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Discovering spatial interaction 
patterns of near repeat crime 
by spatial association rules mining
Zhanjun He1,2, Liufeng Tao1, Zhong Xie1 & Chong Xu3*

Urban crime incidents always exhibit a structure of spatio-temporal dependence. Exploration of the 
spatio-temporal interactions of crime incidents is critical to understanding the occurrence mechanism 
and spatial transmission characteristics of crime occurrences, therefore facilitating the determination 
of policing practices. Although previous researches have repeatedly demonstrated that the crime 
incidents are spatially clustered, the anisotropic characteristics of spatial interaction has not been 
fully considered and the detailed spatial transmission of crime incidents has rarely been explored. To 
better understand the spatio-temporal interaction patterns of crime occurrence, this study proposes 
a new spatial association mining approach to discover significant spatial transmission routes and 
related high flow regions. First, all near repeat crime pairs are identified based on spatio-temporal 
proximity. Then, these links between close pairs are simplified by spatial aggregation on spatial grids. 
Based on that, measures of the spatio-temporal interactions are defined and a spatial association 
pattern mining approach is developed to discover significant spatial interaction patterns. Finally, the 
relationship between significant spatial transmission patterns and road network structure is analyzed. 
The experimental results demonstrate that our approach is able to effectively discover spatial 
transmission patterns from massive crime incidents data. Our results are expected to provide effective 
guidance for crime pattern analysis and even crime prevention.

Urban crime is a major type of public safety events and closely related with residents’ personal and property 
safety. Understanding the spatial patterns of crime incidents plays an important role in explaining major factors 
for crime occurrence and generating strategies for crime prevention. Several previous studies have focused on 
exploring the spatial distribution of crime occurrence and have reached a consensus that crime occurrence is 
not randomly distributed  spatially1–4. On the contrary, the distribution of crime occurrence always exhibits a 
“spatio-temporal dependence structure.” Actually, the “spatio-temporal dependence structure” of crime can be 
understood in two ways. On one hand, it indicates that there are significant spatial clusters of crime, regardless of 
the spatial units of  analysis5–7. The concentration of crime at one place has been explored by many criminologists 
and can even be termed as the “criminology of place”8. For example, Weisburd et al. (2004) found that approxi-
mately 50% of crime incidents over a 14-year period occurred at only 4.5% of the street segment. The “spatial 
clusters” of crime indicates the fact that both the criminal opportunity and crime occurrence are closely related 
with “space”. The cluster of crime can be explained by the optimal foraging theory which states that criminal 
optimize foraging strategies to increase the rate of reward whilst minimizing both the amount of time searching 
and risk of being  caught9. On the other hand, “spatio-temporal dependence structure” also demonstrates that 
the risk of crime is affected by its spatial neighborhood. In other words, if a crime incident is identified in a given 
area, then the surrounding area may experience an increased risk of similar crime occurrences after a  period4, 10. 
In this situation, crime incidents exhibit the space–time interaction and thus the spatial and temporal elements 
should be considered jointly.

To discover spatio-temporal dependence of crime incidents, there are generally two kinds of strategies. First 
strategy is operating on the crime incidents directly, including hotspot (or clusters) detection and hotspots pre-
diction. The hotspot detection is commonly used in crime pattern analysis, with aiming to pick up spatial areas 
of concentrated crime. The commonly used methods for detecting crime hotspots include kernel density estima-
tion (KDE), spatio-temporal scan statistics and spatial statistics such as Ripley K and Getis-Ord Gi*11–14. These 
approaches are not limited in Euclidean space, but also can be applied to network distance. However, the spatial 
hotspot detection method still suffers from some  limitations14,15. First, theoretical explanations of underlying 
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causes of crime hotspots have not been fully developed, barring some efforts to establish the link between crime 
concentration and related criminal theories (e.g. such as social disorganization)16. Second, hotspot identification 
is usually based on the historic data, not performing well for crime risk prediction because spatial hotspot of 
crime incidents will change over  time17,18. To better understand future crime risk, researchers also try to model 
the crime patterns mathematically and then predict the crime hotspot and risk. Because crime incidents take the 
form of events that occur at discrete points in space and time, they are usually modelled by the spatio-temporal 
point process (STPP)19. One of the typical model is the self-exciting point process (SEPP), which assumes that 
the crime points can be classified as background and triggered  events20. The relationship between background 
and trigger points can be modelled by in a mathematical way. Then, based on the mathematical model, crime 
clusters or crime risk can be predicted on specified spatial grids or street  network21,22. To further improve the 
prediction performance, Rosser and Cheng even try to model the spatial isotropic into the SEPP  model22. Due 
to its prediction performance, the SEPP model even has been developed commercially (as PredPol) and applied 
in some countries.

The second strategy to explore spatio-temporal dependence concerns on the “near repeat”  crime10,14,23. The 
near repeat phenomenon suggests that when a crime occurs in a specific location, the area surrounding that loca-
tion may experience an increased risk of a similar crime occurring for a distinct period of  time4,10. It should be 
noted that near repeat phenomena do not ensure a series of crime conducted by a single criminal. However, from 
the spatial perspective, near repeat crime indicates the “spatial interaction”. Such spatial interaction can be related 
both “spatial heterogeneity” and “environmental similarity”, which explains why certain places experience more 
crime events and what boosts the near repeat  crime24,25. Since the near repeat crime concerns more about the 
interaction in spatio-temporal proximity, making it possible to predict future  victimization26. Currently, research 
on near repeat crime mainly deals with two issues: checking the generalizability of the near repeat phenomenon 
and determining to what extent it can help to predict the crime. Much of the extant research investigating repeat 
victimization has focused on the crime of  burglary15,27. To assess the generalizability of near repeat victimization, 
researchers have explored the near repeat phenomenon related with other types of crimes, such as shootings, 
theft from motor vehicles, and even insurgent  activities10,28,29. On the other hand, quantitatively measuring the 
spatial and temporal ranges of near repeat crimes is quite instructive for police practice decision. In general, the 
crime risk will be significantly higher within a short spatial and temporal range of an initial victimization and 
will exhibit a clear spatio-temporal decay effect beyond the spatio-temporal proximity. A widely used tool for 
identifying near repeat victimization patterns is the Near Repeat Calculator (NRC)30. The NRC can tell whether 
there is a significant near repeat victimization pattern in specified spatial and temporal range. The principle of 
the NRC is the Knox test, which calculate the difference of observed near repeat crime pairs in a spatio-temporal 
range with expected number by  chance27. Recently, researchers try to examine the extent to which near repeat 
patterns can prevent  crime31,32. They found that crime hotspot and near repeat crime are not co-located with 
each other and significant space–time clustering does not necessarily indicate an actionable near repeat prob-
lem. Their findings suggested that a global near repeat pattern is not sufficient to quantify the crime prevention 
values. The global level of space–time clustering revealed by the NRC just the first step to understanding near 
repeat  patterns31,32. In fact, the spatial interaction of near repeat crime would exhibit the “slippery”  manner33. 
For example, Johnson and Bowers mapped all “pairs” of near repeat crime on different spatial regions and then 
calculated correlations for number of “close pairs” in different months. The results proved that the near repeat 
crime pairs showed a “slippery manner”, instead of keeping stable in space. However, how near repeat phenomena 
move in space is still a remaining  question34.

To better reveal the space–time interaction of crime occurrences, the anisotropic characteristics of spatial 
interaction must be considered. This study aims to discover the significant spatial interaction patterns embedded 
in the near repeat phenomena (termed as “spatial transmission patterns”). In addition, it also tries to discover 
the “high flow regions” related with the spatial transmission. These “high flow regions” are defined as “source” or 
“sink”, which are inspired by concepts in  ecology35,36. To be more specific, the “source” represents spatial regions 
from with enough objects flowing out. Conversely, the “sink” represents spatial regions a lots of objects entering 
 it36. Both high flow regions and spatial transmission routes can be discovered by approach of spatial association 
rule  mining37. Therefore, this paper proposes a framework to discover spatial interactions patterns of near repeat 
crime by using spatial association rule mining.

The main contributions of this study lie in the following aspects:

1. Some new concepts are defined to study spatial interaction patterns of crime with fully considering the 
anisotropic characteristics. In this study, we borrow concepts in ecology and spatial data mining to model 
the dynamic characteristic of near repeat phenomena. The spatial interaction between different regions are 
modelled as spatial transmission routes and the regions with high flow are modelled by “sources” or “sinks”.

2. A new spatial data mining approach is developed to discover the significant spatial interaction patterns. 
First, we define some indicators to model the spatial association strength. Then, based on these indicators, 
algorithm of mining spatial transmission patterns is developed. The proposed approach can be applied to 
network structure and discover dominant regions and interaction links between regions.

The rest of the paper is organized as follows. In "Materials and methods", the proposed methods, the study 
area, and study data are described in detail. In "Results and discussion", the experimental results and discussion 
are presented. Finally, we summarize the advantages and limitations of the current study in the last section.
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Materials and methods
Framework for discovering significant spatial transmission pattern of crime occurrence. In 
this section, a framework for discovering significant spatial interaction pattern of crime is developed. As illus-
trated in Fig. 1, the proposed framework comprises the following three steps.

The proposed method works on a collection of crime points with spatial and temporal information. Firstly, 
near repeat crime pairs are identified by specifying the spatio-temporal proximity. All near repeat crime pairs 
would form a network structure, making it difficult to discover the dominant patterns. Therefore, we simplify the 
network by overlaying with spatial girds and then aggregating it. Finally, some indicators are defined to measure 
the spatial interaction strength, and a spatial association pattern mining approach was developed. The whole 
framework is designed to discover the most probable spatial transmission routes and related high flow regions. 
Explanation for each step is further illustrated in following sections.

Construction of crime transmission network. This study aims to discover spatial interaction patterns from a 
collection of discrete points. Each point represents a location where crime incident happens. However, these 
crime incidents are not totally independent, but related with each other in spatial aspect. The typical phenomena 
demonstrating such interaction is the near repeat crime. The interaction between near repeat crime pairs can 
be represented as a “directed link”, and a directed network can well describe the spatial interaction of all crime 
incidents (denoted as “transmission network”).

The crime transmission network is composed of a node set V and an edge set E, which can be denoted as 
N = (V, E). Each node in V indicates a crime incident and each edge represents the spatio-temporal relation 
between two incidents. Because the influence of a crime only existed in a limited spatial and temporal range, 
spatio-temporal proximity should be defined to identify the near repeat crime. Specifically, given two crime 
incidents  c1 and  c2 occurring at timestamps tA and tB, their spatial distance and time difference are denoted as 
rAB and tAB, respectively. A directed edge eAB is added if the following conditions are satisfied:

where Δs and Δt are two parameters to define the spatio-temporal proximity. In this manner, a crime transmis-
sion network can be constructed with the dual constraint of spatial and temporal proximity.

Spatial aggregation based on spatial grids. In the crime transmission network, each edge stands for an instance 
of near repeat crime pairs. As described above, crime transmission network indicates the “spatial interaction”. To 
explore the spatial interaction, the spatial analysis scale should be determined first. On the other hand, because 
“near repeat” pairs are judged by the spatio-temporal proximity, a single crime incident may be viewed as “close 
pair” with many other incidents, all the “close pairs” of crime incidents may form a complex structure (like a 
complex network), thus making it difficult to extract dominant patterns from such complex structure. As illus-

(1)
{

0 ≤ tB − tA ≤ �t
rAB ≤ �s

Collection of Crime events with x, y, t

Step 1:  Construction of crime transmission network
Spatial proximity 
Temporal proximity 

Step 2: Spatial aggregation based on spatial grids
Spatial grids generation
Spatial overlay and spatial aggregation 

Step 3:Discovering significant spatial interaction patterns
Definition of indicators
Identification of transmission routes
Identification of sources and sinks

High flow regions and spatial transmission routes

Figure 1.  Overview of framework for discovering spatial transmission patterns of crime occurrence.
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trated in Fig. 2, network nodes are usually clustered and network edges are usually intersected in an unregularly 
way. In situation of lots of nodes and edges, it is difficult to extract dominant spatial interaction patterns from 
the complex network.

To address the above issues, we then overlay the crime transmission network with spatial grids. The advantage 
of applying spatial grids lies in two aspects. First, the spatial interaction should be explored at a spatial scale. The 
analysis scale is closely related to spatial grid size. By setting different grid sizes, multiple scales analysis results 
can be achieved. Second, by overlaying spatial grids with the crime transmission network, each node and edge 
in the network can be associated with one or several spatial grids, then the crime network can be simplified 
greatly by spatial aggregation. As an example illustrated in Fig. 2, each circle in sub-figure (a) represents a crime 
incident, and crime pairs are connected by dashed lines. Obviously, it is not easy to identify the dominant spatial 
patterns. The complex network can be simplified by overlaying with spatial grids. The close crime pairs can be 
classified into two categories: “following in same grids” and “crossing different grids”, and those crossing different 
grids can be used to analyze spatial interaction between different regions. In sub-figure (d), each spatial region is 
represented as a square, and the numbers beside links represent number of close crime pairs crossing different 
regions (i.e. the by spatial aggregation). In this manner, the original crime transmission network has been simpli-
fied. It should be pointed out that the “spatial aggregation” does not discard any close crime pair. Those falling in 
a single grid can be used to measure strength of spatial interaction, which will be described in following section.

Discovery of significant spatial interaction patterns. From the above description, we can learn that the aggre-
gated crime network is a directed network. Each node of network represents a spatial region (spatial grid) and 
edges indicates near repeat pairs crossing different grids. After the aggregated crime network is obtained, the 
spatial association rule mining technique can be applied to discover the spatial interactions patterns. The spatio-
temporal association rule mining approach is a powerful tool for discovering the interdependence relation in 
both spatial and temporal domains. The existing research has proved that it can not only reveal a spatial depend-
ence structure among various spatial features or spatial  objects38,39 but also discover the dynamic interactions 
among different spatial  regions37,40,41. For example, Verhein and Chawla describe spatial interaction patterns 
between different regions using spatio-temporal association  rules37.

In this study, we also try to summarize the spatial interaction pattern by applying spatio-temporal association 
rules mining. To fulfil that, following definitions are first clarified.

Definition 1 Given two adjacent spatial grids (denoted as GA and GB) and two crime incidents  (c1 and  c2), if 
 c1 falls in grid GA,  c2 falls in GB, and their distance satisfies the spatio-temporal proximity constraint in Eq. (1), 
then the pair of  c1 and  c2 is called an instance of flow from GA to GB and denoted as: instance (GA → GB). The total 
number of instance (GA → GB) is called the out flow number of (GA) and denoted as outNum(GA). Correspondingly, 
total number of instance (GB → GA) is called the inflow number of (GA) and denoted as inNum(GA). In addition, 
the total number of close pair which totally falls in grid GA is denoted as statbleNum (GA).

Definition 2 The spatial region GA is termed as a source when out flow number outNum (GA) is higher than 
random assumption. Conversely, region is termed as sink if inflow number inNum (GA) is higher than random 
assumption. A thoroughfare is a region which meets both the source and sink requirements. Collectively, sources, 
sinks and thoroughfares are called high flow regions in which near repeat crime pairs can be frequently observed.

Definition 3 High flow regions and transmission routes together can describe spatial interaction pattern between 
different regions. For regions GA and GB, if the number of instance (GA → GB) is higher than random assumption, 
then it is called a significant transmission route from GA → GB, denoted as route (GA → GB), while GA is called 
antecedent and GB is consequent of the route.

Definition 4 Another two concepts are defined to evaluate the discovered spatial transmission routes. The spatial 
support of a transmission route r, denoted as Sup(r), is the sum of spatial areas referenced in the antecedent and 

3 3 1
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(a)  Crime Network

(b) Spatial Grids

(d) Aggregated Crime Network 
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Figure 2.  Illustrative example of spatial aggregation of original network.
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consequent of the transmission route. The confidence of a transmission route r, denoted as Conf (r), is defined 
as the ratio of number of instance (GA → GB) to number of instances flowing out and falling in the antecedent 
grid. They can be represented formally as:

The first three definitions are used to discover the spatial interaction pattern, while the last one can be used 
to evaluate the discovered results. The definition of spatial support considers spatial semantic of discovered 
pattern (the size of spatial area) and confidence indicates the transmission possibility between antecedent and 
consequent regions. Both support and confidence indicators are commonly used in Apriori-like association rule 
mining  approaches42, while these concepts have different meanings in this study.

Based on the above concepts, spatial interaction pattern can be discovered. In spatial association pattern 
mining process, thresholds for indicators measuring association strength should be determined in advance, e.g. 
outNum and inNum in this study. However, determination of the thresholds objectively is not easy. Thus, the 
discovered results are evaluated via the Monte Carlo (MC) testing. In another words, we aim to find out these 
patterns with their indicators significantly higher than that would be observed by chance. In the current study, 
MC methods are employed to generate N simulated spatial crime distributions with permutation of temporal 
information. For example, statistical significance of spatial transmission route r can be calculated as:

where instance_numobs(r) represent the number of instance (r) calculated on real observed data, and 
nstance_numith_sim(r) represent the number calculated on a simulated spatial dataset. Then, given a significant 
level α (0.05 by default), if the p(r) value is less than the significance level, it can be treated as a significant pattern.

Study area and material description. To evaluate the effectiveness of the proposed approach, we aim to 
explore the spatial interaction pattern of a robbery in the city of Philadelphia, United States. Located in south-
eastern Pennsylvania, Philadelphia is an economic and cultural anchor of the greater Delaware Valley, with a 
population of 1,580,863 (based on 2017 census-estimated results). The crime occurrence in Philadelphia con-
sistently ranks above the national average, which is a major concern for the government. The crime-related data 
can be freely accessed via the OpenDataPhilly website (https ://www.opend ataph illy.org/), which provides both 
crime datasets and basic geographic data. The geographic data include administrative division and road network. 
The crime incidents are recorded with detailed longitude, latitude and timestamps. In this study, we mainly focus 
on unarmed robbery during the period of January 1st, 2016, to June 30th, 2016. During this period, the total 
number of unarmed robberies was 1612. We selected robbery crime as a case study because robbery is frequently 
observed in the study regions and have a profound effect on the quality of life in urban  neighborhood43. This 
study aims to find out: (1) whether robbery crime exhibits the near repeat phenomena? and (2) what kinds of 
spatial interaction patterns are embedded in the near repeat phenomena? The study region and distribution of 
robbery crime are showed in the Fig. 3.

Results and discussion
In this section, near repeat crime pairs are first calculated. Then, spatial interaction patterns are explored based 
on the proposed method in the "Framework for discovering significant spatial transmission pattern of crime 
occurrence". Finally, the effectiveness of proposed method is proved by comparing with spatial hotspots and 
analyzing spatial association with road network.

Detection of near repeat pattern. Firstly, the near repeat patterns of robbery are analyzed. As illus-
trated in above, the near repeat crime does not ensure a series of crime conducted by a single criminal, it is 
mainly defined by spatio-temporal proximity. Therefore, spatial and temporal distance need to be specified first. 
Thresholds for spatio-temporal proximity are related with analysis scale or prior knowledge. In the situation of 
no prior knowledge, some spatio-temporal statistics can be used to determine the spatio-temporal clustering 
range, for example, the spatio-temporal K function. Then, determination of spatio-temporal proximity can be 
determined by referencing the clustering range. In the experiment, the spatio-temporal K function is used to 
analyze the clustering  range14. Based on the detected clustering range, the spatial threshold is set as 500 m and 
temporal threshold is set as 168 h (i.e. a week). Of all the possible combinations, 798 of them are satisfied the 
spatio-temporal constraint, i.e. there are 798 near repeat pairs in total. For better visualization effect, each near 
repeat pair is linked by an undirected segment, which is shown in Fig. 4. It is clearly very different to pick out 
the interesting patterns from Fig. 4. That is due to the spatio-temporal clustering characteristic of crime. Since 
the near repeat crime is judged by spatio-temporal proximity, the distribution of near repeat crime will also 
show clustering tendency. In addition, a single crime incident may be paired with several incidents, resulting in 
the complex structure of the network, as shown in the local region (specified by the red rectangle) in the Fig. 4.

The near repeat pattern can be detected by the Near Repeat Calculator (NRC). The NRC requires the users 
to specify several parameters, including spatial bandwidth, temporal bandwidth, and numbers of spatial and 
temporal bands. Then, for each combination of spatial and temporal bands, the observed crime incidents are 

(2)Sup(r) = area(GA)+ area(GB)

(3)conf (r) =

∑

instance (GA → GB)

outNum(GA)+ stableNum(GA)

(4)p(r) =

∑
(

instance_numobs(r) ≤ instance_numith_sim(r)
)

+ 1

N + 1

https://www.opendataphilly.org/


6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17262  | https://doi.org/10.1038/s41598-020-74248-w

www.nature.com/scientificreports/

calculated and the deviation from the random assumption is evaluated by Monte Carlo testing. Following the 
common practice, the spatial and temporal bandwidths are set to 200 m and 7 days in the experiment, respec-
tively. Both the numbers of spatial and temporal bands are set to 10. The results indicate that a significant near 
repeat victimization pattern can be identified within approximate 400 m and 7 days. The conclusion drawn by 
NRC conforms to the finding in our experiments.

Discovery of spatial interaction patterns. As illustrated in above, it is hard to pick out the interest-
ing patterns directly from the near repeat crime network. Although NRC can identify the spatial and temporal 
ranges in which near repeat crime significantly clusters, it cannot explain the spatial interaction pattern of crime 
occurrence, i.e. how does the crime occurrence transfer in space. To address this issue, the proposed approach 

Figure 3.  Study region and distribution of robbery incidents.

Figure 4.  Distribution the near repeat crime pairs.
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is applied to explore the spatial interaction pattern of the robbery crime. First, the near repeat crime network 
is simplified by spatial aggregation based on spatial grids. Because this study aims to explore spatial interaction 
patterns based on near repeat crime, the spatial grid size should be related with spatial proximity for identify-
ing near repeat pairs. In addition, the crime occurrence is closely related with physical environment, influence 
of spatial features in physical environment should as be considered. Empirical research has indicated that fea-
tures of the physical environment exert the most reliable influence over a street block or two, corresponding to 
100–500 m44,45. For the above two reasons, the spatial grid size is set as 500 m in the experiment. Then, signifi-
cant spatial transmission routes and high flow regions are discovered by the approach described in “Discovery 
of significant spatial interaction patterns” section. During the period, the number of simulation in Monte Carlo 
testing is set as 99. The final discovered result is shown in Fig. 5.

As illustrated in Fig. 5, the proposed method can discover the high flow regions, which are flagged as “source” 
and “sink”. These regions indicate the place where near repeat crime opportunity is statistical higher than random 
assumption. The spatial contexts of these regions may be more suitable for robbery occurrence or criminal flee, 
and more attention should be paid to these regions in crime prevention. Correspondingly, the transmission 
routes are marked with arrows from “source” to “sink”. In the experiment, more than 40 routes are identified. 
The distribution of transmission routes is not as clustered as crime incidents, which may indicate the universality 
of near repeat phenomena in the study area. Although we also defined the “thoroughfare”, “thoroughfares” are 
seldom identified in the study area. It manifests the fact that the spatial interaction of robbery only exists in a 
short distance range, which is consistent with the findings related with near repeat  phenomena46.

Then, we compare the proposed approach with traditional hotspot detection method. The hotspot detec-
tion method (e.g. the Getis-Ord Gi* statistic) aims to find significant “spatial regions” of concentrated crime. 
The traditional “hotspot detection” approach is based on original crime incidents while the proposed approach 
concerns more about the “near repeat pairs”, it is unreasonable to compare two methods directly. To fill that gap, 
all near repeat crime pairs are selected first and then the hotspot detection method is applied to “antecedent 
incident” of those pairs. In this situation, the spatial hotspot detection method can reflect spatial interaction 
of near repeat phenomena to some extent. The distribution of antecedent incidents is shown in Fig. 6a, and 
corresponding hotspot is shown in Fig. 6b. It can be learned that Getis-Ord Gi* statistic tends to identify large 
and squared regions, because the significance of a feature is determined by both itself and the values surround-
ing it. Therefore, some small regions may be neglected. By comparing Fig. 5 with Fig. 6b, we can learn that the 
proposed method can identify both “spatial interaction” and “high flow regions” (i.e. the sources and sinks) in a 
finer granularity. There are also some locations not reflected by spatial hotspots, for example, the region in the 
north spotted by a rectangle in Fig. 5.

Figure 5.  Significant spatial transmission routs and high flow regions.
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To prove the validness of findings by proposed approach, we also explore the candidate associated factors for 
discovered spatial interaction patterns. In the experiment, we select three types of road, including the express-
way, major arterial, and minor arterial and then compute the spatial association between road structure and 
the discovered patterns. To fulfil that, road network is related with spatial grids first and then numbers of road 
junctions falling each grid are calculated. For example, the spatial distribution of major arterial and junction 
numbers are shown in Fig. 7. During the spatial interaction discovering process, we have calculated several 
attributes for each grid, including the outNum, inNum and statbleNum. The correlation coefficient between 

Figure 6.  Spatial hotspot distribution of near repeat pairs.

Figure 7.  Spatial distribution of major arterial and junction counts.
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these attributes and junction numbers can be calculated. The correlation coefficient can indicate the spatial 
association between road structure and spatial transmission patterns. Of all the select road types, we find that 
the transmission of robbery crime is closely related to the major arterial. The correlation efficient is about 0.15, 
not a very high value. However, the correlation is statistically significant by Monte Carlo testing via simulating 
distribution of road junction numbers. Besides, the association is also can be checked by visual judgment in a 
qualitative way. By comparing the Figs. 5 and 7, it can be learned most of our discovered spatial transmission 
routes are located besides the major arterial. For example, the dash line rectangle in Fig. 5 in fact fits well with a 
major road direction. This finding also can be explained by the optimal foraging theory, which states that animals 
optimize foraging strategies to increase the rate of reward whilst minimizing both the amount of time search-
ing and risk of being attacked by  others9,33. Similarly, criminal would commit a robbery and then seek target in 
neighborhood, if the likelihood of obtaining valuable benefit and adequate escape routes are available. The effect 
of major arterial on robbery crime may be reflected in two folds. On one hand, it provides great accessibility for 
non-residents entering the space. On the other hand, it is more convenient for the criminals running away after 
them committing some robbery activities. This is also consistent with some previous research, which states that 
a space with high permeability would increases the crime  risk47–49.

Discussions. Previous studies have proved the existence of near repeat phenomenon for several crime types, 
including burglaries and shootings. Most of these studies attempted to identify the spatial and temporal ranges 
of near repeat phenomenon while assuming the isotropic influence of crime occurrences. By using a case study 
of a robbery in the city of Philadelphia, this study explores the spatial interaction patterns of crime occurrences 
by using network analysis and the spatio-temporal association rules mining technique. The results in this study 
can reveal both the significant spatial transmission routes and detailed local regions where crime incidents trans-
fer with high probability. By associating the discovered results with city infrastructure (e.g. road networks), we 
can conclude that the major arterial will have an important impact on near repeat crime pattern. The proposed 
approach can not only serve as an important supplement to existing analysis tools (e.g. the Near repeat Calcula-
tor) for near repeat phenomena, but also effectively guide the decision of crime prevention strategies. By iden-
tifying high flow regions (i.e. the sources and sinks) and the significant crime transmission routes, the policing 
resources can be reduced greatly and crime prevention strategies can work better.

Conclusions
The distribution of crime incidents always exhibits a dependence structure in spatio-temporal proximity. Explo-
ration of the spatio-temporal interaction of the crime incidents, especially the high flow regions and dynamic 
spatial transmission pattern, is critical to crime control and crime prevention. To better understand the spatio-
time interactions of crime, this study developed an approach aiming to identify significant spatial transmission 
routes and related high flow regions. First, a crime transmission network is constructed with considering the 
spatio-temporal influence of crime incidents. Second, to simplify the structure of the crime network, the original 
crime transmission network is spatially aggregated based on the spatial grids, which can be easily achieved on 
multiple spatial scales. Finally, a new approach is developed to discover significant spatial interaction patterns of 
crime. The proposed approach can identify significant spatial transmission routes and high flow regions (sources 
and sinks) related with spatial interaction. Although the experiments mainly focus on a case study of robbery in 
Philadelphia, the proposed approach can be easily extended to examine other types of crimes in different regions. 
The discovered spatial transmission patterns can be closely associated with the city’s infrastructure, and it can 
be explained by the theories of criminal geography (e.g. the optimal foraging theory). The proposed approach 
can not only discover spatial transmission patterns from massive crime incident data, but also effectively guide 
crime pattern analysis and crime prevention. In future, the complex association between crime patterns and 
multiple facilities (e.g. schools, hospitals) should be explored to find out the “spatial scene” or “spatial configura-
tion” for crime occurrence.
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