)

δ
√

−g
]

+
∫

d4x
√

−gδ
(

Lm(g ,ψ)
)

.

(5)

1

2χ

∫

d4x
[√

−gδ
(

R + f (G,φ, (∇φ)2,T)
)

+
(

R + f (G,φ, (∇φ)2,T)
)

δ
√

−g
]

=
1

2χ

∫

d4x
[√

−g
(

δR + fGδG
)

+ f(∇φ)2δ(∇φ)2 + fTδT)+ (R + f
(

G,φ, (∇φ)2,T
)

)δ
√

−g
]

,

(6)

δ
√

−g = −
1

2

√

−ggµνδg
µν ,

δT = Tµν + gαβ
δTαβ

δgµν
= Tµν +�µν ,

δ(∇φ)2 = δgµν∇µφ∇νφ,

δG = 2RδR − 4δRµν
µν + δK ,

δR = (Rµν + gµν�−∇µ∇ν)g
µν ,

δRα
µνβ = ∇ν(δŴ

α
βµ)−∇β(δŴ

α
νµ) = (gµ�∇[β∇ν] + g�[ν∇β]∇µ)δg

α�,

δRµν = δRα
µαν ,

(7)�µν = gαβ
δTαβ

δgµν
.

(8)

Gµν + (Tµν +�µν)fT +∇µφ∇νφf(∇φ)2 −
1

2
gµν f + [2RRµν − 4R�

µR�ν − 4RµανβR
αβ + 2R� αβ

µ Rν�βα]fG

+
[

2Rgµν�− 2R∇µ∇ν − 4gµνR
αβ∇α∇β − 4Rµν�+ 4R�

µ∇ν∇� + 4R�
ν∇µ∇� + 4Rµανβ∇α∇β

]

fG = χTµν .
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with � = �
µ
µ . The gravitational field equations can be rewritten in a form identical to the Einstein’s field 

equations:

where Tgrav
µν  is contribution coming from the f (G,φ, (∇φ)2,T) term, given by:

To improve context, we note that the effective energy momentum tensor is composed from the standard matter 
content ( Tµν ) and contribution coming from the considered extension of the GR ( Tgrav

µν  ). This tensor contains cur-
vature terms that modifies GR, in terms of geometry, matter and scalar field corrections with couplings between 
them. It can be also regarded as the energy–momentum tensor of matter with the dark energy corrections63,75. In 
the perfect fluid description, besides standard matter fluid, the curvature fluid will be present. It is important to 
remark, that such curvature fluid may admit features not present in the standard matter. Moreover, using proper 
conformal transformation, one could define effective ***stress-energy tensor as T̄eff

µν ∼ T̄µν + T̄
ϕ
µν , where T̄ϕ

µν 
will be contribution coming from the coupling with new scalar field (or fields) ϕ . It is important to remark, that 
the geometrical implications and the energy conditions of the effective energy–momentum tensor may vary 
between conformal related frames63,75,76.

Since, we are dealing with the scalar field, varying action (1) with respect to φ leads to the scalar equation:

This equation describes dynamics of the scalar field φ in the f
(

G,φ, (∇φ)2,T
)

 formalism. It is worth to note that 
the field equations have form similar to the f (G,T) theory, and significant differences comes from the equation 
for the scalar field φ . The covariant divergence of Eq. (8) gives:

and is non-zero. Now we calculate tensor �µν . From Eq. (3) we obtain:

Using generalised Kronecker delta δ�ηαβ = δg�η/δgαβ , with the relation:

and substituting Eq. (14) into Eq. (7), we obtain:

As additional remark we briefly discuss theory with action (1) replaced by:

Function F
(

R,G,φ, (∇φ)2,T
)

 is generalised by including arbitrary dependence on the Ricci scalar R. Clearly, for 
the f

(

G,φ, (∇φ)2,T
)

= R + F
(

R,G,φ, (∇φ)2,T
)

 discussed theory is recovered. This action contains rich variety 
of known dark energy and extended gravity models such as Galileons and theories based on generic function of 
the Ricci scalar (e.g. f(R), f (R,φ, (∇φ)2) , f (R,φ) , f(R, T))12,19,36. From action (17) one can derive field equations:

Next, we discuss properties of the perfect fluid fields, that constitute matter content of the universe. The 
energy–momentum tensor of perfect fluid, described by the energy density ρ and pressure P, is given by:

(9)R − (∇φ)2f(∇φ)2 − (T +�)fT + 2f + 2GfG − 2R�fG + 4Rµν∇µ∇ν fG + χT = 0,

(10)Gµν = χT
eff
µν = χ(Tµν + T

grav
µν ),

(11)

T
grav
µν =

1

χ

[

−(Tµν +�µν)fT −∇µφ∇νφf(∇φ)2 +
1

2
gµν f − [2RRµν − 4R�

µR�ν − 4RµανβR
αβ + 2R� αβ

µ Rν�βα]fG

−
[

2Rgµν�− 2R∇µ∇ν − 4gµνR
αβ∇α∇β − 4Rµν�+ 4R�

µ∇ν∇� + 4R�
ν∇µ∇� + 4Rµανβ∇α∇β

]

fG

]

.

(12)
1

2
fφ = �(∇φ)2φ = ∇µf(∇φ)2∇µφ + f(∇φ)2�φ.

(13)∇µTµν =
fT

χ − fT

[

(

Tµν +�µν

)

∇µln(fT )−
1

2
∇νT +∇µ�µν

]

,

(14)
δTµν

δgαβ
=

δgµν

δgαβ
+ gµν

∂Lm

∂gαβ
− 2

∂2Lm

∂gαβ∂gµν
.

(15)
δgµν

δgαβ
= −gµ�gνηδ

�η
αβ ,

(16)�µν = −2Tµν + gµνLm − 2gαβ
∂2Lm

∂gµν∂gαβ
.

(17)S =
1

2χ

∫

d4x
√

−g
[

F
(

R,G,φ, (∇φ)2,T
)]

+
∫

d4x
√

−gLm(g ,ψ).

(18)

GµνFR −
1

2
gµν(F − RFR)+ (gµν�−∇µ∇ν)FR + [2RRµν − 4R�

µR�ν − 4RµανβR
αβ + 2R� αβ

µ Rν�βα]FG

+ [2Rgµν�− 2R∇µ∇ν − 4gµνR
αβ∇α∇β − 4Rµν�+ 4R�

µ∇ν∇� + 4R�
ν∇µ∇� + 4Rµανβ∇α∇β ]FG

+ (Tµν +�µν)FT +∇µφ∇νφF(∇φ)2 = χTµν .
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where Uµ is four velocity of the fluid, and satifies relation UµUµ = 1 . The corresponding Lagrangian is Lm = −P . 
Then, from Eq. (13), the expression for the �µν tensor can be provided:

Now, we discuss geodesic motion of the massive test particles moving through the perfect fluid in the discussed 
model. From Eq. (13), together with Eqs. (19) and (20), the conservation equation for the energy–momentum 
tensor is:

Multiplying above equation by the projection operator hηµ = δηµ − UηUµ , where Uµhηµ = 0 and Uµ∇νUµ = 0 , 
gives:

where we have used the fact that hµηTµν = −Phνη . Contracting this result with gαη , together with relation 
Uν∇νU

µ = d2xµ/ds2 + Ŵ
µ
νηU

νUη , leads to the equation of motion for massive test particles in context of the 
f
(

G,φ, (∇φ)2,T
)

 gravity:

The test particles will experience extra force ζµ:

and follow nongeodesic trajectories. This force is the direct consequence of non-minimal coupling between 
geometry and matter, a common property of theories with such couplings6,22,23. In absence of the matter–geom-
etry coupling, motion of the test particles will be the same as in the general relativity, as a consequence of the 
extra force absence ( ζµ = 0).

The FLRW (Friedmann–Lemaître–Robertson–Walker) line element is given as:

where a(t) is the scale factor depending on cosmic time t. We remark, that the metric given above describes 
homogeneous and isotropic Universe55,77. For the FLRW spacetime, scalar field will depend only on time coordi-
nate t i.e. φ = φ(t) . Hence, from Eq. (10) the corresponding field equations for the 00th and iith components are:

with

where overdot indicates derivative with respect to t, and H is the Hubble parameter defined as H = ȧ(t)/a(t) . 
Ricci scalar and the GB term are equal to:

The corresponding scalar equation takes form:

Furthermore, kinetic term is equal to: (∇φ)2 = gµν∇µφ∇νφ = φ̇2 . Covariant divergence of Tµν for the FLRW 
metric obtained from Eq. (13) is given by:

(19)Tµν = (ρ + P)UµUν − Pgµν ,

(20)�µν = −2(Tµν + Pgµν).

(21)
∇ν(ρ + P)UµUν + (ρ + P)[Uν∇νU

µ + Uµ∇νU
ν −∇µP]

=
−2

2χ + 3fT
[Tµν∇ν fT + (∇µP)fT + P(∇µfT )].

(22)gµηU
ν∇νU

µ =
(2χ + fT )

(ρ + P)(2χ + 3fT )
∇νh

ν
η ,

(23)d2xµ

ds2
+ Ŵµ

νηU
νUη = ζµ.

(24)ζµ =
(2χ + fT (G,φ, (∇φ)2,T))

(ρ + P)(2χ + 3fT (G,φ, (∇φ)2,T)

(

∇µP − UµUν∇νP
)

,

(25)ds2 = dt2 − a2(t)(dx2 + dy2 + dz2),

(26)3H2 = χρeff , −(2Ḣ + 3H2) = χPeff ,

(27)ρeff = ρ +
1

χ

[

(ρ + P)fT +
1

2
f − 12H2(Ḣ +H2)fG + 12H3∂t fG − φ̇2f(∇φ)2

]

,

(28)Peff = P −
1

χ

[

1

2
f − 12H2(Ḣ +H2)fG + 8H(Ḣ +H2)∂t fG + 4H2∂tt fG

]

,

(29)R = −6(Ḣ + 2H2), G = 24H2(Ḣ +H2).

(30)
1

2
fφ = ∂t f(∇φ)2 φ̇ + f(∇φ)2(φ̈ + 3Hφ̇).

(31)ρ̇ + 3H(ρ + P) = −
1

χ + fT

[(

1

2
Ṫ + P

)

fT + (ρ + P)∂t fT

]

.
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To restore usual conservation equation we need to set both sides of this equation to zero. This results in the 
conservation equation:

together with constraint:

Energy conditions
Energy conditions are important tool in the GR and are often used in case of the modified gravity theories68–71. In 
the GR context, they can help in choosing physically reasonable matter contents54. They were also used in proving 
laws of thermodynamics and various black hole theorems56. In context of the discussed theory, the energy condi-
tions may be used to constraint parameters and check validity of (effective) matter content in the cosmological 
scenarios. The starting point of energy conditions are the Raychaudhuri equations, describing congruences of 
geodesics on the manifold. These equations are used in discussing gravity as an attractive force and the positive-
ness of matter energy density by the means of evolution of expansion scalar ( θ ). Moreover, extensions of the 
GR should also be challenged with the energy conditions, since they assign geodesic and causal structure of the 
spacetime manifold. The Raychaudhuri equations are given by54:

where σµν , ωµν are shear tensor and rotation; the timelike and null tangent vectors are denoted as uµ and kµ . 
Neglecting small distortions and second order terms, from the Raychaudhuri equation one gets:

Condition for the attractive gravity (SEC), i.e. θ < 0 , gives inequalities:

where we have used combination of the energy–momentum tensor and its trace. Inequalities (37) provide energy 
conditions for a perfect fluid:

•	 NEC: ρ + P ≥ 0,
•	 WEC: ρ ≥ 0 , ρ + P ≥ 0,
•	 SEC: ρ + P ≥ 0 , ρ + 3P ≥ 0,
•	 DEC: ρ ≥ 0 , ρ ± P ≥ 0,

that obey:

Thus, violation of NEC leads to the violation of other listed conditions.
For the modified theories of gravity, energy constraints can be extended, due to the geometric character of the 

Raychaudhuri equations. We note that this is somewhat problematic in the case of the modified gravities, where 
it is not exactly clear which part of gravity enters the effective matter tensor. Moreover, the energy conditions in 
the extended theories of gravity emerge not only from Tµν but also from the geometrical quantity Tgrav

µν  . It means 
that standard GR interpretation of the energy conditions may not be the same in the modified theories of gravity, 
as the additional fluids coming from the corrections in the effective tensor ( Teff

µν ) may carry different physical 
properties than the standard matter fluid64. For example, in the f(R) theory, when SEC is valid, one may obtain 
repulsive gravity75,76. Moreover, the energy conditions satisfied in one of the conformal related frames, may not 
be satisfied in another conformal frame. As an example, NEC validity in the Jordan frame does not necessarily 
imply validity in the Einstein frame63. For more detailed discussion on the interpretation of the energy conditions 
and effective energy–momentum tensor, we refer reader to the detailed studies63,64,75,76.

We can assume that matter distribution acts like a perfect fluid. The translated energy conditions for the effec-
tive fluid described by the energy–momentum tensor Teff

µν = diag(ρeff , P(eff )i) in f
(

G,φ, (∇φ)2,T
)

 , are ( P = 0):

•	 NEC: 

(32)ρ̇ + 3H(ρ + P) = 0,

(33)
(

1

2
Ṫ + P

)

fT + (ρ + P)∂t fT = 0.

(34)
dθ

dτ
= −

1

3
θ2 + ωµνω

µν − σµνσ
µν − Rµνu

µuν ,

(35)
dθ

dτ
= −

1

2
θ2 + ωµνω

µν − σµνσ
µν − Rµνk

µkν ,

(36)θ = −τRµνu
µuν , θ = −τRµνk

µkν .

(37)
Rµνu

µuν =
(

Tµν −
1

2
gµνT

)

uµuν ≥ 0,

Rµνk
µkν =

(

Tµν −
1

2
gµνT

)

kµkν ≥ 0,

(38)DEC =⇒ WEC =⇒ NEC ⇐= SEC.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18076  | https://doi.org/10.1038/s41598-020-75067-9

www.nature.com/scientificreports/

•	 WEC: 

•	 SEC: 

•	 DEC: 

We remark, that it is possible to obtain energy conditions of the f (G,T) , or the f (G) theories by choosing the 
f
(

G,φ, (∇φ)2,T
)

→ f (G) , or → f (G,T) in the action, instead of the f
(

G,φ, (∇φ)2,T
)

 approach. Before we 
move on, it is worth noting that the chain rule for the second derivative of function ∂tt fG

(

G,φ, (∇φ)2,T
)

 can 
be expanded as:

where for simplicity kinetic term is denoted as X = (∇φ)2 . Sometimes it is worth to introduce dimensionless 
cosmological parameters, decceleration (q), jerk (j) and snap (s)78,79:

The present-day value of jerk describes different dark energy (DE) models causing acceleration of the universe, 
while negative value of deceleration, together with current Hubble parameter describes rate of expansion for 
accelerating universe. Using these parameters, the Hubble parameter, as well as the Ricci and GB scalars can be 
written as:

Thus, energy conditions rewritten with aid of the above expressions are:

•	 NEC: 

•	 WEC: 

•	 SEC: 

•	 DEC: 

(39)ρeff + Peff = ρ +
1

χ

[

ρfT + 4H(2Ḣ −H2)∂t fG − 4H2∂tt fG − φ̇2f(∇φ)2
]

≥ 0,

(40)ρeff = ρ +
1

χ

[

ρfT +
1

2
f − 12H2(Ḣ +H2)fG + 12H3∂t fG − φ̇2f(∇φ)2

]

≥ 0,

(41)ρeff + 3Peff = ρ −
1

χ

[

f − ρfT − 24H2(Ḣ +H)fG + 12H2(2Ḣ +H)∂t fG + 12H2∂tt fG + φ̇2f(∇φ)2
]

≥ 0,

(42)ρeff − Peff = ρ +
1

χ

[

ρfT + f − 24H2(Ḣ +H2)fG + 4H(2Ḣ + 5H2)∂t fG + 4H2∂tt fG − φ̇2f(∇φ)2
]

≥ 0.

(43)
∂tt fG = 2

(

Ġφ̇fGGφ + ĠẊfGGX + ĠṪfGGT + φ̇ẊfGφX + φ̇ṪfGφT + ẊṪfGXT

)

+ G̈fGG + φ̈fGφ + ẌfGX + T̈fGT + Ġ2fGGG + φ̇2fGφφ + Ẋ2fGXX + Ṫ2fGTT ,

(44)q = −
1

H2

ä

a
, j =

1

H3

...
a

a
, s =

1

H4

....
a

a
.

(45)

Ḣ = −H2(1+ q), Ḧ = H3(j + 3q+ 2),
...
H = H4(s − 4j − 3q2 − 12q− 6),

R = −6H2(1− q), Ṙ = −6H3(j − q− 2), R̈ = −6H4(s + 8q+ q2 + 6),

G = −24qH4, Ġ = 24H5(j + 2q2 + 3q), G̈ = 24H6(s − 6j − 6jq− 12q− 15q2 − 2q3).

(46)

ρeff + Peff = ρ +
1

χ

[

ρfT + 4H3(3+ 2q)(GfGG + φ̇fGφ + ẊfGX + ṪfGT )− XfX

− 4H2
(

2(Ġφ̇fGGφ + ĠẊfGGX + ĠṪfGGT + φ̇ẊfGφX + φ̇ṪfGφT + ẊṪfGXT )

+G̈fGG + φ̈fGφ + ẌfGX + T̈fGT + Ġ2fGGG + φ̇2fGφφ + Ẋ2fGXX + Ṫ2fGTT

)]

≥ 0,

(47)ρeff = ρ +
1

2χ

[

2ρfT + f + 24qH4fG + 24H3(ĠfGG + φ̇fGφ + ẊfGX + ṪfGT )− 2XfX
]

≥ 0,

(48)

ρeff + 3Peff = ρ +
1

χ

[

−f + ρfT − 24qH4fG + 12H3(1+ 2q)(ĠfGG + φ̇fGφ + ẊfGX + ṪfGT )fG − XfX

− 12H2
(

2(Ġφ̇fGGφ + ĠẊfGGX + ĠṪfGGT + φ̇ẊfGφX + φ̇ṪfGφT + ẊṪfGXT )

+G̈fGG + φ̈fGφ + ẌfGX + T̈fGT + Ġ2fGGG + φ̇2fGφφ + Ẋ2fGXX + Ṫ2fGTT

)]

≥ 0,
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Cosmological reconstruction
The main purpose of introducing Einstein’s gravity extensions is to study cosmological solutions coming from a 
given theory. However, cosmological equations from postulated theories are often hard to solve, even with large 
number of assumptions and simplifications. In the so called reconstruction techniques, known cosmological 
solution is given and equations are solved for particular model coming from the theory, which satisfy given 
cosmological evolution (i.e. spacetime is reconstructed in the gravitational theory of interest)20,68,80–85. Such 
reconstructed models can be further studied and compared with experimental data, in order to check physical 
importance and viability. In this study we obtain models satisfying the de-Sitter and power-law evolution.

As a brief note, in a given reconstruction procedure it is possible to reconstruct any given cosmology, once 
the scale factor is specified. For example, using proper scale factor with the form a(t) = a0exp(g(t)) (thus 
H = ġ(t) ) one can obtain proper function f (G,φ, (∇φ)2,T) with the scalar field redefined as φ = t . To unify 
matter-dominated and accelerated phases, one can choose g(t) = h(t)ln(t) with h = (h1 + h2t

2)/(1+ qt2) where 
h1 , h2 and q are constants81. Then, choosing appropriate h with adiabatic approximation, one can reconstruct 
specific model describing transition between phases and investigate its asymptotic form, for small ( t → 0 ) or 

large ( t → ∞ ) curvature. Similarly, one can unify inflation with recent acceleration for H(t) = H0
1+ǫ(t/t0)

2

1+(t/t0)2
80. 

This procedure can also be extended to other cosmological models (such as the Bounce or �CDM approach). 
Thus, using reconstruction techniques it is possible to recover the whole Universe history. For extensive discus-
sion on the reconstruction procedure in the modifications of the GR, we refer reader to notable review10.

de‑Sitter spacetime.  The de-Sitter model describes exponential growth of universe and is characterised 
by the constant Hubble parameter and the constant curvature. The scale factor and the Hubble parameter are 
given by:

where a0 is constant corresponding to t = t0 . The Ricci and GB curvature scalars are:

For scalar field φ we use86,87:

together with corresponding derivative:

Using Eq. (32) for pressureless ( P = 0 ) fluid one can obtain energy density:

provided with the trace of the energy–momentum tensor and its derivatives:

We can greatly simplify our considerations by using specific case, i.e. f (G,φ,X,T) = E(G,φ,T)+ ω(φ)X . We 
note, that idea of coupling between geometry, scalar field and matter is still present and our considerations 
become simplified. Moreover ω(φ) is natural choice of the kinetic term coupling in the scalar tensor theories32. 
Using power form of ω68,86,87:

Then, from first of the Eqs. (26) and (27) we have:

with solution:

where:

(49)

ρeff − Peff = ρ +
1

χ

[

ρfT + f − XfX + 24qH4fG + 4H3(3− 2q)
(

ĠfGG + φ̇fGφ + ẊfGX + ṪfGT

)

+ 4H2
(

2
(

Ġφ̇fGGφ + ĠẊfGGX + ĠṪfGGT + φ̇ẊfGφX + φ̇ṪfGφT + ẊṪfGXT

)

+G̈fGG + φ̈fGφ + ẌfGX + T̈fGT + Ġ2fGGG + φ̇2fGφφ + Ẋ2fGXX + Ṫ2fGTT

)]

≥ 0.

(50)a(t) = a0e
H0t , H = H0,

(51)R = −12H2
0 , G = 24H4

0 .

(52)φ(t) ∼ a(t)β = a
β
0 e

βH0t ,

(53)φ̇ = βH0φ.

(54)ρ = ρ0e
−3H0t ,

(55)T = ρ, Ṫ = −3H0T , T̈ = 9H2
0T .

(56)ω(φ) = ω0φ
m.

(57)χT +
1

2
(E − ω0β

2H2
0φ

m+2)+ TET − 12H4
0EG + 12βH4

0φEGφ − 36H4
0TEGT − 3H2

0 = 0,

(58)E(G,φ,T) = C1C2C3

[

eC1GφC2Td1 + Td2
]

+ d3 + d4T + d5φ
d6 ,
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Energy conditions take the form:

•	 NEC 

•	 WEC 

(59)d1 =
1

2

[

24(βC2 − 1)H4
0C1 + 1

36H4
0C1 − 1

]

, d2 = −
1

2
, d3 = 6H0, d4 = −

2

3
χ , d5 = ω0β

2H2
0 , d6 = m+ 2.

(60)

ρeff + Peff = ρ +
1

χ

[

ρ(C1C2C3(d1e
C1GφC2Td1 + d2T

d2−1)+ d4)+ 4H3
0 (3+ 2q)

{

βH0C
1
1C

2
2C3e

C1GφC2Td1

−3H0C
2
1C2C3d1e

C1GφC2Td1
}

− 4H2
{

β2C2
1C

2
2C3H

2eC1GφC2Td1 + β2C2
1(C2 − 1)C2

2C3H
2eC1GφC2Td1

−6βC2
1C

2
2C3d1H

2eC1GφC2Td1 + 9C2
1C2C3d1H

2eC1GφC2Td1
}

− d5φ
d6
]

,

Figure 1.   Regions where NEC and WEC are valid for C2 = −0.6.

Figure 2.   Regions where NEC and WEC are valid for C2 = 1.
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In this case, we have six parameters ( C1,C2,C3,m,β , t ), thus graphical description of the NEC and WEC validity 
is possible when three of the parameters are fixed. For simplicity we set m = 1 for all the considered choices of 
other parameters. We note that we set a0 = φ0 = ω0 = 1 . We use following values of the Hubble parameter and 
the cosmographical parameters: H0 = 0.718 , q = −0.64 , j = −1.02 , s = −0.3920,66,88.

In the first case, we fix integration constants C3 = 0.5 and C2 . Figure 1 show regions where NEC and WEC 
hold, when C2 = −0.6 . For all given time intervals t ∈ (0, 30) , NEC and WEC will hold for any constant range 
β ∈ (−4, 4) for C1 ∼ 0 , while for C1 < 0 the energy conditions will be true for all β parameters.

In Fig. 2, the validity of energy conditions is described for specific choice of C2 > 0 . NEC and WEC are ful-
filled at any given time when β ,C1 < 0 . Clearly, region where WEC holds is much smaller than for NEC, since 
NEC is a weaker condition than WEC [from relation (38)]. In Fig. 3, NEC and WEC are presented. In this case, 
we set β = 0.5 and let constants C1 and C2 run through (−4, 4) . Regions where WEC and NEC are valid are very 
similar, except region where C1 > 0.8 ∧ C2 ∈ (0,−1.4).

Power law solutions.  Power law models are important in discussing cosmic evolution and epochs. Their 
scale factor, the Hubble parameter and the energy density are given by:

where n > 0 . For n > 1 , accelerated expansion of the universe occurs, while for the deccelerated phase we have 
1 > n > 0 , which leads to the radiation ( n = 1/2 ) or dust ( n = 2/3 ) dominated universe. Corresponding energy 
momentum tensor and its time derivatives are given by:

The Ricci scalar and Gauss–Bonnet term are equal to:

Similarly to the de-Sitter model, we again consider fixed kinetic term. The scalar field and its derivative takes 
form:

Hence, for the power-law scale factor and again f (G,φ,X,T) = E(G,φ,T)+ ω(φ)X , Eqs. (26) and (27) take 
form:

(61)
ρeff = ρ +

1

2χ

[

24C2
1C2C3H

4qeC1GφC2Td1 + 24H3
(

βC2
1C

2
2C3He

C1GφC2Td1 − 3C2
1C2C3d1He

C1GφC2Td1
)

+2ρ

(

C1C2C3d1e
C1GφC2Td1−1 + C1C2C3d2T

d2−1 + d4

)

+ C1C2C3e
C1GφC2Td1 + C1C2C3T

d2 + d4T + d3

]

.

(62)a(t) = a0t
n, H =

n

t
, ρ = ρ0t

−3n,

(63)T = ρ, Ṫ = −
3n

t
T , T̈ =

3n

t2
(3n+ 1)T .

(64)R =
6n

t2
(1− 2n), G = 24

n3

t4
(n− 1).

(65)φ(t) ∼ a(t)β = a
β
0 t

βn, φ̇(t) =
βn

t
φ.

Figure 3.   Validity of NEC and WEC with respect to time t and constants C1,C2 where β = 0.5.
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In what follows, the solution of this partial differential equation is:

where:

From this solution and from Eqs. (39) and (40) the energy conditions are:

•	 NEC 

•	 WEC 

Reconstructed model depends on four integration constants, namely Ci , m, β and time. For example, in order to 
depict graphically the energy contidions we fix constants C4 = m = 1 and plot regions, where energy conditions 
hold. Figure 4 describes specific case where C2 > 0 and C3 < 0 . In this case, NEC and WEC validity regions 
coincides, except C1 > 0 and t < 2 . Another possibility is C2 > 0 and C3 > 0 , that has been plotted in Fig. 5 

(66)

χT + TET −
1

2
GEG +

1

2
(E − ω0β

2n2a
2
n
0 φ

m+2− 2
βn )−

(

2

n− 1

)

G2EGG −
(

3n

2(n− 1)

)

GTEGT +
(

βn

2(n− 1)

)

GφEGφ

− 3n2
(

T

ρ0

)
2
3n

= 0.

(67)
E(G,φ,T) = C1C3C4φ

C2TC3G
1
4
(d1+d2) + C1C2C3T

d3 + C2C3C4φ
C2TC3G

1
4
(d1−d2) + d4T

d5 + d6T + d7φ
d8 ,

(68)

d1 =
1

2
[C2βn− (3C3 + 1)n+ 5]

d2 =
1

2

[

n2C2
2 − 6C2nβ

(

(C3 +
1

3
)n−

5

3

)

+ 9n2(C3 +
1

3
)2 + n(2C3 + 6)− 32C3 + 9

]

d3 = −
1

2
, d4 =

(

18n3

3n+ 4

)

ρ
− 2

3n
0 , d5 =

2

3n
, d6 = −

2

3
χ , d7 = ω0β

2n2a
2
n
0 , d8 = m+ 2−

2

βn
.

(69)

ρeff + Peff = ρ +
1

χ

[

ρ(C3C4(C1C3T
C3−1φC2G

1
4
(d1+d2) + C2C3T

C3−1φC2G
1
4
(d1−d2))+ C1C2C3d3T

d3−1

+ d4d5T
d5−1 + d6)− 12H3(2q+ 1){C3C4Ṫ(

1

4
C2C3(d1 − d2)T

C3−1φC2G
1
4
(d1−d2)−1 +

1

4
C1C3(d1 + d2)T

C3−1φC2

× G
1
4
(d1+d2)−1

)+ C3C4φ̇(
1

4
C2
2 (d1 − d2)T

C3φC2−1G
1
4
(d1−d2)−1 +

1

4
C1C2(d1 + d2)T

C3φC2−1G
1
4
(d1+d2)−1

)+ C3C4Ġ

× (
1

4
C2(

1

4
(d1 − d2)− 1)(d1 − d2)T

C3φC2G
1
4
(d1−d2)−2 +

1

4
C1(d1 + d2)(

1

4
(d1 + d2)− 1)TC3φC2G

1
4
(d1+d2)−2

)

}

− 4H2

×
{

C3C4(
1

4
TC3−2G

1
4
(d1−d2)−1

C2(C3 − 1)C3(d1 − d2)φ
C2 +

1

4
TC3−2G

1
4
(d1+d2)−1

C1(C3 − 1)C3(d1 + d2)φ
C2 )Ġ2

+ C3C4(
1

4
TC3G

1
4
(d1−d2)−3

C2(
1

4
(d1 − d2)− 2)(

1

4
(d1 − d2)− 1)(d1 − d2)φ

C2 +
1

4
TC3G

1
4
(d1+d2)−3

C1(d1 + d2)

× (
1

4
(d1 + d2)− 2)(

1

4
(d1 + d2)− 1)φC2 )Ġ2 + φ̈C3C4(

1

4
TC3G

1
4
(d1−d2)−1

C2
2 (d1 − d2)φ

C2−1 +
1

4
TC3G

1
4
(d1+d2)−1

C1C2

× (d1 + d2)φ
C2−1)+ φ̇2C3C4(

1

4
TC3G

1
4
(d1−d2)−1

(C2 − 1)C2
2 (d1 − d2)φ

C2−2 +
1

4
TC3G

1
4
(d1+d2)−1

C1(C2 − 1)C2

× (d1 + d2)φ
C2−2)+ T̈C3C4(

1

4
TC3−1G

1
4
(d1−d2)−1

C2C3(d1 − d2)φ
C2 +

1

4
TC3−1G

1
4
(d1+d2)−1

C1C3(d1 + d2)φ
C2 )

+ G̈C3C4(
1

4
TC3G

1
4
(d1−d2)−2

C2(
1

4
(d1 − d2)− 1)(d1 − d2)φ

C2 +
1

4
TC3G

1
4
(d1+d2)−2

C1(d1 + d2)(
1

4
(d1 + d2)− 1)φC2 )

+ 2(Ṫφ̇C3C4(
1

4
TC3−1G

1
4
(d1−d2)−1

C2
2C3(d1 − d2)φ

C2−1 +
1

4
TC3−1G

1
4
(d1+d2)−1

C1C2C3(d1 + d2)φ
C2−1)+ Ġφ̇C3C4

× (
1

4
TC3G

1
4
(d1−d2)−2

C2
2 (

1

4
(d1 − d2)− 1)(d1 − d2)φ

C2−1 +
1

4
TC3G

1
4
(d1+d2)−2

C1C2(d1 + d2)(
1

4
(d1 + d2)− 1)φC2−1)

+ ṪĠC3C4(
1

4
TC3−1G

1
4
(d1−d2)−2

C2C3(
1

4
(d1 − d2)− 1)(d1 − d2)φ

C2 +
1

4
TC3−1G

1
4
(d1+d2)−2

C1C3(d1 + d2)

×(
1

4
(d1 + d2)− 1)φC2 ))

}

− d7φ
d8

]

≥ 0,

(70)

ρeff = ρ +
1

2χ

[

C3C4(C1T
C3φC2G

1
4
(d1+d2) + C2T

C3φC2G
1
4
(d1−d2))+ C1C2C3T

d3 + d4T
d5 + d6T + 2ρ(C3C4(C1C3

× TC3−1φC2G
1
4
(d1+d2) + C2C3T

C3−1φC2G
1
4
(d1−d2))+ C1C2C3d3T

d3−1 + d4d5T
d5−1 + d6)+ 24H3

{

C3C4Ṫ(
1

4
C2C3

× (d1 − d2)T
C3−1φC2G

1
4
(d1−d2)−1 +

1

4
C1C3(d1 + d2)T

C3−1φC2G
1
4
(d1+d2)−1)+ C3C4φ̇(

1

4
C2
2 (d1 − d2)T

C3φC2−1

× G
1
4
(d1−d2)−1 +

1

4
C1C2(d1 + d2)T

C3φC2−1
G

1
4
(d1+d2)−1)+ C3C4Ġ(

1

4
C2(

1

4
(d1 − d2)− 1)(d1 − d2)T

C3φC2

× G
1
4
(d1−d2)−2 +

1

4
C1(d1 + d2)(

1

4
(d1 + d2)− 1)TC3φC2G

1
4
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for C3 = 0.3 and C3 = 0.2 . For a given time interval, NEC as well as WEC are shrinking for C1 > 0 through a 
given β interval. When constant C1 is less than zero, both energy conditions will be satisfied for any time from a 
given interval. Moreover, there is a region where for t < 2 only NEC is satisfied when β < 0.5 . Next discussed 
possibility is the case with both C2, C3 < 0 , which is presented in Fig. 6. As time increases both NEC as well as 
WEC are decreasing. Again, for C1 > 0 and β < 1.2 at early times, there is a cutoff when NEC holds but WEC 
not. Interestingly, both NEC and WEC will hold through whole time and β parameter intervals for C1 < 0.

Specific models
In this section we will discuss energy conditions for the specific case of the f (R,φ,X) gravity36. We note that 
this is particular form of the F(R,G,φ,X,T) theory, briefly discussed in section I. This is another extension of 
the scalar–geometry coupling, in which interesting cosmological models have been obtained36. We note that the 

Figure 4.   NEC and WEC in power law f (G,φ,T) model for C2 = 0.6 and C3 = −1.

Figure 5.   NEC and WEC regions for C2 = 0.3 and C3 = 0.2.
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energy conditions for the theories of such type were extensively studied in literature before59,68. In manner similar 
to the Zubair’s work, we also introduce simple f (G,φ,X,T) model in the last subsection.

Authors of36 considered the Brans–Dicke-type models, where f (R,φ,X) = γ (φ,X)R and corresponding 
action is:

with convention X = −(∇φ)2/2 . This is one of the most common forms of the scalar–tensor gravity32. Field 
equations for the FLRW metric, after some manipulations are:

where ρeff  and Peff  are given by:

Function γ (φ,X) is composed from the kinetic term (X) and scalar potential (V)36:

and leads to following expressions based on Eqs. (73, 74):

de‑Sitter.  For the de-Sitter spacetime considered by Bahamonde et al.36, the scalar field was associated with 
the cosmic time, i.e. φ = t . The corresponding function γ is:

provided with kinetic term and scalar potential:

(71)S =
1

2χ

∫

d4x
√

−g[γ (φ,X)R]+
∫

d4x
√

−gLm,

(72)3H2 = χρeff , −(2Ḣ2 + 3H2) = χPeff ,

(73)ρeff =
1

fR

[

ρ +
1

χ

[

2XfX +
1

2
(f − RfR)− 3H∂t fR

]]

,
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1

fR

[
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1

χ

[
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1
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(RfR − f )

]]

.

(75)γ (φ,X) = X(φ)− V(φ),
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1

(X(φ)− V(φ))

[
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,
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Figure 6.   Regions where NEC and WEC are valid for C2 = −0.5 and C3 = −0.25.
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where C1 and t0 are constants of integration. Using above expressions, together with Eqs. (51) and (54), we can 
obtain expressions for the energy conditions:

•	 NEC 

•	 WEC 

We will discus energy bounds for n = 2/3 (dust, e.g. P = 0 ). For simplicity we take χ = ρ0 = 1 . The null 
energy condition has been plotted in Fig. 7 where t0 = 0 . Since, function γ (φ,X) comes from the damped wave 
equation, NEC fluctuates and total amplitude diverge to 0 as time parameter increases. When parameter C1 
diverts to 0, it promotes increase of the starting values which are either negative ( C1 < 0 ) or positive ( C1 > 0 ). 
Thus, one can conclude that NEC will be satisfied only for the positive parts of oscillations and will converge 
asymptotically to 0. Regions where the energy conditions are valid are shown in Fig. 8. Changing constant t0 will 
shift in phase oscillations of peff + Peff  and ρeff .

Power law.  In this case, also considered by Bahamonde and collaborators in36, function γ is given by:

where:

and φ = t . Moreover, kinetic term and potential are:

   where Ci ’s are integration constants. Moreover, null and weak energy conditions are given as:

•	 NEC 
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2
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2
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4
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2sin

√
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]

−
χ
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0
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χ
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2
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Figure 7.   Plot of NEC for t0 = 0 , χ = ρ0 = 1 and C1 ∈ (−4, 4) in the de-Sitter reconstructed model.
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•	 WEC 

In this case, the inequalities describing NEC and WEC depend on {t,C1,C2} (we fix N = 60 ), thus energy condi-
tions can be represented in the three dimensional plots. Figure 9 shows regions where NEC and WEC are viable 
for t ∈ (0, 30) , C1, C2 ∈ (−10, 10) . In both cases, NEC and WEC regions are getting bigger whenever constant 
C2 decreases, which can lead to the validity of NEC for later times and positive values of C1.

γ (φ,X)G gravity linearly coupled with matter.  Now, we consider the Brans–Dicke type GB grav-
ity linearly coupled to the g(T) function. This is one of the simplest realizations of the matter–scalar–tensor 
coupling in the f

(

G,φ, (∇φ)2,T
)

 regime. Herein, we consider g(T) = µT1/2 . This is pressureless case of 
g(T) = µT

3w+1
2(w+1) + C0 (we fix constant C0 = 0 ). Function of this type allows conservation of the energy–

(87)
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2χ(2n+ Nω + N)− C1N(n(5p+ 11q+ 3)+ p2

+p(2q− 1)+ (q− 1)q)t3n+p+q)− C2N(n(5p− 11q+ 3)+ p2 − 2pq− p+ q2 + q)t3n+p)
]

≥ 0,

(88)ρeff =
t(−3n−q−2)

Nχ
(tq(ρ0t

2χ(2n+ N)− 3C1nN(p+ 3q+ 1)t3n+p+q)− 3C2nN(p− 3q+ 1)t3n+p) ≥ 0.

Figure 8.   Regions of NEC and WEC validity.

Figure 9.   Regions where NEC and WEC are accomplished for power law model.
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momentum tensor, from Eq. (33)53. Thus we are working with f = γ (φ,X)G + µT1/2 , where again scalar field 
concides with cosmic time φ = t and γ (φ) = X(φ)− V(φ) . From Eqs. (26–28) we obtain field equations for 
the given model:

and

Considering power law case, the second equation will be the second order differential equation for unknown 
function γ (t):

Solution of this equation has form:

with integration constants C1 and C2 . On the other hand, the kinetic term X(t) is equal to:

and potential is:

We note, that procedure described above is another form of the cosmological reconstruction. Once functional 
form of the theory and the scalar field are specified, one can obtain from the field equations the kinetic term and 
the scalar potential associated with the discussed cosmological model36.

Thus, NEC and WEC are provided:

•	 NEC 

•	 WEC 

Clearly, evolution of the effective energy density ρeff  will always be positive for coupling χ > 0 . Again we choose 
for simplicity χ = ρ0 = 1 and dust n = 2/3 . We note that the energy conditions will be independent on constant 
C1 and NEC will depend on C2 , µ , t. Since, ρeff  is positive, WEC will hold whenever NEC is fulfilled. Region 
where energy conditions are positive is increasing with time parameter for µ ≥ 0 , while decreasing otherwise 
and is depicted in Figs. 10 and 11. Interestingly, for C2 < 0 and positive µ , NEC and WEC holds through the 
whole time parameter interval. We note that for C2 > 0 and µ < 0 energy conditions will always be violated. 
Figure 12 represents plot of NEC for C2 < 0 and for C2 > 0 . First case corresponds to C2 = −0.5 . In this case, 
evolution of NEC is decreasing with time and for positive µ > 0 . For the negative values of µ , NEC holds only 
at early times and reaches its minimum for t = 2.4 . Second figure shows evolution of NEC for C2 = 0.1 . Clearly, 
as stated before NEC will be violated for negative values of µ through the given time interval.

(89)X =
−3H2 + µT1/2 + χρ + 12H3γ̇ (t)

G
,
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Summary
In the present work we have introduced novel gravity theory, namely the f (G,φ,X,T) formalism, which extends 
the f (G,T) approach toward cases that include arbitrary coupling between following terms: the Gauss–Bonnet 
term ( G ), trace of the energy–momentum tensor (T), the scalar field ( φ ) and the kinetic term ( X = (∇φ)2 ). As a 
results, it is argued that the developed theory may constitute starting point for considerations on the non-minimal 
matter–scalar field and geometry couplings in the f (G) approaches, which were often studied in the context of 
modified gravity and low energy actions41–44,46–49. We note that, extension introduced here may be interesting in 
the context of axion fields in the f (G)-type theories, in particular for the axion–matter–geometry couplings50–52.

In details, the presented theory allowed us to derive field equations from the corresponding action and obtain 
constrains leading to the conservation of the energy momentum tensor, which is consistent with the f (G,T) 
theory68. Moreover, we have shown that particles follow non-geodesic trajectories, experiencing extra force 
coming from the non-minimal coupling for the perfect fluid when pressure is non-zero. Using the reconstruc-
tion techniques we have also obtained the f (G,φ,T) function, that satisfies the de-Sitter and power-law cosmic 

Figure 10.   The time evolution of ρeff + Peff  and ρeff  for varying constant µ , where ρeff + Peff  is plotted for 
C2 = 1.

Figure 11.   Region where NEC (and WEC) is fulfilled.
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evolution and discussed energy conditions for this models. Moreover, we have discussed energy conditions for 
the f (R,φ,X) models presented in36 for the γ (φ,X)R functions describing the de-Sitter and power-law scenarios. 
Assuming specific form of the coupling matter with scalar field and geometry, namely f = γ (φ,X)G + µT1/2 , 
we have obtained γ (φ,X) which satisfies power-law expansion. We have shown, that for the positive gravitational 
coupling χ , ρeff  will always stay positive, while for C2 < 0 and µ > 0 , NEC and WEC holds at any time.

In conclusions, we have overviewed properties of the reconstructed models of the f (G,φ,X,T) and f (R,φ,X) 
gravity showing that NEC and WEC are satisfied in the discussed models, where suitable choice of the free param-
eters and constants is taken. We note that our reconstructed models are one of the wide class of the gravitational 
actions coming from Eq. (1) and that our formalism opens up new possibilities in studying modified gravity 
with emphasis on matter–scalar–geometry couplings in the f (G) gravities. Moreover, general reconstruction 
procedure presented here can be applied to any cosmological model, once suitable Hubble factor is introduced. 
Future works should be devoted to the linear stability and cosmological viability of the f (G,φ,X,T) gravity and 
consider other models possible in the f (G,φ,X,T) extension.
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