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Maximized quantitative 
phosphoproteomics allows high 
confidence dissection of the DNA 
damage signaling network
Vitor Marcel Faca1,2,4, Ethan J. Sanford1,4, Jennifer Tieu1, William Comstock1, Shagun Gupta3, 
Shannon Marshall1, Haiyuan Yu3 & Marcus B. Smolka1*

The maintenance of genomic stability relies on DNA damage sensor kinases that detect DNA lesions 
and phosphorylate an extensive network of substrates. The Mec1/ATR kinase is one of the primary 
sensor kinases responsible for orchestrating DNA damage responses. Despite the importance of Mec1/
ATR, the current network of its identified substrates remains incomplete due, in part, to limitations 
in mass spectrometry-based quantitative phosphoproteomics. Phosphoproteomics suffers from lack 
of redundancy and statistical power for generating high confidence datasets, since information about 
phosphopeptide identity, site-localization, and quantitation must often be gleaned from a single 
peptide-spectrum match (PSM). Here we carefully analyzed the isotope label swapping strategy 
for phosphoproteomics, using data consistency among reciprocal labeling experiments as a central 
filtering rule for maximizing phosphopeptide identification and quantitation. We demonstrate that 
the approach allows drastic reduction of false positive quantitations and identifications even from 
phosphopeptides with a low number of spectral matches. Application of this approach identifies new 
Mec1/ATR-dependent signaling events, expanding our understanding of the DNA damage signaling 
network. Overall, the proposed quantitative phosphoproteomic approach should be generally 
applicable for investigating kinase signaling networks with high confidence and depth.

Protein phosphorylation is of central importance in both normal physiology and pathological conditions. Phos-
phorylation-mediated switches regulated by protein kinases and protein phosphatases can affect protein structure 
and function, with consequences in enzymatic activity, protein localization, protein interactions and  turnover1–3. 
The control circuits of the DNA damage response (DDR) are extensively regulated by phosphorylation, with 
the kinase Mec1 (human ATR) playing a major role in both activation of the DNA damage checkpoint as well 
as phosphorylation of substrates involved in a range of nuclear processes including DNA repair, DNA replica-
tion, and  transcription4–10, To date a number of Mec1 substrates have been mapped by  phosphoproteomics11–13. 
However, the current network of identified Mec1 substrates remains incomplete. Many DNA repair proteins are 
not highly  expressed14, and represent a challenge for phosphoproteomic analyses of DNA damage signaling to 
achieve proper depth with high quality quantitative data. Improvements in global quantitative phosphoprot-
eomic analyses are therefore necessary to comprehensively map the Mec1-dependent signaling network. Similar 
challenges exist for the study of other kinases and represent important barriers for progress in understanding 
kinase action in general.

Phosphoproteomics, the systematic and unbiased mapping of phosphorylation events, is achieved mainly 
using mass spectrometry (MS)-based approaches. Both instrumentation and bioinformatic tools applied for 
phosphopeptide identification have been continuously  evolving15–17, culminating in large phosphoproteomic 
datasets in recent  years18–24. In addition to in depth coverage of the phosphoproteome, comprehensive mapping 
of kinase-mediated signaling also requires quantitative analysis of each phosphopeptide or phosphorylation site 
to monitor its abundance in conditions of active kinase compared to conditions in which the kinase of interest 
is chemically and/or genetically  ablated11,25,26. Various quantitative mass spectrometric approaches have been 
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applied for the mapping of kinase signaling, including stable isotope labeling in cell culture (SILAC)26–28 and 
isobaric labelling strategies such as tandem mass tag (TMT)29,30. In a recent systematic comparison of quantitative 
phosphoproteomic strategies, SILAC was considered the most accurate, although TMT-based analyses yielded 
better coverage of the  phosphoproteome17. SILAC is based on peptide precursor ion quantification to detect and 
quantify, in relative terms, the ratio between “heavy” and “light” isotopologues of amino acids (most commonly 
lysine and arginine) incorporated metabolically into  cells31,32. Such an approach allows early mixing of labeled 
protein extracts in phosphoproteomic workflows to minimize technical variation.

Phosphoproteomics faces inherent issues for achieving identification and quantitation of phosphopeptides 
with high confidence. Different than proteomics, where the analysis of proteins is based on identification and 
quantification of multiple redundant representative peptides for a given protein, phosphoproteomics relies on 
phosphopeptides that are often unique (non-redundant) species represented by one or a few peptide spectral 
matches (PSMs) in the dataset. The lack of multiple redundant events for informing identification, quantification 
and phospho-site localization hobbles the acquisition of high-quality data due to the low numbers of PSMs per 
 phosphopeptide33. The ability of acquiring high quality identification and quantification data is further compli-
cated by the fact that many key phosphopeptides of biological interest are present at very low levels in the pool of 
phosphopeptides enriched from whole cell lysates. Even in cases when identification of a phosphopeptide based 
on one or two PSMs is successful, the associated quantitative information can suffer from signal interference 
derived from sample complexity and other intrinsic technical  noise34–37. As a result, a significant part of the gener-
ated phosphoproteomic data is not suited for reliable quantitative analysis and biological inference, representing 
one of the major bottlenecks in large-scale quantitative phosphoproteomic analysis of kinase-mediated signaling.

Here we report a phosphoproteomic approach for increasing reliability in phosphopeptide identifi-
cation and quantification, while minimizing loss of data from phosphopeptides with low PSM counts. The 
approach builds on the established concept of SILAC labeling swap, relying on quantitation consistency among 
reversed isotopically labeled samples as a central filtering step for removing false positive identifications and 
erroneous  quantifications31,38,39. While isotopic label swapping has been a common practice in SILAC-based 
 experiments38–42, its contribution to the reduction of false positive identifications and quantitations has not 
been systematically characterized, especially for cases of phosphopeptides with low PSM counts. By performing 
an in-depth analysis of label swap phosphoproteomics we monitor experimental error or biological variation 
in phosphopeptide quantitation and propose an approach for drastic reduction of false positive identifications 
and quantitation. The reported approach balances both sensitivity and specificity to detect phosphorylation 
changes with high confidence, even in the case of phosphopeptides with low PSM counts. Overall, the simple 
approach presented here enhances the reliability of quantitative phosphoproteomics in biological interrogations 
of kinase-mediated signaling networks.

Results
Error and variation in SILAC-based phosphopeptide quantitation is unidirectionally 
biased. We set out to develop an approach to maximize confidence in quantitative data from phosphoprot-
eomic experiments. We postulated that SILAC-based quantitation might be particularly well suited for separat-
ing meaningful biological changes from: (1) aberrant quantitation during data processing (herein referred as 
“Error”), and/or (2) changes in phosphopeptide abundance unintentionally introduced during sample handling 
(herein referred as “Variation”). If both Error and/or Variation (EV) are mostly associated with artifacts that are 
independent of true biological differences in the cell lines or drug treatment conditions being compared, phos-
phoproteomic analysis should reveal a unidirectional bias in the generated ratios of data points reflecting EVs 
(Fig. 1A–C). We further reasoned that a strong bias in EVs would enable their systematic exclusion from large-
scale phosphoproteomic datasets and, in principle, enable the generation of high confidence quantitative data 
even from phosphopeptides with only one PSM detected in each reciprocal, labeling swap SILAC experiment.

To test this idea, we mixed equal amounts of protein extracts from budding yeast grown in light (12C14N 
arginine and lysine) or heavy (13C15N arginine and lysine) SILAC media and subjected lysates to a quantitative 
phosphoproteomic and data analysis pipeline outlined in Fig. 1 and detailed in Supplemental Figure S1. An 
independent biological replicate was performed to mimic a reciprocal, labeling swap experiment. As shown in 
Fig. 1A, data points with a SILAC ratio not reflecting the expected 1:1 ratio (simulated within a 33% coefficient of 
variation, or approximately a twofold change), were considered to reflect methodological error and/or variation. 
Comparison of experiments A and B (control and reciprocal label swap) should reveal if the error and/or vari-
ation exhibit any biased distribution in a quantitative plot (Fig. 1B,C). As shown in Fig. 2A (see Supplementary 
Table S1 for detailed dataset), separate experiments revealed thousands of data points outside a simulated range 
of 33% coefficient of variation (indicated in yellow). We reasoned that these points reflect EVs in the experiment. 
Notably, comparison of the ratio of each phosphopeptide in experiments A and B revealed a clear bias in EV dis-
tribution toward quadrants Q2 and Q4 (Fig. 2B,C) such that 92% of all EVs fell within these quadrants. Notably, 
EVs accounted for 17% of all phosphopeptides present in our dataset when considering phosphopeptides with 
1 PSM in each experiment, underscoring the importance of their exclusion. Data points in Q2 and Q4 represent 
phosphopeptides whose SILAC ratios did not revert in the reciprocal experiment. Overall, these results reveal 
that the use of a SILAC labeling swap in phosphoproteomic experiments allows efficient detection of intrinsic EV 
in the dataset, which may be used for achieving high confidence quantitative analysis, even for phosphopeptides 
represented by a low number of PSMs. This ability to filter signal from noise, even when PSM numbers are low, 
is crucial for phosphoproteomic experiments which often rely on difficult-to-detect phosphopeptides. In fact, 
approximately a third of the data points in the correlation plot shown in Fig. 2B reflect phosphopeptides with 
only one PSM in one of the experiments (see Supplementary Table S1).
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Data filtering approaches for reducing error and variation. To apply data filtering approaches for 
efficiently eliminating EVs while minimizing loss of data, we evaluated the effects of imposing thresholds on the 
minimal number of observations (PSMs) required for each phosphorylation site identified. While each phos-
phosite requires at least 2 observations (1 in each of the reciprocal experiments) to be shown in the correla-
tion plot, increasing the requirement for 2 or more observations in each experiment decreased the proportion 
of EVs in relation to the entire dataset (Fig. 3A). Considering specifically data points present in Q1 and Q3, 
where inverse correlation is expected between phosphopeptide ratios in reciprocal experiments, we find that the 
proportion of EVs is about 1.5% when considering 1 or more PSM in each experiment. This EV proportion is 
reduced by approximately half, to 0.8% of the data points, when a minimum of 2 observations is required in each 
experiment (Fig. 3B). However, this additional requirement also decreased sensitivity, reducing the total number 
of data points from 15,062 to 10,439 (Supplementary Table S1).
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Figure 1.  Modeling outcomes of SILAC reciprocal labeling as a means to reduce technical error and/or 
variation (EV). (A) Workflow showing reciprocal labeling scheme with a forward experiment (Experiment A, 
left) and a reverse experiment (Experiment B, right) with anticipated outcomes and proposed causes of EVs 
(middle). (B) Anticipated distribution of false positives in a comparison of two identical samples if error and 
variation occurred randomly and independent of isotopic labeling. (C) Anticipated distribution of false positives 
in a comparison of two identical samples if error and variation were unidirectionally biased (i.e. similar ratio in 
both a forward and reverse experiment).
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During our EV analyses, we noticed a clear prevalence of data points close to the X-axis and Y-axis in Q1 
and Q3 (Fig. 3A,C), revealing data points with a deviated ratio in only one of the experiments. By employing a 
simple “quadrant filtering” approach, whereby points in Q2 and Q4 are excluded, and points in Q1 and Q3 are 
kept, we cannot exclude highly variable phosphopeptide measurements that are also likely the result of error and/
or variation (Fig. 3C). To circumvent this issue and more efficiently remove EVs for improved data quality, we 
designed an alternative filtering approach where data points in Q1 and Q3 were required to be within an interval 
of correlation correspondent to fourfold of the log2 scale (hereafter referred to as “Bow-tie filtering”) (Fig. 3C). 
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Figure 2.  Reciprocal labeling in an isogenic yeast cell line reveals extensive error and variation that is 
unidirectionally biased. (A) Histograms for SILAC ratios of two independent phosphoproteome experiments 
comparing isogenic wild-type S. cerevisiae as depicted in Fig. 1A. EVs are colored in orange. (B) Scatterplot 
comparing experimental data from the two SILAC experiments shown in (A). EVs are colored in orange. (C) 
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As shown in Figs. 3C,D, the use of Bow-tie filtering, even where peptides with 1 PSM in each experiment were 
included, reduced the proportion of EVs to 0.54% of the dataset. When Bow-tie filtering was combined with 
the threshold of at least 2 PSMs per experiment, the proportion of EVs again dropped by approximately half 
to 0.25% of the dataset. These results reveal that the ability to identify EVs in SILAC-based phosphoproteomic 
experiments allows the utilization of filtering strategies that drastically reduce error and variation in the dataset, 
therefore increasing the confidence in the data even when considering phosphopeptides represented by a single 
PSM per experiment.

Eliminating error and variation in quantitation reduces decoy identifications. SILAC labeling 
with stable isotopes shifts the mass of parent ions and their fragments in both MS1 and MS2, respectively. We 
reasoned that this mass shift should enable more efficient exclusion of false positive identifications in the dataset, 
since a misidentification would need to occur in both reciprocal experiments and be consistent between two 
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Figure 3.  Data filtering based on quantitation consistency drastically reduces error and variation. (A) 
Scatterplot from Fig. 2B. indicating the “Quadrant” filtering scheme (gray data points removed in Q2 and Q4) 
and additional filtering based on the requirement for at least 2 PSMs per experiment for each data point (plot 
on the right). (B) Histogram showing EVs in Q1 and Q3 (orange data points) from A as a percentage of total 
dataset using either 1 PSM or 2 PSM filtering. (C) Scatterplot from Fig. 2B. indicating the “Bow-tie” filtering 
scheme (gray data points removed) and additional filtering based on the requirement for at least 2 PSMs per 
experiment for each data point (plot on the right). For Bow-tie filtering, in addition to removing EVs in Q2 and 
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parental ions with different m/z. To give a more detailed example, a false identification in a 12C14N (light) sample 
with a high light/heavy ratio, should not be reciprocally identified in the 13C15N (heavy) form, or if identified 
in the light form in the reciprocal experiment, it should not display an inverted low light/heavy ratio. If most of 
these cases reflect intrinsic experimental artefacts consistently present over biological replicates, independently 
of SILAC labeling swap, these false identifications should be prevalent in quadrants Q2 and Q4, because the 
peptide in question would be very unlikely misidentified in a reciprocal experiment due to its having a different 
m/z and/or display an inverted ratio. In such a context, consistency in quantitation over two or more biological 
replicates of label swapped experiments could be used as a parameter for efficiently excluding false identifica-
tions from final datasets, especially in the region of data points with high fold changes containing most of the key 
data that would be used for biological inference, such as for the identification of kinase substrates.

To test if performing a reciprocal labeling experiment indeed reduces false-positive identification and 
quantification, we estimated the error rate of phosphopeptide identifications by monitoring the distribution of 
reversed decoy hits from the list of phosphopeptide identifications that passed our basal quality criteria (Peptide-
Prophet > 0.9 and < 20 ppm precursor ion error). As shown in Fig. 4A,B, decoy hits display a clear distribution bias 
towards quadrants Q2 and Q4, congruent with our rationale that false identifications are mostly unidirectional 
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in quantitation and likely reflect artefacts that are extremely unlikely to occur in two reciprocal experiments, 
independently. Of all decoy hits in the unfiltered dataset, more than half (81 out of 130) were found to display 
ratios outside the twofold change range (Fig. 4A,B; Table 1). Notably, we were able to remove all decoy hits from 
Q1 and Q3 (regions expected to contain key data for biological inference of true changes in phosphorylation 
events) using the Bow-tie filtering strategy in combination with a threshold of at least 2 PSMs per experiment 
(Fig. 4C,D; Table 1). Even when phosphopeptides reflected by 1 PSM per experiment were allowed in the dataset, 
the number of decoy hits in Q1 or Q3 remained low (2 hits) (Fig. 4D). We also tested a stringent filter for phos-
phorylation site localization (PTMProphet score equal or above 0.9), which further reduced EVs in Q1 and Q3 
to 0.36% without drastically reducing the overall coverage of the dataset (Table 1). These findings highlight the 
usefulness of our approach, which hinges on conducting a reciprocal SILAC experiment to improve confidence 
in both identification and quantitation in phosphoproteomic studies. Importantly, the described approach results 
in minor loss of valuable data content from low abundance phosphopeptides represented by only one PSM in 
each of the two reciprocal experiments.

High confidence dissection of the Mec1-dependent signaling network. Mec1, the Saccharomyces 
cerevisiae ortholog of mammalian ATR, is a phosphoinositide 3-kinase-related kinase (PIKK) kinase that is a key 
mediator of DNA damage  responses43–45. We have previously used quantitative phosphoproteomics comparing 
WT and mec1Δ cells to uncover phosphorylation events dependent on  Mec111. Here we applied our optimized 
quantitative phosphoproteomic approach to the study of Mec1 in order to benchmark our bow-tie approach and 
expand the Mec1-dependent signaling network. We carried out the experiments in cells treated with the DNA 
alkylating agent MMS (methyl methanesulfonate) and lacking the checkpoint adaptor Rad9 to minimize indi-
rect downstream phosphorylation and preferentially reveal direct Mec1  substrates6,46. Overall phosphoproteome 
coverage was similar to the control experiment, with approximately 20,000 phosphopeptide identifications for 
each SILAC reciprocal experiment. Upon application of our most relaxed filtering scheme, which considers 
phosphopeptides with 1 or more PSM in each experiment and a PeptideProphet score of 0.9 or greater, a total 
of 13,456 unique phosphosites from 2778 different proteins were identified. In order to ensure confidence in 
phosphopeptide localization, we applied a PTMProphet score filter of greater than or equal to 0.9, somewhat 
reducing the total number of unique phosphopeptides identified in the Mec1 experiment to 11,950. The list of 
all phosphosites identified and quantified in our experiment is supplied in Supplemental Table S2. As shown 
in Fig. 5A, Q1 after Bow-tie filtering contained a large number of phosphosites consistently downregulated in 
rad9Δ cells lacking Mec1 in both reciprocal SILAC experiments. The number of phosphosites in Q1 was approxi-
mately equal to the number of EVs in Q2 and Q4 (Supplemental Table S3), indicating that if experiments we 
performed using only one labeling scheme, many of these EVs excluded in our Bow-tie approach would have 
been erroneously called Mec1-dependent sites, obfuscating true biological effects of MEC1 loss. Reassuringly, 
phosphopeptides in Q1 or Q3 (representing phosphorylation events lost or induced upon deletion of MEC1) 
were approximately eight times more prevalent than in the WT (1:1) control experiment (Fig. 5B). Our filtering 
strategy allows minimal loss of data while increasing stringency for identification and exclusion of false positives 
through SILAC label swapping. To systematically and quantitatively demonstrate that the set of Mec1-dependent 
phosphorylation events had a low rate of EVs, we sought to stratify the bow-tie filter into several bins of increas-
ing fold-change and calculate the false discovery rate (FDR) for each bin. Mathematically, the FDR is equal to 
the number of points in a given bin in the control-experiment divided by the number of points in a given bin in 
the Mec1 experiment. For the purposes of this calculation, points in Q1 and Q3 were considered together (Sup-
plemental Figures S2A,C). Expectedly, FDR decreased with increasing distance from the center and was further 
reduced depending on how close points fell to the line of symmetry (Supplemental Figures S2B,D). The majority 
of the data points in Q1 and Q3 encompassed by the bow-tie filter have a p value less than 0.05 (Fig. 5C), thus 
validating our bow-tie filtering approach as a means to improve data quality while allowing the inclusion of 
difficult-to-detect phosphorylation events.

Table 1.  Summary of phosphoproteomic data from Figs. 2, 3 and 4, comparing Quadrant to Bow-tie filtering, 
1 PSM cutoff to 2 PSM cutoff, and filter for PTMPROPHET score ≥ 0.9.

Minimal # 
of PSMs per 
experiment

Total 
phospho 
sites 
matched*

Identification Quantitation

Data filter

Phospho-
sites with 
consistent 
quantitation 
(center)

Identification Quantitation

Total # of 
decoys hits

% of decoy 
hits

Total # of 
error and 
variation

% of 
error and 
variations

Persisting 
decoy hits in 
Q1 + Q3

% of decoy 
hits post-
filtering

Persisting 
error and 
variation in 
Q1 + Q3

% of error 
and variation 
post-filtering

1 15,062 130 0.86 2614 17.35 Quadrant 12,448 7 0.06 198 1.59

1 15,062 130 0.86 2614 17.35 Bow-tie 12,448 3 0.02 67 0.54

2 10,439 46 0.44 1263 12.10 Quadrant 9176 2 0.02 75 0.82

2 10,439 46 0.44 1263 12.10 Bow-tie 9176 0 0.00 23 0.25

Data filter: PTMPPROPHET score ≥ 0.9

1 13,391 118 0.88 2232 16.67 Quadrant 11,159 8 0.07 143 1.28

1 13,391 118 0.88 2232 16.67 Bow-tie 11,159 4 0.04 40 0.36

2 9771 41 0.42 1149 11.76 Quadrant 8622 2 0.02 61 0.71

2 9771 41 0.42 1149 11.76 Bow-tie 8622 0 0.00 16 0.19
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The results of our experiment revealed an extensive network of Mec1-dependent phosphorylation events, 
many not published before and mostly phosphorylated at the preferential S/T-Q motif (Fig. 6A, green dots), 
which was overrepresented in Q1 (Fig. 6B). Whereas the S/T-Q motif represents only about 3% of the phospho-
sites in the entire dataset, it represents 33% of the Q1 sites, and 49% of the group of highly Mec1-dependent sites 
(over twofold depletion in rad9Δmec1Δ cells). Besides S/T-Q sites, Q1 also contained a number of sites with the 
S/T-ψ (where ψ denotes the bulky hydrophobic residues F, I, L and V) phospho motif (Supplemental Table S3), 
which is associated with the downstream checkpoint kinase Rad53 that is activated by  Mec147. The occurrence 
of S/T-ψ phosphorylation in the absence of the major RAD9-dependent pathway of Rad53 activation likely 
reflects Rad53 activation via the Mrc1  adaptor48. Indeed, Mec1-dependent phosphorylation sites were detected 
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Figure 5.  Quantitative phosphoproteomic analysis of Mec1-dependent signaling. (A) Scatterplot (with Bow-
tie filter applied and PTMProphet score ≥ 0.9; only data points within Bow-tie filter displayed) of forward and 
reciprocal SILAC experiment comparing phosphoproteome of rad9Δ cells to phosphoproteome of rad9Δ mec1Δ 
cells. Cells were treated with 0.02% MMS for 2hrs. (B) Histogram depicting distribution of phosphorylation sites 
in Q1 and Q3 compared to control experiments. (C) Estimation of false discovery rate (FDR) in quantitative 
analysis for experiment in 5A. FDR for quadrants 1 and 3 is estimated based on error and variation in wild-type 
control experiment (Fig. 2). See “Materials and methods” for more details.
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in Rad53, several of which are known Rad53 autophosphorylation  sites49 and indicate that this kinase is activated 
in rad9Δ cells expressing Mec1.

In total, our quantitative phosphoproteomic approach using Bow-tie filtering of inconsistent ratios resulted in 
the identification of 201 S/T-Q Mec1-dependent phosphosites, which at least triples the number of Mec1 targets 
identified compared to our previous  screen11. Consistent with Mec1 being a nuclear kinase, these sites identified 
in our screen occurred largely on nuclear proteins (Fig. 6C). Gene enrichment analysis of all Mec1-regulated 
S/T-Q sites in Q1 (with a log2 ratio > 1 in rad9Δ cells relative to mec1Δ rad9Δ) was consistent with our previous 
study showing that the substrate repertoire of this kinase was enriched for nuclear proteins involved in DNA 
repair, chromatin dynamics, and transcription (Fig. 6D; Supplemental Table S4). String network  analysis50 of 
the proteins with regulated S/T-Q sites revealed extensive Mec1-dependent phosphorylation of components 
of the homologous recombination machinery (Fig. 6E), including proteins such as Rad50 that act early in HR 
during the resection  step51,52, as well as proteins that act later during HR to regulate the processing of joint mol-
ecules, such as Sgs1 and Mus81-Mms453–55. Additionally, we found extensive Mec1-dependent phosphorylation 
of nucleolar proteins at the S/T-Q consensus, suggesting direct control of nucleolar processes by Mec1 (Fig. 6F). 
Analysis of Mec1-regulated sites containing a consensus motif that was not S/T-Q revealed that the scope of 
Mec1’s downstream signaling also largely encompassed proteins related to DNA damage, repair, and transcrip-
tion, while also showing prevalence of cell-cycle, DNA replication and cytoplasmic proteins (Supplemental 
Figure S3A; Supplemental Table S5). Similar to the SQ consensus sites, the majority of the non-SQ sites were 
in nuclear proteins (Supplemental Figure S3B). String analysis of non-S/T-Q signaling events in the “cell cycle” 
node revealed non-canonical Mec1-dependent phosphorylation of the spindle assembly protein Mad3 and the 
condensin subunit Smc4 (Supplemental Figure S3C).

We also identified Mec1-dependent phosphorylation sites in the Dun1 kinase, which is known to function 
downstream of Mec1 and Rad53 in the canonical DNA damage checkpoint signaling  pathway56–58. Interest-
ingly, our SILAC-based filtering approach revealed a number of Mec1-dependent sites that did not contain the 
S/T-Q or S/T-ψ consensus, raising the possibility that Mec1 regulates the action of other kinases in addition to 
Rad53 and Dun1 in response to DNA damage. An example of a potentially new kinase targeted by Mec1 in our 
data is the DYRK-family kinase Yak1, which was phosphorylated in a Mec1-dependent manner in response to 
DNA damage on serine 663 (Supplemental Table S2; Fig. 6G). Both Yak1 and Mec1 have been reported to be 
important for acute heat shock  resistance59,60, raising the possibility that Mec1 and Yak1 may be acting in the 
same stress-response pathway. Lastly, analysis of phosphorylation sites in Q3 revealed a likely up-regulation of 
the Tel1 kinase, a Mec1-related PI3K-like Kinase (PIKK) with roles in DNA double strand break (DSB) repair 
and telomere  maintenance61–63. Q3 included phosphorylation of the telomere maintenance protein Rif1 at serine 
1308, which was previously shown to be dependent on  Tel164. In fact, ATM/Tel1 signaling has been reported to 
be up-regulated in the absence of ATR/Mec1 in  mammals65–67. Q3 also contained additional phosphorylation 
sites in proteins related to DNA double strand break (DSB) repair and telomere maintenance (Supplemental 
Figure S4). Notably, some of these phosphorylation sites were not present in the canonical S/T-Q motif (Sup-
plemental Table S2), suggesting additional non-canonical Tel1-dependent phosphorylation and/or the involve-
ment of additional kinases. Taken together, these findings highlight the efficacy of our optimized quantitative 
SILAC-based phosphoproteomic approach and Bow-tie filtering method in identifying and quantifying kinase-
dependent signaling events at high depth and specificity, while minimizing false positives.

Discussion
The field of phosphoproteomics has made significant strides toward improved phosphopeptide detection and 
quantitation since the seminal paper by Fenselau et al. which described the first application of FAB mass spec-
trometry for phosphopeptide  characterization68. Throughput as well as robustness has increased, and modern 
instruments and workflows can routinely detect and quantitate thousands of phosphopeptides in a single run. 
Still, the intrinsic issue of lack of redundancy in data representation for each phosphopeptide remains, leading 
to lack of statistical power for generating high confidence quantitation and identification for large portions of 
the dataset, especially for low abundance phosphopeptides that often rely on single PSMs with noisy signals. 
This issue has been tackled predominantly by requiring higher numbers of PSMs per phosphopeptide, with the 
consequent trade-off of eliminating a substantial fraction of the dataset that may contain most of the biologically 
meaningful regulatory, and low abundant, events. This problem is especially salient for nuclear proteins involved 
in the DNA damage response which often exist at low levels in the  cell14. In this work we present a workaround 
that allows for the efficient exclusion of technical noise and variation through the use of a reciprocal SILAC 
experiment, while allowing for the identification and quantitation of low abundance phosphopeptides. We lev-
eraged the sensitivity of this pipeline by combining the proposed Bow-tie analysis with samples that had been 
pre-fractionated using HILIC chromatography. The result is a drastic expansion in coverage with concomitant 
reduction in error and technical variation in the overall quantitative data. This combination of high specificity, 
low-PSM phosphoproteomics with HILIC, which is particularly suited to phosphopeptide fractionation due 
to the hydrophilicity of the phosphate  group69 revealed ~ 15,000 unique phosphopeptides in a short fractiona-
tion schema (15 fractions). Importantly, we demonstrate the utility of this approach by identifying new Mec1-
dependent signaling events in S. cerevisiae.

Central to the Bow-tie filtering strategy presented in this study is the use of metabolic labelling with stable 
isotopes (SILAC) and the consequent shift in mass of parent and fragment ions of phosphopeptides. Such a 
large delta mass between phosphopeptides in reciprocal experiments forces a stringent requirement in which 
phosphopeptide identification with inverted fold change in each experiment should also exhibit proper delta 
mass shift. In addition to allowing efficient detection of EVs, this approach also led to a dramatic reduction in 
the number of decoy database peptide identifications in quadrants 1 and 3. This serves as definitive proof that 
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reciprocal labeling reduces false-positive identification and associated quantitation. False-positives identifica-
tions are proposed to represent either artefacts, exogenous sample contaminants not represented in the searched 
database, or containing other types of modifications not considered in our search as variable  modifications70. 
The Bow-tie approach applied to the mock dataset reduced false-positive hits to virtually zero, when Q1 and Q3 
were considered and at a PeptideProphet score minimum score of 0.9, satisfying our needs for highly sensitive 
and comprehensive strategy to uncover phosphopeptides of low abundance and low PSM counts. A near-zero 
frequency of false-positive identifications appearing in Q1 and Q3 is essential to our SILAC-based approach, 
because peptide identification essentially serves as the most important gatekeeper of filtering meaningful bio-
logical data from technical noise.

The mass spectrometric data processing pipeline employed in this study relied on the trans-proteomic pipe-
line (TPP) suit of proteomic tools, including updated tools for peptide identification with  Comet71 and scoring 
with  PeptideProphet72. For SILAC quantitation, we used the Xpress precursor ion intensity quantitation  tool73, 
and for phosphosite localization and scoring we used the newly described PTMProphet  tool74. PTMProphet 
models the potential sites of phosphorylation independently of the spectrum identification provided by the 
search engine and calculates probabilities for each potential modification site. This feature allowed us to design 
additional steps in our R-based scripts for handling clustered S/T/Y residues, which is a common occurrence 
in phosphopeptides. Unambiguous, high-confidence phosphorylated S/T/Y residues with neighboring S/T/Y 
residues were kept separate; medium or low-confidence phosphorylated S/T/Y residues with adjacent S/T/Y 
residues were combined with their neighbors and considered in our subsequent analyses as a “cluster”.

The ability of our Bow-tie approach to separate biologically meaningful phosphorylation from technical 
noise is exemplified by the observed regulation in our Mec1 phospho-mapping dataset. In contrast to the control 
dataset, in which there were a small number of points in quadrants 1 and 3, there were a number of regulated 
sites in Q1 in our Mec1 dataset (and much less in Q3). S/T-Q consensus motif sites were overrepresented in 
Q1, indicating primary Mec1-dependent phosphorylation in response to DNA damage that was ablated in the 
absence of the MEC1 gene. In addition to revealing many known Mec1 targets identified in other studies, which 
was our intention as a validation of our method, we revealed a number of previously unreported proteins with 
Mec1-dependent phosphorylation events, including a subset of nucleolar proteins. For example, we identified 
phosphorylation on serine 1007 (an S/T-Q site) of Kre33, a relatively understudied protein that promotes matu-
ration of 18S  rRNA75,76. Future work should be targeted toward understanding how Mec1 signaling contributes 
to nuclear homeostasis independently of its established roles in activation of the DNA damage checkpoint. One 
new kinase target of Mec1 present in our dataset is Yak1, which we found to be phosphorylated on Serine S663, 
near Yak1’s kinase domain. Yak1 is a member of the family of Ser/Thr protein kinases known as dual-specificity 
Tyr phosphorylation-regulated kinases (DYRKs). Yak1 has been described as a growth antagonist downstream of 
Ras/PKA pathway, phosphorylated by PKA and translocated to the nucleus upon nutrient  deprivation77. Indeed, 
cells lacking YAK1 are sensitive to acute heat  stress60. Intriguingly, cells lacking MEC1 are sensitive to proteo-
toxic and heat  stress59. No previous reports have linked Yak1 to the DNA damage response or to Mec1, and we 
speculate that this could be a new point of crosstalk between DNA damage signaling and cellular stress responses.

In summary, here we report a simple, robust SILAC-based phosphoproteomic data analysis pipeline that 
allows for identification and quantitation of phosphopeptides with high confidence and coverage. The depth of 
the analyses allowed identification of a range of novel Mec1-dependent signaling events, including a potentially 
new mode of Mec1 signaling targeting the nucleolus. While this work highlights the utility of SILAC for high 
confidence and in depth quantitative phosphoproteomics, the same rationale could be applied to improve the 
quantitative analysis of other low-abundance post-translational modifications such as sumoylation, ubiquityla-
tion, and acetylation.

Materials and methods
Yeast cell culture and manipulation. A list of yeast strains used in this study is found in Supplemental 
Table S6. The strain background for all yeast used was S288C. We performed whole ORF deletions of MEC1 and 
RAD9 using established PCR-based methods for amplifying resistance cassettes containing homology to the tar-
get gene. Gene manipulations were verified by PCR. Primers used for gene deletions are available upon request. 
Yeast were grown at 30 °C in synthetic SILAC media lacking arginine and lysine and supplemented with “light” 
lysine and arginine (12C and 14N) or supplemented with “heavy” lysine and arginine (l-lysine 13C6,15N2·HCl and 
l-arginine 13C6,15N4·HCl). Media was also supplemented with excess l-proline to prevent conversion of arginine 
to proline.

Sample preparation for phosphoproteomic analysis. 200–300  mL of yeast was grown in either 
“heavy” or “light” SILAC media to mid-log phase and treated as described in the figure legend and the text, 
depending on the experiment. Cells were pelleted at 1000×g and washed once with TE (10 mM Tris pH 8.0, 
5 mM EDTA) buffer containing 1 mM PMSF. Cells were lysed by bead beating with 0.5 mm glass beads for 3 
cycles of 10 min with 1-min rest time between cycles at 4 °C in lysis buffer (150 mM NaCl, 50 mM Tris pH 8.0, 
5 mM EDTA, 0.2% Tergitol type NP40) supplemented with protease inhibitor cocktail (Pierce), 5 mM sodium 
fluoride and 10 mM β-glycerophosphate. 5–7 mg of each light and heavy labeled protein lysate was denatured 
and reduced with 1% SDS and 5 mM DTT at 42 °C, then alkylated with 25 mM iodoacetamide. Lysates (light and 
heavy) were mixed and precipitated with a cold solution of 50% acetone, 49.9% ethanol, 0.1% acetic acid. Post-
precipitation protein pellet was then resuspended in 2 M urea and subsequently digested with TPCK-treated 
trypsin overnight at 37 °C. Phosphoenrichment was performed using a High-Select Fe-NTA phosphopeptide 
enrichment kit (ThermoFisher Scientific, cat# A32992) as described in the manufacturer’s instructions. Purified 
phosphopeptides were then dried in a SpeedVac and fractionated via HILIC chromatography as described below.
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HILIC fractionation. Dried phosphopeptide samples were reconstituted in 15 μL  H2O, 10 μL 10% formic 
acid (v/v), and 60 μL HPLC-grade acetonitrile. 80 μL of the reconstituted sample was injected and fractionated 
by hydrophilic interaction liquid chromatography (HILIC) using a TSK gel Amide-80 column (2 mm × 150 mm, 
5 μm; Tosoh Bioscience). Three solvents were used for the gradient: buffer A (90% acetonitrile), buffer B (75% 
acetonitrile and 0.005% trifluoroacetic acid), and buffer C (0.025% trifluoroacetic acid). A short gradient was 
used for the mock control and Mec1 experiments and consisted of 100% buffer A at time = 0 min; 88% of buffer 
B and 12% of buffer C at time = 5 min; 60% of buffer B and 40% of buffer C at time = 30 min; and 5% of buffer B 
and 95% of buffer C from time = 35 to 45 min in a flow of 150 µl/min. 30-s fractions were collected between 9 and 
18 min. Individual fractions were dried in speedvac and submitted to LC–MS/MS analysis.

Phosphoproteomics data acquisition. Individual phosphopeptide fractions were resuspended in 0.1% 
trifluoroacetic acid and subjected to LC–MS/MS analysis in an UltiMate 3000 RSLC nano chromatographic sys-
tem coupled to a Q-Exactive HF mass spectrometer (Thermo Fisher Scientific). The chromatographic separation 
was carried out in 35-cm-long 100-µm inner diameter column packed in-house with 3 µm  C18 reversed-phase 
resin (Reprosil Pur C18AQ 3 μm). Q-Exactive HF was operated in data-dependent mode with survey scans 
acquired in the Orbitrap mass analyzer over the range of 380–1800 m/z with a mass resolution of 60,000 (at 
m/z 200). MS/MS spectra was performed selecting the top 15 most abundant + 2, + 3 or + 4 ions and a with an 
precursor isolation window of 2.0 m/z. Selected ions were fragmented by Higher-energy Collisional Dissociation 
(HCD) with normalized collision energies of 28 and the mass spectra acquired in the Orbitrap mass analyzer 
with a mass resolution of 15,000 (at m/z 200), AGC target set to  1e5 and max injection time set to 120 ms. A 
dynamic exclusion window was set for 30 s.

Phosphopeptide and phosphosite identification. The peptide identification and quantification pipe-
line relied on TPP  tools78. The search engine used was Comet (v. 2019.01.1)71. Search parameters included semi-
tryptic requirement, 20  ppm for the precursor match tolerance, differential mass modification of 8.0142 for 
lysine, 10.00827 for arginine, 79.966331 for phosphorylation of serine, threonine and tyrosine, 97.976896 for 
phosphorylation dehydration, and static mass modification of 57.021465 for alkylated cysteine residues. The 
protein sequence database was the SGD yeast supplemented with the decoy reversed sequences and common 
contaminants (downloaded in Aug 2019, 11,968 entries). Original ThermoScientific .raw files were converted to 
mzXML before the search with Comet. After searches, peptides were filtered and scored by the PeptideProphet 
 algorithm72 using the following parameters: minimum probability of 0.9, minimum peptide length of 7 amino 
acid residues, accurate mass binning, restriction to + 2, + 3 and + 4 ion charge states and Phospho-Information 
enabled. After scoring and filtering, relative quantitation based on SILAC were obtained using Xpress and spe-
cific parameters were: mass tolerance of 0.005 daltons; minimum number of chromatogram points needed for 
quantitation = 1; number of isotopic peaks = 0. Phosphopeptides were then evaluated by  PTMProphet74 in order 
to obtain accurate phosphosite localization score. The complete lists of identified, quantified, scored, and filtered 
phosphopeptides were further processed using a R-script developed in-house. The script separates phosphosites 
with high PTMProphet probability (> 0.9) from those with ambiguous localization containing 2 or more adja-
cent potentially phosphorylated residues, here denominated “clusters”. Separately, high confidence phosphosites 
and clustered phosphosites had their SILAC quantitation median calculated and additional R-scripts were used 
for combining, correlating, and plotting the data.

Estimation of false discovery rate (FDR) in quantitative analysis. All points (from the mock and 
Mec1 experiment) belonging to quadrant 2 and 4 are removed along with all the points that have fold change 
(FC) of less than or equal to 2 and hence would lie in a circle with radius 1 (since the scale is log transformed 
FC). The points in quadrant 1 and quadrant 3 are combined in order to get symmetric parabolic bins. A choice of 
aperture is made by sampling this space using multiple parabolas rotated at 45° (~ 0.78 radians) with their vertex 
on the circle with radius 1. This is done to ensure accordance with the underlying assumption that the highest 
confidence points would lie far away from origin along the line of symmetry y = − x. False discovery rate (FDR) is 
calculated as the percentage of false positives given by the mock experiment to the false positives and true posi-
tives given by the Mec1 experiment that lie within each parabola. The false positives are indicated with red color 
and the true positives are indicated with green color in Supplementary Figure S1. The parabolic bins that gave 
FDR values closest to commonly used FDR values (5% and 2%) were retained and the bin aperture that gave a 
2% FDR is then used to further sample the space by varying the vertex of the parabolas. The vertices were chosen 
so that the obtained FDR would be the first local minimum within an FDR range. This was done to ensure that 
the number of false positives are minimized, and the number of true positives are maximized.

String analysis of S/T-Q and non-S/T-Q motif Mec1-dependent sites. A subset of phosphoryla-
tion sites (e.g. all S/T-Q sites in the experiment from Fig. 5 with a log2 ratio > 1) was selected and the list of gene 
names uploaded to https ://strin g-db.org/. In cases where there were multiple sites under the same gene name 
entry, the gene name was used only once. Interaction networks were generated considering only high confidence 
interactions (score > 0.700). Next, the genes in the list corresponding to a specific biological process or pathway 
(e.g. nucleolus) were again uploaded to https ://strin g-db.org/.

Uniprot keyword enrichment analysis of S/T-Q and non-S/T-Q motif Mec1-dependent 
sites. A subset of phosphorylation sites (e.g. all S/T-Q sites in the experiment from Fig. 5 with a log2 ratio > 1) 
was selected and the list of gene names uploaded to https ://strin g-db.org/. In cases where there were multiple 

https://string-db.org/
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sites under the same gene name entry, the gene name was used only once. Interaction networks were generated 
considering only high confidence interactions (score > 0.700). Next, the top 8-ranked Uniprot Keyword enrich-
ment terms were exported along with the associated false discovery rate (FDR). For visualization, the FDR was 
log10-transformed. The terms “Nucleus” and “Phosphoprotein” were manually excluded from the figure because 
they represent processes that are too general to be informative.

Data availability
Mass spectrometry data generated from this study has been deposited to the Massive database (https ://massi 
ve.ucsd.edu). The control mock experiment data received the ID: MSV000084852, 10.25345/C58M3B, and Pro-
teomeExchange ID: PXD017322. The Mec1 targets experiment data received the ID: MSV000084875, 10.25345/
C56Q44, and ProteomeExchange ID: PXD017339.
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