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Wettability and confinement 
size effects on stability of water 
conveying nanotubes
M. Shaat1*, U. Javed2 & S. Faroughi3

This study investigates the wettability and confinement size effects on vibration and stability of 
water conveying nanotubes. We present an accurate assessment of nanotube stability by considering 
the exact mechanics of the fluid that is confined in the nanotube. Information on the stability of 
nanotubes in relation to the fluid viscosity, the driving force of the fluid flow, the surface wettability 
of the nanotube, and the nanotube size is missing in the literature. For the first time, we explore 
the surface wettability dependence of the nanotube natural frequencies and stability. By means of 
hybrid continuum-molecular mechanics (HCMM), we determined water viscosity variations inside the 
nanotube. Nanotubes with different surface wettability varying from super-hydrophobic to super-
hydrophilic nanotubes were studied. We demonstrated a multiphase structure of nanoconfined water 
in nanotubes. Water was seen as vapor at the interface with the nanotube, ice shell in the middle, and 
liquid water in the nanotube core. The average velocity of water flow in the nanotube was obtained 
strongly depend on the surface wettability and the confinement size. In addition, we report the 
natural frequencies of the nanotube as functions of the applied pressure and the nanotube size. Mode 
divergence and flutter instabilities were observed, and the activation of these instabilities strongly 
depended on the nanotube surface wettability and size. This work gives important insights into 
understanding the stability of nanotubes conveying fluids depending on the operating pressures and 
the wettability and size of confinement. We revealed that hydrophilic nanotubes are generally more 
stable than hydrophobic nanotubes when conveying fluids.

With the advancement of nanotechnology, nanotube making has been considerably flourished in the past few 
years. Nanotubes can be made with perfect hollow cylindrical geometries and superior mechanical, chemical 
and thermal stabilities. The currently developed nano-biological and nano-mechanical systems mainly depend 
on nanotubes for fluids’ storage and fluids’  transport1–5. The design of these nano-scale systems requires 
investigations on the mechanics of the fluid in the nanotube and predictions of the nanotube stability under 
different fluid flow rates.

Studies were carried out on the stability of nanotubes conveying  fluids4,6–17. The influence of the fluid flow 
on the free vibration of nanotubes has been investigated using linear models of the nanotube  dynamics11–14,18–20. 
These linear models were used to determine the onsets of the fluid flow-induced instability of nanotubes under 
different  conditions6,10,15,21–24. For example, the free vibration and instability onset of water conveying single-
walled carbon nanotubes (CNTs) with cantilever, simply supported, and clamped–clamped boundary conditions 
have been  studied11,13,15. Dong et al.10 investigated the wave propagation in multi-walled CNTs embedded in an 
elastic medium. Tang et al.7,16,17 studied the divergence instability of nonhomogeneous nanotubes conveying 
fluids. These studies revealed that the frequencies of the free vibration of nanotubes conveying fluids decrease as 
the fluid flow velocity  increases7,11–13,16,17. It was also demonstrated that the divergence instability of a particular 
mode would be triggered if the fluid flow exceeds a critical velocity  value6,13,14,25–27. Critical velocity values were 
also determined at which a particular mode would be coupled with a successive mode, and a coupled-mode flutter 
would  occur13,14,27. Other studies have implemented nonlinear models to reveal the behavior of the nanotube 
under the instabilities due to the fluid  flow28,29.

The aforementioned studies have explored the influence of the fluid flow on the dynamics of nanotubes. 
Nonetheless, these studies were carried out with no consideration for the exact mechanics of the fluid that is 

OPEN

1Mechanical Engineering Department, Abu Dhabi University, P.O.BOX 1790, Al Ain, United Arab 
Emirates. 2Department of Engineering, American University of Iraq Sulaimani (AUIS), Sulaimania 46001, 
Iraq. 3Faculty of Mechanical Engineering, Urmia University of Technology, Urmia, Iran. *email: mohamed.i@
adu.ac.ae

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-74398-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17167  | https://doi.org/10.1038/s41598-020-74398-x

www.nature.com/scientificreports/

severely confined in the nanotube. Recent investigations on the mechanics of fluids confined in nanostructures 
revealed unusual fluid characteristics and  behaviors30–41. For example, flow rates of nanoconfined water in CNTs 
were measured to be several orders-of-magnitude higher than the predicted flow rates by the classical Hagen-
Poiseuille equation for bulk water in macroscopic  tubes36,37,39,42,43. This has been attributed to the fluid slip 
over the surface of the confining  tube34,44,45. Therefore, the dynamics of nanotubes conveying fluids has been 
studied based on measures of the fluid slip boundary  conditions27,46–50. However, these studies still hide many 
other important measures of the nanoconfined fluid mechanics. For example, nanoconfined water was observed 
sticking to or, even, seeping through a super-hydrophilic  surface32. Moreover, multiphase structures were revealed 
for some fluids under severe nanoconfinement conditions at hydrophobic and hydrophilic  interfaces51–55. 
Thus, a liquid can easily morph into solid and/or gas when it is  nanoconfined30,31,34,53,55–61. The aforementioned 
nontraditional phenomena of nanoconfined fluids would robustly influence the dynamics and stability of the 
nanotube. Therefore, accurate predictions of the dynamics and stability of nanotubes conveying fluids should 
be carried out accounting for all these nontraditional phenomena.

In this study, we put the stability of water conveying nanotubes under scrutiny accounting for the effects 
of the nanotube size and the wettability of its surface. When water is inside nanoscale conveyers, many 
important parameters come into play, namely wettability of the confining surface, water–surface interactions, 
and confinement  size34,62. Previous studies gave no consideration to these parameters and their effects on the 
frequencies and stability of fluid conveying nanotubes. This study fills into this gap, and the frequency variations 
as functions of the nanotube surface wettability and the nanotube diameter are determined. First, the exact 
mechanics of nanoconfined water in comparison to the mechanics of bulk water are investigated. Then, the free 
vibration of the nanotube is analytically solved. Numerical results are also represented to explore the wettability 
and the confinement size effects on the frequencies and stability of water conveying nanotubes.

It should be mentioned that the present study captures the dynamics and the stability of water conveying 
nanotubes similar to the studies mentioned above. The difference, though, resides in the fact that an accurate 
and appropriate model of the exact mechanics of the nanoconfined fluid is used in conjunction with the equation 
of solid mechanics to investigate the dynamics of water conveying nanotubes more accurately than before. This 
enables us to investigate the wettability and the confinement size effects on the dynamics and stability of water 
conveying nanotubes.

Mechanics of nanoconfined water
Water exhibits many nontraditional phenomena when it is nanoconfined. Water flow would be enhanced or 
inhibited when it is driven to flow in nanoslits or  nanotubes36,37,39,42,43,45,53. Enhanced flow rates were measured 
when nanoconfined water flow adjacent to hydrophobic  surfaces34,44,45,62,63 and hydrophilic  surfaces45,60,64,65. 
Adjacent to a superhydrophilic surface, water particles were observed sticking to the surface, and a significant 
flow inhibition was  detected32. These observations indicated that the characteristics of nanoconfined water are 
drastically different from those of bulk  water30,32,37,38,66. For instance, the equivalent viscosity of nanoconfined 
water was determined lower than the one of bulk water by ∼ 56.5% when flowed in a CNT with ∼ 1.4 nm 
 diameter34.

Nanoconfined water exhibits a multiphase structure under ambient  conditions51–55. A typical schematic 
of a multiphase structure of water in a nanotube is shown in Fig. 1. In hydrophobic (and some hydrophilic) 
nanotubes, water particles would be depleted from a thin layer adjacent to the tube surface. The depletion layer is 
characterized by an intensive decrease in the water  density34,37,45,55. Surpassing the depletion layer and at the first 
water layer, the density sharply increases, and this behavior follows a radial distribution towards the nanotube 
 center32,34,39,45. The radial variations of the water density were attributed to water–surface interactions, which 
are promoted by the nanoconfinement of  water34,55. Based on water density variations, multiphase structures 
of water in nanotubes were  observed51–54. Early studies demonstrated and shed light on the phase transitions of 

Figure 1.  Multiphase structure of water nanoconfined in a nanotube. Water phase changes from vapor at the 
interface to condensed water and ice at the first water layer. Then, it changes to bulk water at the nanotube 
center. A schematic of the distribution of water viscosity through the nanotube radial direction is shown. W–W 
refers to water–water interactions while W–S refers to water–solid interactions.
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nanoconfined water into vapor and/or  ice30,31,53,56,57,60,61,65. In these studies, phase transitions were demonstrated 
based on the density variations upon the severe confinement of water.

When it comes to investigations of multiphase structures and phase transitions of water based on the viscosity 
variations, there has been a gap for quite a while, and therefore studies on variations of water viscosity between 
the confining surfaces were much needed. It is well known that viscosity quantifies the fluidity and describes the 
continuity of molecular interactions of the continuum. For design purposes of nanofluidics, information on the 
viscosity and how it would be affected by the confining conditions are needed.

Shaat and  Zheng55 developed a hybrid continuum-molecular mechanics (HCMM) approach to report the 
distribution of water viscosity between two confining surfaces. They revealed that the interfacial viscosity of 
water in a nanotube ( µI ) (the viscosity of water at the interface with the nanotube surface) strongly depends on 
the wettability of the nanotube surface and the nanotube diameter, and it is totally different than the viscosity 
elsewhere. The interfacial viscosity was expressed in terms of a slip velocity-to-pressure gradient ratio (VPR), 
which was determined based on molecular dynamics simulations and experimental measurements of water 
flow in different  nanotubes55. In addition, it was demonstrated that water viscosity sharply increases at the first 
water layer due to water–surface interactions. The rise of the viscosity at this layer depended on the relative 
hydrodynamics of the nanoconfined water and its bulk counterpart. Because the viscosity and the hydrodynamics 
of water depend on the interatomic potential, water’s core viscosity was defined using the ratio of the fluid–fluid 
interatomic force to the fluid–surface interatomic  force55. Given these observations, the radial variation of the 
water viscosity was defined to represent the multiphase structure of the nanoconfined water in a nanotube, as 
 follows55:

where R is the nanotube’s inner radius, and δ is the interface thickness (for fluids in nanotubes δ = 1.1224σsf
34). σsf  

and ǫsf  are constants of Lennard–Jones (LJ) potential of water–surface interactions, and ǫff  and σff  are constants 
of LJ potential of water–water interactions (see Fig. 1). µ0 is the viscosity of bulk water. r is the radial-coordinate 
of the nanotube. Figure 2a shows the VPR function as determined by  Shaat34,55.

Figure 2b–f show the radial distribution of water viscosity in different nanotubes with different surface 
wettability and diameters. The wettability of the nanotube changes depending on water–surface interaction 
energy ǫsf  , as follows:
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Figure 2.  (a) The slip velocity to pressure gradient ratio as a function of the nanotube radius (VPR 
function)34,55. (b–f) Radial distributions of the viscosity of nanoconfined water in nanotubes with (b) R = 1 nm, 
(c) R = 2 nm, (d) R = 3 nm, (e) R = 4 nm, and (f) R = 6 nm. The viscosity distributions are represented for different 
values of the water–surface interaction energy ( ǫsf = 0.1, 1, 1.6, and 3 kJ/mol). The green highlights indicate 
water–nanotube interface.
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where θ is the contact angle, which is a measure of the surface wettability. Thus, the nanotube is hydrophobic 
(i.e., θ > π/2 ) when ǫsf <∼ 1.6 kJ/mol and hydrophilic (i.e., θ < π/2 ) when ǫsf >∼ 1.6 kJ/mol. To investigate 
the surface wettability effects on water viscosity, results were depicted when changing the wettability between 
super-hydrophobic nanotubes ( ǫsf = 0.1 kJ/mol) and super-hydrophilic nanotubes ( ǫsf = 3 kJ/mol). In addition, 
various nanotubes of different diameters were simulated to reveal the confinement size effects on water viscosity.

At the interface with the nanotube (green highlighted regions in Fig. 2), water is depleted and its viscosity is 
significantly decreased. On the other hand, water accumulate the region just beyond the interface (commonly 
known as the first water layer) and the viscosity is sharply increased. This can be attributed to the interaction 
energy between water particles and particles of the nanotube surface, which radially varies inside the nanotube. 
Water–surface interaction is repulsion very close to the nanotube surface (at the interface) and attraction 
elsewhere. Therefore, water is depleted at the interface, but it accumulates layers after the depletion region. The 
intensity of the attraction energy is maximum at the first water layer, and it decreases towards the nanotube center.

It follows from Fig. 2b–f that an increase in the water–surface interaction energy ( ǫsf  ) is accompanied with 
an increase in the viscosity at the first water layer. Water viscosity is ∼ 6 times the viscosity of bulk water when 
water is confined in a super-hydrophilic surface ( ǫsf = 3 kJ/mol). Whereas the viscosity intensively decreases 
at the interface, the increase in the viscosity at the first water layer would lead to an equivalent water viscosity 
that is generally higher than the bulk water viscosity. This indicates that water would be more viscous when it 
is confined in hydrophilic nanotubes. On the other hand, the viscosity at the first water layer is almost the same 
as the bulk water when it is nanoconfined in a super-hydrophobic surface ( ǫsf = 0.1 kJ/mol). In contrast to 
hydrophilic nanotubes, water would be inviscid when it is confined in hydrophobic nanotubes.

Figure 2b–f reveal the confinement size effects on water viscosity. As the nanotube size decreases, the 
interfacial region increases, which is featured with a reduced viscosity. This indicates that the equivalent 
water viscosity decreases as the nanotube size decreases. This can be mainly attributed to the increase in the 
contribution of the water–surface interaction energy to water’s mechanics due to a decrease in the nanotube size.

Mechanics of fluid conveying nanotubes
The equation that governs the linear dynamics of a nanotube conveying a fluid that flows at an average flow 
velocity V  can be written, as  follows67:

where EI is the flexural stiffness of the nanotube, and w(x, t) is the nanotube fluid flow-induced deflection. mf  is 
the mass per unit length of the fluid, and ms is the mass per unit length of the nanotube. V  is the average velocity 
of the fluid’s steady state flow. x and t  are the axial coordinate and time, respectively.

The equation of motion (3) was derived assuming a steady state laminar flow of a Newtonian fluid, and the 
nanotube is Euler–Bernoulli beam. This linear equation of motion can be used to determine the onsets of the 
various instabilities of the nanotube due to the fluid flow. The onsets of these instabilities can be defined by 
bifurcation points of the eigenvalues-fluid velocity curves in the complex Argand  plane67. However, the mode-
shapes or the nanotube’s behavior under the various instability conditions would require a nonlinear model that 
accounts for the possible axial stretching of the nanotube.

The dynamic damping of the nanotube is neglected in Eq. (3). Nanotubes-mechanical resonators have revealed 
exceptional quality factors exceeding five  million68. In addition, the fluid flows inside the nanotube with a nearly-
zero friction due to the severe confinement and its phase transition to gas at the fluid–nanotube  interface69,70. 
Therefore, the dynamic damping effect is omitted from Eq. (3) resulting in a conservative system of a slender 
nanotube conveying fluid. Such a system is expected to exhibit static divergence instability and Hamiltonian 
flutter instability as the fluid flow velocity  increases67.

The left side of the equation constitutes four terms that are the stiffness, centrifugal, Coriolis or gyroscopic, 
and inertial forces, respectively. The centrifugal and Coriolis terms (2nd and 3rd terms in Eq. (3)) depend on 
the momentum of the fluid flow in the nanotube, which mainly depends on the fluid viscosity. We previously 
demonstrated that the fluid viscosity would significantly change when it is used under severe confinement 
conditions. Therefore, investigations on the stability of nanotubes conveying fluids should be carried out with a 
careful consideration of the effects of the confinement conditions on the fluid mechanics. Whereas the stability 
of nanotubes conveying fluids has been investigated in previous  studies4,6,10–15, it was challenging to relate 
the nanotube dynamics to the fluid viscosity. The dynamics and stability of nanotubes conveying fluids were 
investigated based on the fluid’s dynamics. However, the practical use of these nanosystems requires reports 
on the nanotube dynamics and stability in relation to the applied pressure, fluid viscosity, nanotube size, and 
nanotube-surface wettability. Here, we provide these relations and report the stability of nanotubes depending 
on these factors, which are missing in previous studies.

To reveal the stability of nanotubes conveying water in relation to the applied pressure, fluid viscosity, 
nanotube size and nanotube-surface wettability, the traditional Hagen–Poiseuille model of pressure-driven 
water flow in circular tubes is modified based on the new mechanics of nanoconfined water that is explained in 
“Mechanics of nanoconfined water” section. Utilizing the viscosity function µ(r) [Eq. (1)], Hagen–Poiseuille 
model was modified and the velocity profile of water flow in nanotubes was obtained in the  form55:
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where v(r) is the fluid’s velocity function, P is the applied pressure (pressure drop at the nanotube ends), and L 
is the nanotube length. The average velocity, V  , can be then determined as follows:

The substitution of Eq. (5) into Eq. (3) gives the equation of motion of the nanotube conveying fluid depends 
on the applied pressure, fluid viscosity, nanotube size, and nanotube-surface wettability.

Analytical solution
Here, the eigenvalue problem of the free vibration of nanotubes conveying water is analytically solved. First, the 
equation of motion [Eq. (3)] is rewritten employing the following nondimensional parameters:

The substitution of Eq. (6) into Eq. (3) gives:

where

The deflection can be decomposed as follows:

where ϕ(X) is the mode shape function, and � is the eigenvalue. ω is the nondimensional natural frequency. By 
substituting ϕ(X) = exp (i�X) into Eq. (9) and substituting the result into Eq. (7), the following characteristics 
equation is obtained:

For simply supported nanotubes, the following boundary conditions are applied:

Accordingly, the nondimensional natural frequencies can be determined by solving the following equation:

where �r (i.e., r = 1 → 4 ) are the roots of the polynomial in Eq. (10).
It should be mentioned that the determinant relation in Eq. (12) is complex, and the natural frequencies 

are determined based on its real part. In the present study, a procedure is employed to determine the natural 
frequencies of the nanotube. In this procedure, the real part of the determinant relation is plotted as a function 
of the frequency, ω . Thus, a wide range of frequencies is initially assumed. Then, a value of the frequency is 
substituted into Eq. (10) and the roots, �r , are obtained. The roots �r are then substituted into Eq. (12), and the 
determinant is calculated. The process is repeated over the assumed range of the frequencies, and the obtained 
determinant values are plotted against the frequency, ω . The natural frequencies of the nanotube are determined 
by intersecting the plotted curve with the zero determinant.

Results and discussions
Here, effects of the applied pressure, fluid viscosity, nanotube size, and nanotube surface wettability on the 
dynamics and stability of nanotubes conveying fluids are investigated. Results were extracted to depict the 
evolution of the nondimensional natural frequencies of the nanotube with the increase in the applied pressure 
( P = 0 → 30 GPa), water–surface interaction energy ( ǫsf = 0.1 → 3 kJ/mol), and nanotube size ( R = 0.7 → 15 
nm). The material and geometrical parameters as considered in the presented results are given in Table 1. A 
CNT with an elastic modulus of 358.1 GPa was considered. Despite the elastic properties of nanomaterials are 
generally size-dependents, the size-dependence of the elastic modulus of CNT is  negligible71–73. For example, the 
molecular dynamics simulations of the evolution of the elastic modulus of CNTs with the size decrease indicated 
a decrease in the elastic modulus from 360 to 320 GPa when the nanotube radius was decreased from 1 nm to 
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0.2  nm73. CNTs with radii bigger than 1 nm gave no size dependence of the elastic modulus. Therefore, here, the 
same material properties of the CNT are considered for the entire nanotube radius range.

A verification of the proposed model was carried out. First, the HCMM, which is used to determine water 
viscosity [Eq. (1)], was verified by the comparison with over 90 cases of experiments and molecular dynamics 
simulations of water flow in  nanotubes55. In addition, the proposed model of the free vibration of the nanotube 
conveying fluid was verified by the comparison with the results of fluid flow in CNTs in the  literature74 (see 
Supplementary Information).

The evolutions of the nondimensional natural frequencies of the first four modes of vibration of nanotubes 
conveying water with the increase in the applied pressure are depicted in Figs. 3 and 4. In Fig. 3, the natural 
frequencies of strongly hydrophobic nanotubes ( ǫsf = 0.1 kJ/mol) of different sizes are investigated. The effects 
of water–surface interactions (or nanotube surface wettability) ( ǫsf  ) on the natural frequencies of a nanotube of 
1 nm radius are depicted in Fig. 4. In addition, the variations of the first four nondimensional natural frequencies 
of hydrophobic nanotubes ( ǫsf = 0.1 kJ/mol) as functions of the nanotube radius are depicted for different 
applied pressures in Fig. 5.

According to Fig. 3, the nanotube vibration is classical and independent of its size and surface wettability when 
water is not pressured to flow (i.e., P = 0 ). Thus, the nondimensional natural frequencies of the first four modes of 
vibration are the ones of classical simply supported beams (i.e., ω1 = 9.823 , ω2 = 39.19 , ω3 = 88.05 , ω4 = 156.6 ) 
when P = 0 . However, upon applying a pressure, water starts to flow at an average velocity that depends on the 
applied pressure, the nanotube size, and the nanotube surface wettability. Because of the momentum of the 
flowing water, the natural frequencies of the nanotube are affected and generally decrease lower than the ones 
of a nanotube with no flowing water. An increase in the applied pressure of fluid is accompanied by a parabolic 
decrease in the natural frequencies.

Bifurcation points can be defined in Figs. 3 and 4 that indicates the onsets of the various instabilities of the 
nanotube due to the fluid flow. These bifurcation points were defined by critical velocity values in the previous 
studies. Here, for the first time, the critical values of the applied pressure at which the various bifurcations of the 
nanotube conveying fluid occur are defined. Two bifurcations are revealed in Figs. 3 and 4; pitchfork bifurcation, 
where a zero eigenvalue occurs, and Hamiltonian hopf bifurcation, where two modes are coupled. The pitchfork 
bifurcation indicates the onset of a divergence instability while the Hamiltonian hopf bifurcation indicates the 
onset of a coupled-mode flutter instability.

Beyond a critical value of the applied pressure, the nanotube exhibits different instabilities including mode 
divergence instability and flutter instability. For instance, the critical pressure for a super-hydrophobic nanotube 
with R = 6 nm and ǫsf = 0.1 kJ/mol is 44.4 MPa (Fig. 3). Beyond this value, the nanotube exhibits a first-mode 
divergence where ω1 = 0 . As the pressure is further increased, the natural frequency of the second mode 
decreases down to zero at P = 129 MPa indicating a second-mode divergence (Fig. 3). Just beyond the latter 
pressure value, the nanotube exhibits a coupled-mode flutter where the first and the second modes of vibration 
are merged. In continue, the divergence and coupling of the higher modes occur as the applied pressure increases. 
The detection of the critical pressure values at which the different modes would diverge or couple together are 
important for the practical application of nanotubes conveying water.

Figure 3 depicts the confinement size dependence of the nanotube’s frequencies. It follows from Fig. 3 that 
the critical pressure value would increase/decrease as the nanotube size decreases. The lowest critical pressure 
value (this is the pressure value at which the first-mode divergence takes place) decreases from 44.4 to 11 MPa 

Table 1.  Material and geometrical parameters of the considered water conveying nanotube system. *The mass 
and inertia parameters, mf  , ms , and I introduced in Eq. (3) are calculated for the considered water conveying 
nanotube system, as follows: mf = πR2ρf  ; ms = π

(

(R + h)2 − R2
)

ρs ; I = π
4

(

(R + h)4 − R4
)

.

Parameter Value

Nanotube*

Inner radius, R (nm) 0.7 → 15

Wall-thickness, h (nm) 0.34

Length, L (nm) 100

Young’s modulus, E (GPa)71 358.1

Mass density, ρs (kg/m3)71 2266

Water

Lennard–Jones  parameters55

σff (nm) 0.3169

ǫff (kJ/mol) 0.651

Bulk water viscosity, µ0 (Pa.s) 0.001

Water density, ρf  (kg/m3) 1000

Water–nanotube interactions

σsf (nm) 0.3122

ǫsf (kJ/mol) ǫsf = 0.1 → 3 kJ/mol
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due to a decrease in the nanotube radius from 6 to 3 nm. This trend is then switched when the nanotube radius 
is further decreased from 3 to 1 nm where the lowest critical pressure slightly increased from 11 to 18.4 MPa.

The surface wettability dependence of the nanotube stability is depicted in Fig. 4. Results presented in Fig. 4 
indicate that the critical pressure values would vary depending on the nanotube surface. For instance, the 
critical pressure values at which the vibrational modes would diverge and/or merge increase as the nanotube 
hydrophilicity increases. The pressure value at which the first-mode divergence takes place increases from 1.84 
to 458.6 MPa due to an increase in the hydrophilicity from a super-hydrophobic nanotube, ǫsf = 0.1 kJ/mol, 
to a super-hydrophilic nanotube, ǫsf = 3 kJ/mol. This means that, under the same pressure levels, hydrophilic 
nanotubes are more stable than hydrophobic nanotubes. In addition, for applications where operational pressures 
can change from time to time temporarily or change permanently, hydrophilic nanotubes are best for stable 
transport of water.

Figure 3.  The first four nondimensional natural frequencies as functions of the applied pressure of hydrophobic 
nanotubes ( ǫsf = 0.1 kJ/mol) with different radii; (a) R = 1 nm, (b) R = 2 nm, (c) R = 3 nm, (d) R = 4 nm, (e) 
R = 5 nm, and (f) R = 6 nm.
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The above qualitative, and to a certain extent quantitative, behavior holds true for all nanotube sizes. 
Nevertheless, with decrease in the nanotube size, the critical pressure values at which a mode divergence and 
coupling take place change depending on the nanotube radius (Fig. 3) and the nanotube surface wettability 
(Fig. 4). This behavior indicates that the pressure dependence of the nanotube stability is unpredictable unless 
careful calculations are made based on the model developed here.

Figure 5 demonstrates effects of the confinement size on the natural frequencies of nanotubes for different 
operating pressures from 2 to 20 MPa. It is clear that the nondimensional natural frequencies are as of the ones 
of a nanotube with no fluid flow when R ≥ 10 nm. For nanotubes with R < 10 nm, the nondimensional natural 

Figure 4.  The first four nondimensional natural frequencies as functions of the applied pressure of nanotubes 
(R = 1 nm) with different surface wettability; (a) ǫsf = 0.1 kJ/mol, (b) ǫsf = 1.0 kJ/mol, (c) ǫsf = 1.6 kJ/mol, and 
(d) ǫsf = 3.0 kJ/mol.
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Figure 5.  The effect of the confinement size on the first four nondimensional natural frequencies of 
hydrophobic nanotubes ( ǫsf = 0.1 kJ/mol).
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frequencies vary with a decrease followed by an increase as the nanotube radius decreases. This behavior can 
be attributed to two mechanisms that differently influence the velocity of water flow in the nanotube. The 
first mechanism is water flow enhancement due to nanotube size reduction. The decrease in the nanotube size 
promotes water–surface interactions and the role of the surface wettability. As a result, water is depleted at the 
interface, and the size of the depletion layer increases as the nanotube size decreases (as previously demonstrated 
in Fig. 2). Because of the depletion layer, water’s average flow velocity is increased, and the nondimensional 
frequency is decreased. The other mechanism is the decrease in the average flow velocity due to a decrease in the 
nanotube size. It is commonly known that, at the same applied pressure, the average flow velocity decreases as the 
tube size decreases. This explains the increase in the nondimensional natural frequency as the nanotube radius 
decreases lower than 3 nm, as shown in Fig. 5. Per the previous discussion, the first mechanism is dominant as 
the nanotube radius decreases from 10 to 3 nm while the second mechanism comes into play as the nanotube 
radius decreases lower than 3 nm.

It can also be observed from Fig. 5 that the effect of the applied pressure on the nondimensional natural 
frequencies of the nanotube is enhanced as the nanotube size decreases. As shown in the figure, the nanotube 
exhibits nearly the same nondimensional natural frequencies, even if the applied pressure is increased from 2 
to 20 MPa, when the nanotube radius is bigger than 10 nm. However, the nondimensional natural frequencies 
significantly depend on the applied pressure when the nanotube radius is smaller than 10 nm.

Conclusion
An accurate prediction of dynamics of water conveying nanotubes is contingent upon an accurate prediction of 
the viscosity of water that encompasses wettability and confinement size effects. We utilized a hybrid continuum-
molecular mechanics (HCMM) to determine water viscosity variations in nanotubes. Nanotubes of different 
surface wettability along with various radii were simulated for range of operational pressures to analyze the 
first four non-dimensional natural frequencies of water conveying nanotubes. Two different bifurcations were 
observed where mode divergence instability and flutter instability occurred. It was revealed that the activation 
of these two instabilities depends on the nanotube size and wettability. The critical pressure value at which a 
nanotube exhibits instability would increase/decrease as the nanotube size decreases, and it increases as the 
nanotube hydrophilicity increases. In addition, it was demonstrated that, under the same applied pressure, 
hydrophilic nanotubes are more stable than hydrophobic nanotubes. Therefore, hydrophilic nanotubes are 
preferred over hydrophobic nanotubes in applications where operational pressures would deviate from a nominal 
pressure value. The findings of the present study show that the pressure dependence of the nanotube stability is 
unpredictable unless careful calculations are made based on the developed model.

Data availability
The data that support the findings of this study are included in the article. Any further requested information 
can be addressed to the corresponding author.
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