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Prediction of genome‑wide effects 
of single nucleotide variants 
on transcription factor binding
Sebastian Carrasco Pro1, Katia Bulekova2, Brian Gregor2, Adam Labadorf1,3 & 
Juan Ignacio Fuxman Bass1,4*

Single nucleotide variants (SNVs) located in transcriptional regulatory regions can result in gene 
expression changes that lead to adaptive or detrimental phenotypic outcomes. Here, we predict gain 
or loss of binding sites for 741 transcription factors (TFs) across the human genome. We calculated 
‘gainability’ and ‘disruptability’ scores for each TF that represent the likelihood of binding sites being 
created or disrupted, respectively. We found that functional cis‑eQTL SNVs are more likely to alter 
TF binding sites than rare SNVs in the human population. In addition, we show that cancer somatic 
mutations have different effects on TF binding sites from different TF families on a cancer‑type 
basis. Finally, we discuss the relationship between these results and cancer mutational signatures. 
Altogether, we provide a blueprint to study the impact of SNVs derived from genetic variation or 
disease association on TF binding to gene regulatory regions.

Changes in gene expression caused by single nucleotide variants (SNVs) residing in transcriptional regulatory 
regions have been shown to cause phenotypic changes which may be adaptive or lead to  disease1–3. The mecha-
nisms of action of these SNVs include alterations in the binding of transcription factors (TFs), in the recruitment 
of RNA Polymerase II, in nucleosome positioning, and in DNA modifications. Among these, the creation and 
disruption of TF binding sites (TFBSs) is likely the main mechanism by which SNVs affect gene  expression2.

Experimental methods to determine changes in TFBS affinities driven by SNVs include electrophoretic mobil-
ity shift assays (EMSA), chromatin immunoprecipitation followed by sequencing (ChIP-seq), and enhanced-yeast 
one-hybrid (eY1H)  assays4. EMSA is a very low-throughput assay that tests one or few TFs and DNA sequences at 
a time, and requires TF purification or TF-specific antibodies. ChIP can be used to study differential TF recruit-
ment by SNVs, but only tests one TF at time, is limited by the availability of high-quality TF-specific antibodies, 
and more importantly, requires cells to be heterozygous for the SNV of interest. eY1H assays, instead, can deter-
mine altered TF binding to a SNV by testing the full repertoire of TFs, but only test one SNV per experiment. 
Thus, current experimental methods are limited by the amount of SNVs and TFs they are able to test in a single 
experiment. Due to these limitations, prediction algorithms based on experimentally determined motifs have 
been developed for high-throughput prediction of altered TF binding by SNVs.

TFs binding preferences to DNA sequences, represented by position weight matrices (PWMs), have been 
used to predict the likelihood that a TF binds a DNA sequence of interest. These computational methods, that 
scan DNA regions to predict TFBSs, include  FIMO5,  RSAT6,  Clover7, and ENCODE DREAM Challenge derived 
 methods8,9, among others. In addition, methods have been developed to predict the impact of SNVs on TF 
binding, where scores of the mutated and wild-type DNA sequences are  compared10–15. These methods have 
been used to predict the effect on TF binding of disease-associated SNVs such as those identified in genome-
wide association and genetic  studies16–18, and somatic mutations observed in tumor  samples19–22. Furthermore, 
databases assessing the effect of known SNVs in the human population in gain/loss of TFBSs have been used to 
obtain insights into the effect of human variation on TF  binding13,23,24. However, the effect of novel or unseen 
SNVs, such as rare variants and somatic mutations, on TF binding has not yet been determined. In this regard, a 
recent study evaluated the impact of tri-nucleotide cancer mutational signatures on  TFBSs20. This study calculated 
the differential probabilities of gain and loss of TFBSs corresponding to each TF for each mutational signature 
based on calculating the effect of SNVs across DNA k-mers found in the human genome. However, this method 
precludes identifying the sets of TFBSs that are poised to be gained and lost by SNVs as it assumes a uniform 
distribution of k-mers across the human genome.
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Here, we predict altered TFBSs genome-wide by in silico mutating all possible SNVs in every position in 
the human genome and determining gain and loss of TFBSs for 1898 PWMs corresponding to 741 human 
TFs. Using this resource, we show that the probability to gain (gainability) or disrupt (disruptability) a TFBS 
in gene regulatory regions widely differs between different TFs and TF families. We also show that functional 
cis expression quantitative trait loci (cis-eQTL) SNVs are more likely to perturb TFBSs than rare SNVs in the 
human population. Interestingly, the difference in disruptability is driven both by a higher probability of SNVs 
residing within TFBSs and a lower probability of retaining existing TFBSs by cis-eQTL versus rare SNVs. Finally, 
we show that somatic mutations in different cancer-types have differential effects on TFBSs between TF families 
and discuss how these profiles are related to distinct cancer mechanisms. Altogether, we provide a blueprint to 
study the impact of SNVs associated with genetic variation and cancer on TF binding.

Results
Estimating the effects of SNVs in creating and disrupting predicted TFBSs. To predict the effect 
of each possible SNV in transcriptional regulatory regions on TF binding, we focused on DHS regions from 
the RoadMap Epigenomics Mapping  Consortium25 (12% of the genome), which are generally associated with 
transcriptionally active or poised genomic regions. We calculated binding scores for 1898 PWMs available in 
CIS-BP12 corresponding to 741 human TFs, for each wild-type and alternative allele. We then predicted the 
effect of a SNV on a TF PWM by calculating its PWM score and compared this score to a pre-determined 
minimum PWM score threshold for predicted binding (see “Methods”). For each PWM-SNV combination, we 
determined whether the alternative allele created or disrupted a TFBS by calculating the ∆score (alternate – wild-
type). A TF disruption is defined as a ∆score < 0, the wild-type allele score > score threshold, and the alternate 
allele score < score threshold. In contrast, A TF gain is defined as a ∆score > 0, the alternate allele score > score 
threshold, and the wild-type allele score < score threshold. Then, we defined two parameters for each TF and 
each type of genomic region: ‘gainability’ as the probability of a random SNV in the genomic region of study 
to create a binding site for a given TF, and ‘disruptability’ as the probability of a random SNV in the genomic 
region of study to disrupt an existing binding site for a given TF (Fig. 1). We also determined the gainability 
and disruptability scores genome-wide, and contrasted to that of DHS and gene promoter regions. We detected 
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Figure 1.  Outline of parameter calculation for different genomic regions. The effect of all possible SNVs 
in the human genome on TF binding was predicted based on 1898 PWMs available in CIS-BP. Genomic 
positions were then classified based on the type of genomic regions (e.g., promoter or DHS), sets of SNVs, or an 
intersection of both. Gainability, disruptability, hitability, and robustness were then calculated.
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a wide range of distributions of gainability and disruptability scores for different TFs spanning five orders of 
magnitude which highly anti-correlated with the information content of the PWMs (Supplementary Figure S1). 
We found a strong correlation for both scores between the different genomic regions suggesting that there is no 
clear a priori preference for random SNVs to lead to gain or disruption of TFBSs both for regulatory regions 
and the whole genome (Supplementary Figure S2). Interestingly, we found a higher disruptability for AP-1 TFs 
(e.g., FOS, FOSL1, FOSL2, JUN, JUNB, JUND), TAL1, and NFE2 in DHSs (which include both distal enhancer 
and gene promoters) than in promoter regions, consistent with previous findings that these TFs are enriched in 
binding to distal enhancer regions compared to proximal  promoters26,27. Conversely, SP1-9 TFs display a higher 
disruptability in promoter regions, consistent with known roles of SP factors in regulating RNA Pol II recruit-
ment to core promoters and regulating transcriptional activity.

TFs from the same DNA binding domain (DBD) family often have similar DNA binding preferences, in 
particular for certain families such as homeodomains, ETS factors, bHLH factors, and nuclear receptors, and 
are frequently different between TFs from different  families12. Thus, we explored whether different TF families 
differ in gainability and disruptability scores. Indeed, we observed that homeodomain and forkhead TFs have 
a higher gainability than other TFs whereas bZIP, ZF-C2H2, nuclear receptors, and T-box have a lower gain-
ability (Fig. 2a). A similar trend was observed for disruptability of these TF families (Fig. 2b), suggesting that 
homeodomains and forkhead TFs are more likely to be rewired by SNVs than other TF families. This is likely 
due to the short homeodomain and forkhead TF motifs, as we observed that gainability and disruptability are 
overall anti-correlated with PWM length and information content (Supplementary Figure S1).

The likelihood of SNVs disrupting TFBSs for a TF is influenced by two parameters: (1) hitability (i.e., the 
probability of a SNV residing within an existing TFBS), and (2) robustness (i.e., the chance that a SNV in a TFBS 
for such TF would not affect TF binding). In this way, disruptability is equal to the product of hitability and 
1 – robustness. Of these two parameters, hitability has a larger impact on the difference in disruptability between 
TFs as it spans five orders of magnitude compared to robustness which spans only one order of magnitude 
(Fig. 2c,d). Interestingly, although hitability, gainability, and disruptability are all highly correlated with each 
other (Fig. 2e), in part driven by the information content of the PWMs (Supplementary Figure S1), robustness 
is lowly correlated with these parameters (Fig. 2e). Further, contrary to the other parameters, robustness is cor-
related to the information content per base in the PWM which has low variation between TFs, rather than the 
total information content (Supplementary Figure S1).
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Figure 2.  Prediction of the effect of SNVs on TF binding in DHSs. (a–d) The distribution of gainability (a), 
disruptability (b), hitability (c), and robustness (d) in DHSs were calculated for all TFs with available motifs 
in CIS-BP and binned by TF family. Significant differences for each parameter between a TF family and all 
TFs were calculated using a Mann–Whitney U test. *p < 0.05. (e) The correlation between each of the four 
parameters was estimated using the Pearson correlation coefficient.
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Evidence of selection in noncoding rare SNVs. The human population displays high variability in 
genome sequence with more than 250 million SNVs being reported, most of which are rare in the population 
(minor allele frequency < 0.01)28. Most of these rare SNVs reside in noncoding regions of the genome potentially 
creating or disrupting  TFBSs1–3. However, the vast majority of these rare SNVs are expected to be neutral and 
regulatory regions are likely depleted of SNVs under negative selection. Therefore, we hypothesized that rare 
SNVs present in the population would be depleted in those that alter TF binding, as changes in gene expres-
sion are expected to be evolutionarily constrained. To study the effect of rare genetic variation on TF binding, 
we analyzed rare SNVs from the 1000 Genomes  Project29 located in DHS regions and determined gainabil-
ity, disruptability, hitability, and robustness scores for each TF (Supplementary Table S2). We compared these 
parameters to the mean score for each PWM/TF from 100 random samplings of one million mutations based 
on the mutational frequency observed in the 1000 Genomes Project for each of the twelve possible SNV changes 
(4 nucleotides × 3 substitutions per nucleotide) (Supplementary Figure S3). Interestingly, 88.9% of the TFs show 
a significantly higher gainability score than the random samples (Fig. 3a). In contrast, 67.1% of the TFs show 
a significantly lower disruptability for the rare SNVs (Fig. 3b). These results suggest a selection of rare SNVs 
against disrupting existing TFBSs and a positive selection towards creating TFBSs.

We further calculated the hitability and robustness scores for rare SNVs to explore the mechanisms of the 
negative selection observed for disruptability. Strikingly, we found that even though hitability per TF is similar 
between rare SNVs and the random samples (Fig. 3c), rare SNVs show higher values for robustness for 81.3% of 
TFs (Fig. 3d). These results suggest that the negative selection towards TFBS disruption in rare SNVs is mainly 
driven by the selection for SNVs that, even though they may reside within existing TFBSs, they do not perturb 
TF binding.

cis‑eQTL SNVs display a high likelihood to create and disrupt TFBSs. Previous studies on cis-
eQTLs have identified functional sets of SNVs in transcriptional regulatory regions associated with changes 
in target gene  expression30. We compared the scores of cis-eQTL and rare SNVs for each parameter in this 
study (Supplementary Table S2) to the average of the random samples used to compare rare SNVs and gener-
ated Δscores (SNV group – random samples). We found high Δgainability and Δdisruptability scores for all TF 
families in the cis-eQTL SNV set compared to the Δscores for the rare SNV set (Fig. 3e,f). This suggests that cis-
eQTLs are enriched in SNVs that create or disrupt TFBSs which likely contributes to their effect in differential 
gene expression. We further investigated the effects on cis-eQTLs disruptability and found that cis-eQTL SNVs 
lead to higher Δhitability and lower Δrobustness scores than rare SNVs (Fig. 3g,h). These findings suggest that 
the increased disruptability by cis-eQTLs SNVs is due to both an increase in SNVs being located in existing 
TFBSs and by affecting bases with higher information content within those TFBSs.

Cancer somatic mutations display cancer‑ and TF family‑specific effects on TFBSs. Cancer is 
characterized by the presence of somatic SNVs in tumors, more than 90% of which reside in noncoding regions 
of the  genome31. It has been shown that different cancer-types display different mutational signatures driven by 
different mutation and DNA repair  mechanisms32,33. Given the DNA binding specificity differences between 
TFs, we hypothesized that mutational signatures specific to different cancer-types may affect TFBSs differentially 
across TF families. To investigate this hypothesis, we selected SNVs located in DHS regions from 20 cancer-
types from 2658 tumor samples from the Pan-Cancer Analysis of Whole Genomes (PCAWG)  Consortium34 
and calculated, for each TF, its Δgainability, Δdisruptability, Δhitability and Δrobustness scores relative to the 
background reference scores based on a uniform mutational frequency (all possible SNVs) in DHSs.

We found higher Δgainability scores for forkhead and Sox families across many cancer-types (Fig. 4a), with 
the highest enrichment in colon/rectum cancer. This is consistent with studies showing that the forkhead TFs 
FOXO3 and FOXA1, which have a 2 and 2.4-fold increase in gainability in colon/rectum cancer respectively, 
promote colon cancer  proliferation35. Similarly, overexpression of FOXJ1 has been linked to progression of 
colorectal cancer by promoting translocation of β-catenin36. Sox TFs are also associated with cancer, including 
SOX11 that shows a 1.5-fold increase in gainability in breast cancer and that has been correlated with breast 
cancer growth and  invasion37. Whether these results support a positive selection for gaining and maintaining 
forkhead and sox TFBSs in cancers or whether this is associated with specific cancer mutational signatures, 
remains to be determined.

Other associations for Δgainability scores between TF families and cancer-types are more specific. For exam-
ple, we found gain of homeodomain TFBSs to be highly enriched in colon cancer (Fig. 4a). Indeed, HOXA3, a 
homeodomain TF that shows a 1.5-fold increase in gainability, has been shown to promote colon/rectum  cancer38. 
Other TFs from the homeodomain subfamilies HOXB and HOXD have also been found to be up-regulated in 
 cancer39,40, displaying an average 2.8 and 2.4-fold increase in gainability across the subfamily, respectively. Fur-
thermore, skin cancer shows an enrichment in gain of rel TFBSs, which is mainly driven by the NFAT subfamily. 
In particular, NFATC3 (3.8-fold increase in gainability) is highly expressed in skin cancer and is associated with 
cell transformation and tumor growth in this cancer-type41. Conversely, we found a depletion to gain TFBSs from 
the bHLH, bZIP, and ZF-C2H2 families in skin cancer. In particular, we found that all of CREB TFs from the 
bZIP family show a negative Δgainability in skin cancer, where these TFs have been reported to inhibit tumor 
growth and  metastasis42. In addition, ZBTB7A, a ZF-C2H2 TF with a 2.3-fold decrease in gainability in skin 
cancer, suppresses melanoma  metastasis43.

In contrast to Δgainability, we found negative Δdisruptability scores for forkhead, homeodomain, nuclear 
receptor, rel, sox and T-box families across most of the 20 cancer-types analyzed (Fig. 4b). These results suggest 
a negative selection towards disrupting TFBSs for these families. Contrary to what we observed for rare SNVs 
where the reduced Δdisruptability was associated to an increase in Δrobustness, the reduced disruption for 
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cancer mutations is associated with both an increase Δrobustness and a reduced Δhitability, suggesting negative 
selection (Fig. 4c,d). The main exceptions having a higher Δdisruptability score correspond to rel and ETS TFs 
in skin cancer, many of which have been associated with melanoma. This is consistent with the frequency of 
triplets matching the mutational signatures of melanomas (TCN → TTN and CCN → CTN)33 within motifs of 
rel factors such as NFATC4 (Fig. 4e) and ETS factors such as ELF4 (Fig. 4f). Altogether, our results suggest that 
cancer mutations lead to a net increase in TF binding sites for forkhead, homeodomain, nuclear receptor, rel, 
sox and T-box families.

Different tumors, even from the same cancer-type, can have different mutational signatures. Thus, we deter-
mined the Δgainability and Δdisruptability profile for 162 highly mutated tumors (> 5000 SNVs in DHSs) across 
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Figure 3.  Differential parameter scores for rare and cis-eQTL SNVs. (a–d) Correlation between scores 
(robustness) or  log10(scores) (gainability, disruptability, and hitability) derived from rare SNVs from the 1000 
Genomes Project and the average of 100 random sets of 1,000,000 SNVs (Random samples). Correlation was 
determined by the Pearson correlation coefficient. Significantly enriched (red) and depleted (blue) TFs are 
highlighted. (e–h) Δscores or Δlog10(scores) (observed in set – reference) for each parameter for all TFs and 
specific TF families for rare and cis-eQTL SNVs. Significant differences between the rare and cis-eQTL scores 
were determined by a Mann–Whitney U test. *p < 0.05.
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741 TFs. We observed a similar overall clustering pattern across tumors (Fig. 5a,b). Interestingly, all highly 
mutated skin cancer samples clustered together showing a similar pattern of gain and loss of TFBSs. This pat-
tern is highly correlated to that of SNVs introduced by treating cell lines with UV light (Δgainability, r = 0.75, 
p < 2 × 10–16 and Δdisruptability, r = 0.78, p < 2 × 10–16) (Fig. 5c,d), consistent with UV light being a major muta-
tional driver of skin cancer SNVs. This correlation with UV light induced mutations is higher for skin cancer 
mutations than for mutations identified in any other cancer-type evaluated (Fig. 5e,f). Surprisingly, colon/rectum 
tumor show two subtypes, where one subtype shows depletion of bZIP, bHLH and C2H2 zinc finger TFs and an 
enrichment of homeodomain TFs and the other subtype shows the opposite profile for both Δgainability and 
Δdisruptability (Fig. 5a,b). The origin of these colon/rectum tumor subtypes remains to be determined.

Discussion
In this study, we predicted altered TFBSs obtained by in silico mutating all possible SNVs across the genome. 
Using this resource, we determined the gainability, disruptability, hitability, and robustness scores for 741 TFs 
across the genome, promoters, and DHS regions. We found differences in gainability and disruptability scores 
between TF families. For example, we found lower gainability and disruptability values for bZIP, C2H2 ZF, 
nuclear receptors, and T-box, showing that binding sites for these TF families are less likely to be affected by 
SNVs. In contrast, forkhead and homeodomain display higher scores for both gainability and disruptability, 
suggesting a higher rewiring potential of the gene regulatory networks controlled by these TFs. Whether in vivo 
binding site occupancy for these TFs is actually rewired across evolution or between individuals in the human 
population, remains to be determined. Given the broad distribution of scores even within TF families, a more 
granular classification of TFs such as that provided by  TFClass44 may reveal further differences between TF 
family subclasses.

We showed that functional cis-eQTL SNVs are more likely to perturb TFBSs than rare SNVs in the human 
population. In addition, we observed that somatic mutations in cancer have differential effects on TFBSs for 
multiple TF families and discuss how these profiles are related to distinct cancer mechanisms. In addition, our 
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Figure 4.  Effect of cancer somatic mutations on TFBSs. (a–d) Median Δscores or Δlog10(scores) for each TF 
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results can be implemented further in methods to identify functional SNVs in sequencing data, as our estimated 
probabilities can be used as background probabilities to compare germline or somatic mutations associated with 
disease in a given cohort.

By comparing the genome-wide gainability and disruptability scores calculated for each TF to the respec-
tive scores for the corresponding TFs calculated based on promoter and DHS regions, we found that scores 
across TFs between different genomic regions are highly correlated. One explanation for this observation is that 
SNVs may affect TFBSs across the genome in a similar manner, independent of the genomic function. Another 
explanation, is that considering a coarse-grained comparison (e.g., all promoters and DHSs) would average dif-
ferences that likely exist between subsets of regions. It is important to note that the parameters described in this 
manuscript are based on predicted TFBSs as the goal is to provide scores in the absence of epigenetic factors to 
provide a background for comparisons between sets of regions or SNVs. The scores determined in TF occupied 
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sequences in each region, in particular regions of closed chromatin, may be different to the ones predicted across 
the whole genome.

By analyzing the parameter patterns of rare SNVs we showed that 88.9% of TFs showed increased gainability. 
However, this increase is significantly lower than the Δgainability values calculated for cis-eQTLs SNVs which 
correspond to expression perturbing SNVs. In contrast, 67.1% of TFs showed a decrease in disruptability by the 
rare SNVs, whereas the cis-eQTL SNVs displayed an increase in disruptability scores. Interestingly, this difference 
is driven by two factors: a higher likelihood of cis-eQTL SNVs to reside within a TFBS and a higher likelihood 
of rare SNVs that land in a TFBS to retain it. These results can be explained by most rare SNVs in the population 
being neutral, not affecting gene expression. Altogether, this suggests a higher selective pressure in rare SNVs 
to maintain existing TFBSs which function together with other TFs within specific cis regulatory logics, while 
gain of TFBSs can provide evolutionary plasticity. These results are consistent with previous findings involving 
rare SNVs that reside in gene regulatory regions in the human population being under selective pressure and 
depleted of SNVs with high information content bases within TF binding  motifs45.

Analysis of somatic mutations from the PCAWG cohort revealed negative Δdisruptability scores for forkhead, 
homeodomain, nuclear receptor, rel, sox, and T-box across most of the cancer-types analyzed. These results are 
consistent with previous findings showing a selective pressure for maintaining existing TFBS in breast, liver 
and lung cancer-types46. This study also reported a negative selection towards creating TFBSs in these three 
cancer-types. Although, we did observe reduced gain for multiple combinations of TF families and cancer-
types, we also observed several cases increased gain of TFBSs. For example, we found increased gain of sox and 
homeodomain TFBSs, which have previously been found to be associated with higher match motif scores by 
cancer-associated SNVs compared to the reference  allele47. The differences observed between cancer-types and 
TF families likely arise from the different mutational signatures associated with the different types of cancers, 
as previously  suggested20.

To our knowledge, this is the first study that predicts the effect of all possible SNVs on TF binding. The gain-
ability, disruptability, hitability and robustness parameters calculated for each TF provide a powerful resource to 
predict the effect of SNVs on TF binding and provide a background for further studies in specific transcriptional 
control regions or produced by SNVs present in specific patient cohorts. Other applications of this resource 
include studying the potential of repetitive elements as latent reservoirs of TFBSs and uncovering the role of other 
disease associated SNV sets and carcinogen signatures. Ultimately, the integration of other datasets such as TF 
dimer motif specificities, TF motifs in the context of nucleosomal  DNA48, and the inclusion of new TF motifs as 
they become available, will lead to a more comprehensive model of the effect of SNVs on TFBSs.

Methods
Generation of the altered TF binding site database. To predict the effect of all possible SNVs in the 
human genome on TF binding, for each possible SNV and each TF with available PWMs, we calculated the bind-
ing score for the reference and alternate SNV alleles. We downloaded 1898 PWMs corresponding to 741 human 
TFs from CIS-BP12 on April 3, 2018 and their respective TF family. Given a PWM of length n and a genomic 
position (hs37d5 from the 1000 Genome Project), for each of the 2n-1 DNA sequences on each strand of length 
n that overlap with the genomic position, we calculated a TF binding score using the function:

where s is a genomic sequence of length n, M is the PWM with n columns and each column in M contains the 
frequency of each nucleotide in each position i = 1,…,n, and bsi is the background frequency of nucleotide si 
(assuming a uniform distribution). The highest score obtained for the 4n − 2 sequences was assigned as the bind-
ing score corresponding to the PWM for the reference or alternate SNV alleles. Significant scores were selected 
and reported based on TFM-p-value49 score thresholds determined using a significance level of α = 10–4. This 
method was applied for each reference position and the three possible alternate SNVs for the complete genome 
(hs37d5) to create the altered TFBS database, a genome-wide catalogue of predicted SNV-PWM effects. A custom 
program was written in C and CUDA to generate the dataset (https ://githu b.com/fuxma nlab/alter ed_TFBS). The 
program was executed on Nvidia GPUs that are available on the Boston University Shared Computing Cluster 
(SCC). The 6.1 Tb dataset was stored in a compressed Parquet format on a 320-core Hadoop cluster that is also 
part of the SCC. In addition, a query system was developed using Python and PySpark that was run on the BU 
Hadoop cluster. The query system was used to search either a set of SNVs from a variant calling format (VCF) file 
(e.g., rare SNVs or somatic mutations), or all possible SNVs from genomic regions in BED files (e.g., promoter 
or DHS regions). In both cases, the query reports the PWM scores for each reference/alternate genomic position 
pair where at least one of the alleles has a significant score for the given PWM. As an example, a query consist-
ing of the human promoter coordinates from a BED file took about 60 min to complete on the Hadoop cluster.

Genomic region definitions. The hs37d5 human genome, downloaded from the Sanger Institute (Novem-
ber 2, 2018), was used as reference. Promoters were defined as regions from − 2000 to + 250 bp from all tran-
scription start sites (TSSs) from protein coding genes available at GENCODE 19 version (June 14, 2018)50 and 
correspond to 4% of the human genome. We used the R package  IRanges51 and  BEDTools52 to extract promoter 
coordinates and DNA sequences. We identified 2,319,494 DHS genomic coordinates (median length 97 bp) by 
taking the union of DHS regions from all samples of the Roadmap Epigenomics Mapping Consortium (July 31, 
2019)53 which correspond to 12% of the human genome.

F(s, M) =

n
∑

i=1

log

(

Msi ,i

bsi

)

https://github.com/fuxmanlab/altered_TFBS
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Generation of reference parameters for altered TF binding in genomic regions. SNVs may 
affect TF binding by either creating or disrupting TFBSs. Therefore, we defined two parameters to estimate these 
effects for each given TF-PWM: gainability and disruptability. Gainability was defined as the ratio between the 
number of SNVs that lead to gain of TFBSs and the total number of SNVs that are not located within existing 
TFBS for the given PWM. This corresponds to the probability of creating a TFBS for a given PWM for the set of 
SNVs analyzed assuming equal likelihood of nucleotide changes. Disruptability was defined as the ratio between 
the number of SNVs that disrupt a TFBS and the total number of possible SNVs. This corresponds to the prob-
ability of a SNV disrupting an existing TFBS for a given PWM assuming equal likelihood of nucleotide changes. 
Disruptability can be divided into two components: hitability, which is the probability of a random SNV residing 
within a TFBS corresponding to the PWM; and robustness, which is the probability of a SNV that resides within 
a TFBS to retain the TFBS. Thus, disruptability corresponds to the hitability multiplied by 1 – robustness of a 
PWM. In the case of TFs with multiple PWMs, we used the median score across PWMs as the representative one 
for each parameter. The four parameters (gainability, disruptability, hitability, and robustness) were calculated 
for each TF for the human genome, promoters, and DHS regions (Supplementary Table S1). TFs were grouped 
by TF families according to the CIS-BP TF family classification and only families with ten or more TF members 
were selected for this study.

Analysis of parameter scores for rare and cis‑eQTL SNVs. Rare SNVs (minor allele frequency < 0.01) 
were downloaded from the 1000 Genomes  Project29 in vcf format (October 1, 2019). BEDTools intersect func-
tion was used to select SNVs in promoters or DHS regions. Gainability, disruptability, hitability, and robust-
ness scores were calculated as described above (Supplementary Table S2). For DHS regions, we calculated the 
correlation of each TF score derived from rare SNVs against an average of 100 random samples of 1,000,000 
mutations matching the mutational frequency of each of the twelve types of SNV changes (4 nucleotides × 3 
substitutions per nucleotide) in the 1000 Genomes Project set (see below and Supplementary Figure S3). In addi-
tion, we downloaded finely mapped cis-eQTL SNVs from  GTEx30 (October 10 2020) reported by  CaVEMaN54 
and DAPG  methods55. BEDTools intersect function and a custom R script were used to obtain unique cis-eQTL 
SNVs located in promoter and DHS regions that were identified by both cis-eQTL prediction algorithms. Then, 
gainability, disruptability, hitability, and robustness scores were calculated for the cis-eQTL SNVs (Supplemen-
tary Table S2). To determine whether the altered TF binding parameters were different than expected by chance 
between rare and cis-eQTL SNVs, we subtracted the individual scores for each TF to the reference set generated 
from a random sampling model (see below) to calculate Δscores for gainability, disruptability, hitability, and 
robustness.

Estimation of TFBS parameters derived from a random SNV sample. Scores for gainability, dis-
ruptability, hitability, and robustness derived from a random sample of SNVs were generated to compare with 
scores determined for rare and cis-eQTL SNVs. One million random SNVs were selected in DHS regions match-
ing the frequency of the twelve possible mutations from the rare SNVs in the 1000 Genomes Project. One hun-
dred random samples were generated and the four parameters per sample were calculated for each PWM as pre-
viously discussed. For each parameter the average values for each PWM across the one hundred random samples 
was determined and used as reference to compare to scores determined based on rare and cis-eQTL SNVs.

Calculation of parameters for cancer somatic and carcinogen SNVs. Somatic SNVs were obtained 
from 2658 whole genome sequenced samples from the PCAWG cohort across 20 cancer-types21. For each cancer-
type, we combined the SNVs across its associated samples and generated a unique set of SNVs per cancer-type. 
BEDTools intersect function was used to extract SNVs in DHS regions for each cancer-type. The observed gain-
ability, disruptability, hitability, and robustness scores were calculated for each TF (Supplementary Tables S3 and 
S4) and were subtracted by their corresponding score from the reference set of all possible SNVs in DHS regions. 
This resulted in Δscores for each PWM-cancer-type combination. We also calculated the median Δscore for each 
TF family and generated heatmaps in Prism version 8.3.1. Furthermore, we calculated the observed Δscores for 
gainability and disruptability for the 741 TFs for individual samples having more than 5000 SNVs located in 
DHSs. Clustered heatmaps comparing Δscores for individual samples and TFs were generated using complete 
linkage clustering based on euclidian distance using the R package  ComplexHeatmap56. Finally, we downloaded 
SNVs caused by UV-light57 and these SNVs were filtered to obtain Δscores for each parameter in DHS regions as 
described for the PCAWG analysis. We calculated the correlation of the UV-light derived Δscores for gainability 
and disruptability to the corresponding Δscores from each cancer-type in PCAWG samples.

Statistical analysis. Custom R scripts and Prism were used for statistical analysis. Correlation tests were 
performed using the Pearson correlation coefficient and group comparisons were performed using Kruskal–
Wallis rank-sum test.

Data availability
The data used in the analysis of this paper are provided as Supplementary tables. Scripts used in this manuscript 
are available in https ://githu b.com/fuxma nlab/alter ed_TFBS
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