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Incorporation of docetaxel 
and thymoquinone in borage 
nanoemulsion potentiates their 
antineoplastic activity in breast 
cancer cells
Mayson H. Alkhatib *, Raghdah S. Bawadud & Hana M. Gashlan

Combining more than one anticancer agent in a nanocarrier is beneficial in producing a formula 
with a low dose and limited adverse side effects. The current study aimed to formulate docetaxel 
(DTX) and thymoquinone (TQ) in borage oil-based nanoemulsion (B-NE) and evaluate its potential 
in impeding the growth of breast cancer cells. The formulated B-NE and the combination (DTX + TQ) 
B-NE were prepared by the ultra-sonication method and physically characterized by the dynamic light 
scattering techniques. The cytotoxicity analyses of (DTX + TQ) B-NE in MCF-7 and MDA-MB-231 cells 
were evaluated in vitro by using the SRB assay. Cell death mechanisms were investigated in terms of 
apoptosis and autophagy pathways by flow cytometry. The optimum mean droplet sizes formulated 
for blank B-NE and the (DTX + TQ) B-NE were 56.04 ± 4.00 nm and 235.00 ± 10.00 nm, respectively. 
The determined values of the half-maximal inhibitory concentration  (IC50) of mixing one-half amounts 
of DTX and TQ in B-NE were 1.15 ± 0.097 µM and 0.47 ± 0.091 µM in MCF-7 and MDA-MB-231 cells, 
respectively, which were similar to the  IC50 values of the full amount of free DTX in both tested 
cell lines. The treatment with (DTX + TQ) B-NE resulted in a synergistic effect on both tested cells. 
(DTX + TQ) B-NE induced apoptosis that was integrated with the stimulation of autophagy. The 
produced formulation enhances the DTX efficacy against human breast cancer cells by reducing its 
effective dose, and thus it could have the potential to minimize the associated toxicity.

Breast cancer is considered as invasive cancer among females and the fifth type of cancer that leads to cancer 
 death1. Therefore, it is essential to gain an understanding of the complexities of the mechanism of action for the 
combined treatments in breast cancer cells in order to identify the optimal treatment  strategy2,3. Taxane treat-
ments, which is extracted mainly from the European yew tree needles, have remained a cornerstone of breast 
cancer treatment for the past three  decades4. Docetaxel (DTX) is a second-generation taxane and it has a wide 
spectrum of antitumor activity mainly by promoting the stabilization of cellular microtubules, thereby inhibiting 
cell  division2,5. However, the narrow therapeutic index of DTX restricts its anticancer activity. In addition, the 
developed drug resistance, poor solubility, and toxic effects of DTX are considered major  limitations4,6. Therefore, 
refining taxane-based regimens by combining with novel agents has gained a rising interest in clinical  research2.

Combination therapy involves the administration of two or more treatments with various mechanisms of 
action in order to overcome drug resistance and to reduce the effective dose of chemotherapy and thus the side 
effects. Consequently, combination therapy with a synergic effect would result in increased therapeutic  efficacy2,7. 
Recently, great attention is paid to exploit bioactive components of natural plants having anticancer activity. 
The major bioactive component extracted from the black seed oil of the Nigella sativa plant is thymoquinone 
(TQ)8,9. The biological activities of TQ have gained an increasing interest mainly its anti-inflammatory and anti-
cancer properties. Owing to the interference with multiple pathways involved in the processes of angiogenesis, 
invasion, and metastasis, TQ has the ability to inhibit cancer  development10. Thus, the conjunction of TQ with 
chemotherapeutic agents, such as doxorubicin, cisplatin, oxaliplatin, gemcitabine, and 5-fluorouracil have been 
investigated to improve their activity against several types of  cancer7,11,12.

OPEN

Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. *email: 
mhalkhatib@kau.edu.sa

http://orcid.org/0000-0002-3729-5303
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-75017-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18124  | https://doi.org/10.1038/s41598-020-75017-5

www.nature.com/scientificreports/

A successful co-delivery of combined therapeutic agents can be challenging because of the potential differ-
ences among their physiochemical and pharmacodynamic  properties13. Moreover, several combined therapies 
suffer from a limited penetration to the cytoplasmic area and off-targeting  effects6. In order to accomplish a 
targeted synergistic cytotoxic effect, a nano-delivery platform was therefore designed to co-deliver different 
therapeutic agents and maximize their efficacy. Oil-in-water nanoemulsions (NEs) are defined as oil droplets 
dispersed in an aqueous phase, at which each droplet, surrounded by surfactant molecules, has a size typically in 
the range of 20–500  nm14. This drug delivery system has gained interest nowadays due to its unique physical prop-
erties such as the extremely small droplet diameter with the special optical transparency and elastic properties 
compared with other conventional  emulsions15. The NEs are used in drug delivery research mainly because of its 
high potential in enhancing the bioavailability and efficiency of loaded drugs while reducing the toxic  effects16,17. 
Borage flower is commonly known as the richest source of gamma-linolenic acid (GLA), an essential omega-6 
fatty  acid18. Increasing evidence suggests that GLA has been proposed as a valuable new cancer therapy having 
selective toxicity against cancer cells19. For example, in vitro studies have demonstrated that GLA improves the 
effectiveness of DTX against breast cancer  cells20. Hence, borage oil has been selected in the NE synthesis due to 
its therapeutic potential as it would positively support the suggested co-delivery system.

In this research, a new formulation was proposed to enhance the efficacy of DTX by mixing with TQ in a 
NE system formulated with borage oil using a high energy method. The anticancer activities of the produced 
nano-formulation were examined in the MCF-7 and MDA-MB-231 cells.

Materials and methods
Materials. The oils of Borage and Medium Chain Triglyceride (MCT) were obtained from the electronic 
store iHerp.com. Tween 80 and Span 20 were purchased from Al Shafei medical and Scientific Equipment, Est 
(Jeddah, KSA). Docetaxel (DTX) was kindly provided by King Abdulaziz University Hospital. Thymoquinone 
(TQ) and Sulforhodamine B (SRB) dye were obtained from Sigma-Aldrich (USA). The Coomassie blue dye was 
purchased from Cayman Chemical (Michigan, US). Annexin V-FITC apoptosis detection kit was obtained from 
Invitrogen Abcam (UK). Acridine Orange and rapamycin were obtained from BDH Chemicals Ltd (England, 
UK) and Enzo Life Sciences (Lausen, Switzerland), respectively. Human Breast cancer cell lines, MCF-7 and 
MDA-MB-231, were obtained from ATCC (American Type Tissue Culture Collection, Manassas, VA, USA).

Formulation of B-NE formulas. The blank oil-in-water (O/W) NE was prepared under optimal condi-
tions for ultrasonic emulsification, typically through a two-stage  process21. At first, it was prepared by adding 
5.55 % (v/v) of the combination oils of borage oil and MCT oil at the ratio of (1:1) into 75 % (v/v) of buffer solu-
tion with pH 8. Then, 19.45 % (v/v) of pre-warmed surfactant, Tween 80, and co-surfactant, Span 20, were added 
at a constant ratio of (2:1), respectively. The ratio between oils to surfactants (O/S) was maintained at (1:3.5), as 
this formulation exhibited the optimal stability. The resulted mixture was then vortexed for approximately 5 min 
at room temperature, until emulsions developed as one phase of a milky liquid.

Secondly, all samples were sonicated using Omni Sonic Ruptor 4000 Ultrasonic Homogenizer (Kennesaw, 
GA, USA) equipped with the ultrasound probe of titanium, and 3.8 mm in diameter. Throughout sonication, the 
tip was symmetrically immersed 1.0 cm above the end of the tube and the heat energy generated was neutralized 
by keeping the sample tubes in a glass beaker with ice at 4 °C to prevent overheating. The sonication was carried 
out for approximately 20 min until a clear and transparent phase formed indicating the production of B-NE. 
Each experiment was performed in triplicate (n = 3).

In general, the (DTX + TQ) B-NE samples were prepared by mixing (1:1) of docetaxel (DTX) and thymoqui-
none (TQ) followed by adding it directly into freshly prepared blank B-NE to produce a stock concentration of 
100 µM. It was then further diluted to the desired intermediate concentrations depending on each experiment.

Physical characterizations of B-NE formulas. Droplet size analysis. The average droplet sizes (z-av-
erage diameter), polydispersity index (PDI), and surface charge (zeta potential) values of all B-NE samples were 
identified by dynamic light scattering (DLS) technique (Malvern Zetasizer Nano ZS instrument, UK) equipped 
with Malvern Zetasizer software (version, 6.32). Typically, the analyses were performed with a light scatter-
ing angle of 173° and at 25 °C. All samples were measured in triplicates. The collected data were analyzed as 
intensity-and volume-weighted particle size distribution.

Stability. The stability constant (KS ) was used to assess the stability of blank B-NE and (DTX + TQ) B-NE. It was 
determined by the centrifugation-spectrophotometric method as previously described with  modifications22,23. 
The original absorbance of B-NE samples ( A0 ) was first measured by using GENESYS 10S Vis Spectropho-
tometer at 272 nm. Then, the centrifugation of 1.0 mL for each sample was performed at 3000 rpm for 10 min, 
followed by removing the supernatants. To obtain the sample absorbance (A), the bottom sample was then 
measured. The KS value was then calculated as the following equation: KS = ( A0 – A) / A0 . It should be noted that 
a smaller KS value indicates little precipitating or floating of NE formula, which implies good stability.

Drug release (in vitro). The release profiles of free (DTX + TQ) and the (DTX + TQ) B-NE were evaluated 
in vitro by the dispersion technique using the dialysis bag  procedure24. To simulate the blood circulation envi-
ronment, the experiments were conducted in phosphate-buffered saline (PBS, pH = 7.4). Briefly, (2 mL) of each 
sample was loaded into a dialysis bag (Mw cut-off = 3.5 kDa) and immersed in 100 mL release media having 1 % 
Tween 80 in PBS as a solubilizer to achieve sink conditions. Samples were then maintained at a constant shaking 
mixer at room temperature. Aliquots (1 mL) were collected at appropriate time intervals up to 24 h and replaced 
with fresh media to maintain a constant volume. Finally, the collected samples were measured at 272 nm using 
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GENESYS 10S Vis Spectrophotometer (Thermo Fisher Scientific, USA). For analysis, the cumulative releases of 
drugs in percentages were plotted vs. time to assess the release profiles. All measurements were carried out in 
triplicate.

Cell cultures. The MCF-7 and MDA-MB-231 cells were cultured in (DMEM) media supplemented with 
10 % (v/v) fetal bovine serum (FBS) and 1 % (v/v) penicillin–streptomycin (Gibco Invitrogen, Carlsbad, CA, 
USA), followed by incubation in a humidified 5 %  CO2 atmosphere at 37 °C. Upon reaching 90 % confluence, 
cells were routinely sub-cultured with a split ratio of 1:4 by trypsinization (0.25 % Gibco-trypsin; Gibco, Thermo 
Fisher Scientific, KSA) to maintain optimum growth and viability of cultured cells.

Cytotoxicity assay. The sulforhodamine B (SRB) assay was used to verify the cytotoxicity of DTX, TQ, and 
(DTX + TQ) B-NE in MCF-7 and MDA-MB-213 cells as previously  described20,25. In brief, cultured cells were 
seeded in 96-well plates at a seeding density of 1 × 104 cells/mL. On the following day, cells were treated for 48 h 
with the serial concentrations of DTX, TQ, B-NE, and free (DTX + TQ) or the loaded (DTX + TQ) B-NE, ranged 
from (0.01 to 100 µM). The combined drugs DTX and TQ were mixed in the ratio of (1:1) in either distilled water 
or B-NE to prepare a stock solution of 100 µM of free (DTX + TQ) or (DTX + TQ) B-NE, respectively. Afterward, 
the fixation of treated cells with trichloroacetic acid (TCA) (10 % w/v) was performed for one hour at 4 °C. Fixed 
cells were washed with distilled water and exposed to SRB dye (0.4% (w/v)) for 10 min at room temperature in 
the dark and subsequently washed by using 1 % (v/v) acetic acid to carefully remove all excess dye. Plates were 
then allowed to dry overnight. Finally, the SRB-stained cells were dissolved in Tris–HCl (50 mM, pH 7.4) and 
the product of the reaction was measured at 540 nm with a microplate reader (BioTek, USA). Cell viability was 
expressed as a percentage of values calculated from three replicates of each tested treatment, as shown in the 
following equation:

All treatments of the dose–response curves and their half-maximal inhibitory concentration  (IC50) values, 
which is the drug concentration required for 50 % inhibition of cell proliferation, were analyzed using Prism 
(version 8.0, GraphPad Software Inc., La Jolla, CA, USA). In addition, the combination index (CI) values were 
used to evaluate the nature of drugs interaction which are identified as antagonism if CI > 1.3; additive if CI 
(0.9–1.1); slight synergism if CI (0.8 – 0.9) and synergism if CI (0.4–0.8)7,26,27. The CI values were calculated 
from the formula:

Characterization of cell morphology. The morphologies of treated cells with the free DTX, TQ, 
and B-NE or (DTX + TQ) B-NE were investigated using the light microscope as previously reported with 
 modifications28. In general, cultured cells were seeded into 96-well, flat-bottomed plates. On the following day, 
cells were incubated with 200 μL of media containing the pre-determined  IC50 of each treatment for 48 h at 
37 °C and 5 %  CO2 incubator. Next, 100 μL of PBS (pH 7.2) was used to wash cells twice. Cells were fixed by the 
addition of 4 % formaldehyde for 15 min. The cells staining was then performed by adding 10 % Coomassie blue 
dye for 10 min. Lastly, the stained cells were washed twice with distilled water and allowed to dry overnight. The 
morphology of the cells upon treatment was then observed with an inverted microscope at 40× magnifications 
(TH4-200, Olympus optical Co-Ltd, Tokyo, Japan).

Evaluation of the apoptosis. The mechanism of cell death analysis in response to treatments was per-
formed with the Annexin V-FITC assay (Abcam, Cambridge, UK) according to the manufacturer’s instructions. 
Briefly, cells grown in 6-well plates at a density of 1 × 105 cells/well were exposed to the predetermined  IC50 values 
of each treatment for 48 h. Then, cells were harvested, washed with PBS, and incubated with 0.5 mL of Annexin 
V-FITC/PI (propidium iodide) solution for 30 min in the dark at room temperature. Samples were measured 
by flow cytometry (BD FACS Aria III). The flow cytometry plots were analyzed using FACS Diva Version 6.1.3 
software.

Autophagy assay. The acidic vesicular organelles (AVOs), a morphological characteristic of autophagy, 
was identified with the acridine orange staining (Sigma-Aldrich, St. Louis, MO) as previously described with 
 modifications29,30. In general, grown cells in 6-well plates at a density of 1 × 105 were treated with the pre-deter-
mined  IC50’s of the tested formulas for 48 h. The positive control cells were exposed to (10 μg/well) of rapamycin 
which is an autophagy inducing agent. Following treatment, collected cells were washed with PBS and then 
stained for autophagic vacuoles using 1 μg/mL acridine orange for 30 min in the dark at room temperature. 
Fluorescent autophagic vacuoles were analyzed via Flow Cytometer (BD FACS Aria III) and quantified using the 
FACS Diva Version 6.1.3 software.

Statistical analysis. All measurements were performed at least in triplicate and were reported as the 
mean ± standard deviation (SD). Data were analyzed by one-factor analysis of variance (ANOVA) using Prism, 

%Cell viability =

(

Abs of treated cells − Abs of blank

Abs of control − Abs of blank
× 100

)

CI =
IC50 drug ( a+ b )combination

IC50 drug ( a )alone
+

IC50 drug ( a+ b )combination

IC50 drug ( b )alone
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version 8.00, for Mac OS X (GraphPad Software, CA, USA). Differences among samples were considered statisti-
cally significant at p-value < 0.05.

Results
Physical characterization of B-NE formulas. The size, charge, and physical state of the formulated 
NEs play a key role in the functional performance as a delivery  system31. As displayed in Table 1, the z-average 
diameters for both of blank B-NE and (DTX + TQ) B-NE were within the desired size range with a narrow size 
distribution. Curiously, the nanodroplet sizes of the (DTX + TQ) B-NE were markedly larger than blank B-NE, 
suggesting the successful entrapment of loaded drugs. In addition, the zeta potential values of the (DTX + TQ) 
B-NE have become smaller than that of the blank B-NE. In spite of the differences in the stability constants (Ks) 
for blank B-NE and (DTX + TQ) B-NE, their minimal amounts for both of them suggest suitable stability.

Drug release (in vitro). The free drugs combination (DTX + TQ) and (DTX + TQ) B-NE revealed initial 
stage release followed by sustained release of drugs within 24 h. The release of (DTX + TQ) B-NE was consider-
ably higher when compared to the free drugs release profile as shown in Fig. 1.

Cytotoxic activity. The findings of SRB assay revealed that the trend line of the % cell viability is decreasing 
at a steady rate in both tested cell lines when exposed to the tested formula indicating a dose-dependent cytotox-
icity effect (Fig. 2). The discrepancies in the shapes of the curves imply different mechanisms of actions of DTX, 
TQ, and B-NE. When the tested formulas were applied to the MCF-7 and MDA-MB-231 cells, the determined 
 IC50 values were the least for both (DTX + TQ) B-NE and free DTX (P < 0.05) implying that they have the best 
inhibition effect (Table 2). In spite of the minimal cytotoxic effect of the single treatments, TQ and B-NE, on 
MCF-7 and MDA-MB-231 cells, mixing one-half amounts of DTX and TQ in B-NE gave similar cytotoxic effect 
to the full amount of free DTX but with a different mechanism of action as presented in the shapes of the curves 
in Fig. 2(A,B). According to the calculated CI values displayed in Table 2, the drugs in (DTX + TQ) B-NE have 
synergistic and slight synergistic effects on the MCF-7 and MDA-MB-231 cells, respectively. In contrast, com-
bining DTX with TQ in distilled water resulted in antagonistic effects on both tested cell lines. 

Morphological assessment of MCF-7 and MDA-MB-231 cells. The cellular morphological changes 
caused by treatments were observed under the light microscope after Coomassie blue staining to investigate the 
cell death mechanism. The MCF-7 cells treated with the free DTX and TQ have undergone damaging in the 

Table 1.  Physical characteristics of the B-NE formulations. The data were expressed as the mean ± SD (n = 3). 
***P < 0.001, the blank B-NE vs. the corresponded (DTX + TQ) B-NE, (one-factor ANOVA).

Formulation code Z-average diameter (nm) Zeta potential (mV) Polydispersity index (PDI) Stability constant (Ks)%

Blank B-NE 56.04 ± 4.00*** − 0.91 ± 0.20*** 0.071 ± 0.020 10.90 ± 0.02***

(DTX + TQ) B-NE 235.00 ± 10.00 − 0.38 ± 0.100 0.042 ± 0.020 14.01 ± 0.03
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Figure 1.  In vitro drug release of the combination treatments. Comparison between in vitro drug release 
profiles of the (DTX + TQ) free and (DTX + TQ) B-NE as a function of time in PBS (0.01 M, pH = 7.4 containing 
0.1 % (v/v) of Tween 80). All values were expressed as mean ± SD (n = 3). **P < 0.0021, ****P < 0.0001 in 
comparison to (DTX + TQ) free, assessed by one-factor ANOVA.
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nuclei with the presence of chromatin condensation and fragmentation. In contrast, cells treated with free B-NE 
have endured more membrane blebbing and cell shrinkage. The (DTX + TQ) B-NE treated cells have exhibited 
similar alterations in morphology as the free DTX with more content leakage from the cells (Fig. 3). In the case 
of MDA-MB-231cells, untreated cells displayed no evidence of fragmentation in the nuclei with a more homog-
enous color, while cells treated with either free DTX or TQ have exhibited noticeable changes in the nuclei 
morphology with more cell membrane shrinkages (Fig. 4). The treated cells with free B-NE have suffered more 
damage in the nuclei and chromatin fragmentation. The aberrant death of cells treated with the (DTX + TQ) 
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Figure 2.  The dose–response curves of DTX, TQ, B-NE, DTX + TQ-free and the loaded (DTX + TQ) B-NE. (A) 
MCF-7 and (B) MDA-MB-231 cells were exposed to serial dilution of the tested drugs for 48 h. The cell viability 
was determined by the SRB assay. Data were represented as mean ± SD (n = 3).
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Table 2.  Summary of cytotoxic parameters of DTX, TQ, B-NE, and their combinations against breast cancer 
cell lines, MCF-7 and MDA-MB-231, after 48 h treatment. (IC50) values denote the half maximal inhibitory 
concentration. (CI) values indicate the combination index as antagonism (CI > 1.3), slight synergism (0.8–0.9) 
and synergism (CI < 0.8). The data were expressed as mean ± SD (n = 3). ***P < 0.001 in comparison to DTX 
(one-factor ANOVA).

Treatments

IC50 (µM)

MCF-7 MDA-MB-231

DTX 1.94 ± 0.55 0.55 ± 0.22

TQ 24.0 ± 5.0**** 8.07 ± 2.50***

B-NE 16.0 ± 2.0*** 17.0 ± 4.00****

DTX + TQ
7.56 ± 1.00
CI-value = 4.21
Antagonism***

1.08 ± 0.58
CI-value = 2.09
Antagonism

(DTX + TQ) B-NE
1.15 ± 0.097
CI-value = 0.6
Synergism

0.47 ± 0.091
CI-value = 0.9
Slight synergism

Figure 3.  Morphological changes induced in MCF-7 cells. At culturing conditions, cells were treated with the 
pre-determined  IC50’s of DTX, TQ, B-NE either as single or their combination for 48 h. Cells were stained with 
Coomassie Blue dye and photos were then taken using light microscopy. (Scale bar = 200 µm). Blue arrows 
represent shrinkage of cells, nuclear fragments, and apoptotic bodies while red arrows represent cytoplasmic 
blebs.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18124  | https://doi.org/10.1038/s41598-020-75017-5

www.nature.com/scientificreports/

B-NE formula was characterized by cytoplasmic vacuolization with increased intracellular spaces and clearance 
of cells. Cells also revealed nuclear destruction similar to the free DTX effects.

Assessment of apoptotic induction. To investigate whether the observed growth inhibition upon DTX, 
TQ, B-NE, and (DTX + TQ) B-NE treatment was associated with the induction of apoptosis in MCF-7 and MDA-
MB-231, cells exposed to the pre-determined  IC50 of all tested treatments were evaluated by Annexin- V/FITC 
apoptosis detection assay. As exhibited in Fig. 5(A,C), the maximal increase in the percentage of MCF-7 cells 
undergoing early (Annexin V + /PI-) apoptosis was detected with the exposure of DTX alone (84.13 ± 0.13 %) 
when compared to the untreated control cells. In addition, the rates of early apoptotic cells caused by TQ, 
B-NE, and (DTX + TQ) B-NE treatments were 73.10 ± 0.26 %, 54.97 ± 0.65 %, and 67.53 ± 0.60 %, respectively. 
Although B-NE treatment had the lowest early apoptotic rates, it induced a significant level of late apoptosis at 
14.17 ± 0.21 %, which was significantly better than DTX alone (3.50 ± 0.3 %, P < 0.05).

Figure 4.  Morphological changes induced in MDA-MB-231 cells. At culturing conditions, cells were treated 
with the pre-determined IC50’s of DTX, TQ, B-NE either as single or their combination for 48 h. Cells were 
stained with Coomassie Blue dye and photos were then taken using light microscopy (Scale bar = 200 µm). 
Blue arrows represent shrinkage of cells, nuclear fragments, and apoptotic bodies while red arrows represent 
cytoplasmic blebs.
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Figure 5.  The effects of DTX, TQ, B-NE, and their combinations on apoptosis in MCF-7 and MDA-MB-231 at 48 h. Cells 
were treated with the pre-determined  IC50’s of test drugs or drug-free media for 48 h. The percentage of apoptotic cells 
was measured using the Annexin V-FITC flow cytometry in (A) MCF-7 and (B) MDA-MB-231 cells. (C) A summary of 
the percentage of early apoptosis and late apoptosis are shown in MCF-7 and MDA-MB-231 cells. Data were presented as 
mean ± SD (n = 3). ***P < 0.0002, ****P < 0.0001 in comparison to DTX, assessed using one-factor ANOVA.



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18124  | https://doi.org/10.1038/s41598-020-75017-5

www.nature.com/scientificreports/

In MDA-MB-231 cells, all treated groups induced apoptosis which were significantly different from control 
as shown in Fig. 5(B,C). The DTX and TQ treatments induced a similar level of early apoptosis of 39.37 ± 1.10 % 
and 39.23 ± 1.21 %, respectively. In comparison to DTX alone, B-NE treatment resulted in a significant increase 
in the early apoptotic cells with 68.97 ± 0.76 % (P < 0.05). In addition, late apoptotic cells were also detected with 
B-NE alone treatment at 4.83 ± 0.29 %. Interestingly, when the combined DTX and TQ drugs were loaded within 
B-NE, a decrease in the early apoptosis was detected of 39.50 ± 0.56 %, alongside an increase in the late apoptosis 
induction of 9.27 ± 0.31 % when compared to the blank B-NE. Importantly, despite the lower dosage of DTX 
used in (DTX + TQ) B-NE compared to the DTX alone, the apoptosis analysis suggests that the combined drugs 
loaded B-NE performed similarly to the DTX alone. Thus, indicating an enhancement of DTX activity which is 
in agreement with the previous finding in the cytotoxicity analyses.

Evaluation of the autophagy. Apart from apoptosis, the involvement of autophagy in cell death mecha-
nism represents an interesting question. This study further explored the free DTX, TQ, B-NE, and (DTX + TQ) 
B-NE effects on the autophagy process. As displayed in Fig. 6, the autophagic death in MCF-7 cells resulted from 
treatment with DTX alone significantly increased by 57.1 ± 2.0 % compared to the untreated control cells. Simi-
larly, (DTX + TQ) B-NE increased autophagic cell death by 57.0 ± 0.8 %. However, the induction of autophagic 
cell death by TQ and B-NE treatments were 34.5 ± 3.1 % and 15.2 ± 0.8 %, respectively, which were not signifi-
cantly changed when compared to the untreated cells. In terms of the autophagy assessment in MDA-MB-231 
cells, the lone treatments with DTX, TQ, and B-NE, as well as the combination treatment with (DTX + TQ) 
B-NE, significantly increased the formation of autophagic vesicles by 63.1 ± 5.07 %, 85.1 ± 5.0 %, 76.3 ± 1.3 %, and 
73.3 ± 7.01 %, respectively, when compared to untreated control cells (Fig. 6).

Discussion
In this study, B-NE was successfully formulated by the sonication technique and was loaded with a combination 
of DTX and TQ. Blank B-NE consisted of the suspended nanodroplets with average diameters of 56.04 ± 4.00 nm 
with a narrow size distribution, whereas the nanodroplets of (DTX + TQ) B-NE formulation had become sig-
nificantly swollen in size with 235.00 ± 10.00 nm, indicating the entrapment of the loaded drugs by dispersion 
within the B-NE  matrix32. Additionally, the zeta potential values of either blank or drugs loaded B-NEs formulas 
were approximately below -1 mV with a low net negative charge. It has commonly been assumed that the zeta 
potential with a high negative value more favorable as it reflects the stability of the NE system due to the repul-
sion  force33. However, many studies specified that natural or positive zeta potentials were significantly associated 
with the cellular uptake of the nano-delivery system, thus it would be beneficial to formulate NEs having a more 
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Figure 6.  The effects of DTX, TQ, B-NE, and their combinations on autophagy in MCF-7and MDA-MB-231 
Cells at 48 h. Cells were treated with the pre-determined  IC50’s of treatments, and with rapamycin as a positive 
control for 48 h. Formation of acidic vesicular organelles (AVOs), a morphological characteristic of autophagy, 
was detected by acridine orange staining and quantified by flow cytometry. Data were presented as mean ± SD 
(n = 3). **P < 0.0021, ***P < 0.0002, ****P < 0.0001 in comparison to the negative control, assessed using one-
factor ANOVA.
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positive zeta potential rather than negative for enhancing their cellular uptake during the process of  delivery34,35. 
Moreover, the stability evaluations of the (DTX + TQ) B-NE exhibited small Ks value suggesting little precipitat-
ing or floating of the suspended nanodroplets and thus could be maintained for a long  time22.

Furthermore, the release profile of the (DTX + TQ) B-NE was noticeably higher than the free drugs com-
bination. The poor solubility of free drugs could lead to a lower release rate resulting in lower  bioavailability6. 
Therefore, the incorporation of (DTX + TQ) into the core of B-NE could improve the solubility and permeability 
of the loaded drugs that lead to enhancement in the drug  release24. Moreover, the release profiles of both the 
DTX + TQ and (DTX + TQ) B-NE displayed a biphasic pattern with a relatively fast release of the drugs in the 
initial stage followed by the second stage of a slower and sustained release within 24 h, hence it would ensure the 
maximum efficiency of the drugs over  time7,36,37. Similar findings have been previously reported for the release 
patterns of DTX from another self-nanoemulsifying drug delivery  system6.

The cytotoxicity analysis of MCF-7 and MDA-MB-231 cells revealed that the DTX and TQ combination 
exhibited an antagonistic effect. However, when the combined drugs were loaded into the B-NE system, it inter-
estingly exhibited a clear synergistic effect with a superior cytotoxicity effect. This leads to the assumption that 
B-NE could contribute to enhancing the DTX and TQ interaction through probably an increase in their solubility 
and permeability. Owing to the targeting ability of the NE system, it would facilitate the cellular uptake resulting 
in excessive sensitivity to the loaded  drugs24,38. This finding is in agreement with previous studies reporting that 
the cytotoxicity of different combination therapy was improved when included in nano-delivery  systems7,39,40.

Furthermore, the growth of MCF-7 and MDA-MB-231 cells were significantly suppressed when treated with 
the (DTX + TQ) B-NE even at lower doses of DTX with IC50 value of 1.2 ± 0.97 µM and 0.5 ± 0.91 µM, respec-
tively. However, the single DTX treatment could not cause a similar cytotoxicity rate without a higher dose 
when compared to the combination formula. Thereby, the cytotoxic effects of drugs were further pronounced 
when they were administered as a nano-formulation, which leads to a reduction in the required dose of DTX 
while concurrently improving its bioavailability. This finding is in agreement with numerous studies that have 
highlighted the remarkable effect of NEs as a delivery system in enhancing the cytotoxic effect of DTX against 
many other cell  lines6,41,42.

The morphological features for MCF-7 and MDA-MB-231 cells were observed since it could contribute to the 
explanation of the status of cell death. Apoptosis progresses through a highly coordinated sequence of events, 
which are represented in specific phenotypic alterations such as DNA fragmentation and plasma membrane 
 blebbing43. The MCF-7 cells treated with B-NE and (DTX + TQ) B-NE had undergone late apoptosis, as indicated 
by the shrinkage of cells, nuclear fragments, and the appearance of apoptotic bodies. In the case of MDA-MB-231 
cells treated with (DTX + TQ) B-NE, the observation revealed noticeable cytoplasmic vacuolation that might 
indicate the association of the autophagic pathway.

The effect of DTX and TQ drugs and their combination in B-NE on apoptosis pathways were further assessed. 
It has been found that MCF-7 cells treated with B-NE alone displayed superior late apoptotic effect when com-
pared to the other treatments. The highest early apoptotic effect in MCF-7 cells was induced by the single DTX 
treatment, while MDA-MB-231 cells treated with blank B-NE displayed the highest early apoptotic effect. Fur-
thermore, despite the reduction in the DTX dose used in the combination therapy of (DTX + TQ) B-NEs when 
compared to the free DTX dose, both treatments remarkably exhibited an equivalent apoptotic effect in MCF-7 
and MDA-MB-231cells. This result indicates that the co-incorporation of TQ and DTX into B-NE could trigger 
apoptotic cell death even at a lower dose of DTX. In addition, this observation further confirms the synergistic 
effect found with the (DTX + TQ) B-NEs formulation. In agreement with this data, Ganta et al.30 found that 
NEs have the potential to deliver DTX with enhanced apoptosis induction, which inhibits proliferation in ovar-
ian cancer cells. Taken together, in MCF and MDA-MB-231 cells, the results indicate that TQ has an essential 
role in the combination formula since it allows a reduction in the required DTX dosage while maintaining its 
effectiveness through multiple pathways. When the plant derived-natural product TQ is combined with DTX 
and introduced by a nanoemulsion delivery system, it provides a synergistic effect in cell growth inhibition, 
enhancement of DNA breakage, and apoptosis induction.

Autophagy has lately gained increasing attention in cancer therapy, in a particular investigation in the 
highly complex interaction between apoptosis and autophagy as it remains a challenge for cancer  treatment44,45. 
Autophagy appears to act as a double-edged sword that can either protect cells from apoptosis or promote apop-
tosis depending on many factors essentially the triggering  stimuli46,47. In MCF-7 cells, induction of autophagy 
by blank B-NE was not significant when compared to the negative control, even though previous apoptosis 
results showed that treatment with blank B-NE remarkably increased late apoptosis. Thus, the damage pro-
moted by blank B-NE leads to the inhibition of autophagy that seems to increase susceptibility to apoptosis. 
One explanation for this observation is that autophagy is restricted by the apoptotic signaling pathway due to 
the extensive DNA damage that would typically stimulate an apoptotic  response47. Based on earlier findings 
from the morphological analysis of MCF-7 cells treated with blank B-NE, the morphology of the cells was obvi-
ously characterized with membrane blebbing, which is an ATP-dependent process that requires  autophagy47. 
Therefore, in this type of cross-talking autophagy may still assist in a particular hallmark of apoptosis without 
leading directly to cell death. On the other hand, when the B-NE was loaded with DTX and TQ, a significant 
increase in the number of autophagic vesicles was detected as compared with the untreated cells in both MCF-7 
and MDA-MB-231cells. These results indicate the involvement of apoptosis and autophagy activation in the 
(DTX + TQ) B-NE mechanism of action with a direct contribution of both processes to cell death. This finding 
is in line with the earlier observations derived from the apoptosis analysis, as the (DTX + TQ) B-NE showed an 
effective apoptotic induction. Additionally, the cytoplasmic vacuolization, observed in the morphological analysis 
of cell death, further emphasizes the induction of autophagy. In other words, when the combination treatment 
is loaded within B-NE, autophagy seems to stimulate the apoptotic pathway and contribute simultaneously and 
even cooperatively to lead the cell death.
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Conclusions
To the best of our knowledge, this is the first report of a novel formulation composed of DTX and TQ co-
loaded into the B-NE system. This formulation aimed to minimize the effective dose of DTX in order to avoid 
drug toxicity. The physical characterization analysis for the developed B-NE formulation exhibited a homog-
enous distribution with the optimal size for drug delivery. The cytotoxicity evaluations have confirmed that the 
(DTX + TQ) B-NE formula has a better inhibition effect than the free combined drugs (DTX + TQ) on MCF-7 
and MDA-MB-231 cells. The cell death analysis of the (DTX + TQ) B-NE indicated a possible synergistic effect 
of the combined drugs in stimulating autophagy and apoptosis simultaneously. The knowledge accumulated 
through this research highlights the potential of the B-NE as a promising candidate for the administration of 
the combination therapy DTX and TQ that could assist in reducing the required effective anticancer dose of the 
drugs for the treatment of breast cancer. Further studies are needed to define the molecular mechanisms activated 
by this formulation which lead to improved anticancer activity. The molecular and phenotypic heterogeneity in 
human breast carcinomas poses a significant limitation for designing effective treatment regimens. The highly 
variable sensitivity to the treatment, including plant-derived therapeutics, can be observed, and their acquired 
drug resistance is considered a challenge. Therefore, the clinical approach of nanoemulsion-based combina-
tion therapy consisted of various plant-derived anticancer agents administered together with the conventional 
chemotherapy should be superior compared to a single compound in cancer treatment, which can be attributed 
to its potential to affect multiple signaling pathways in cancer cells that may delay the development of drug 
resistance. In view of that, further research is needed to identify new nano-based combination therapies that 
include plant-derived compounds with well-validated anticancer properties to further improve the treatment 
options within clinical oncology.
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