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Large photocurrent density 
enhancement assisted 
by non‑absorbing spherical 
dielectric nanoparticles in a GaAs 
layer
Bhaskar Singh1*, Mohammed M. Shabat2 & Daniel M. Schaadt1

Herein, we report a theoretical investigation of large photocurrent density enhancement in a GaAs 
absorber layer due to non-absorbing spherical dielectric (SiO2) nanoparticles-based antireflection 
coating. The nanoparticles are embedded in a dielectric matrix (SiN) which improves the antireflection 
property of SiN ( �/4 coating) and let to pass more photons into the GaAs layer. The improvement 
is noticed omnidirectional and the highest is more than 100% at 85° angle of incidence with the 
nanoparticles’ surface filling density of 70%. Sunrise to sunset calculation of normalized photocurrent 
density over the course of a year have also shown improvements in the nanoparticles’ case.

Nanoparticles (NPs) are being used extensively in solar cell applications due to its high forward to backward 
scattering1–6. This is caused by suppression of light reflection via high refractive index substrate (famously known 
as Kerker effect)7. Nanostructures such as NPs with size greater than and/or of the order of incident sunlight 
wavelength show Mie scattering. Additionally, metal NPs also show plasmonic scattering due to the oscillation 
of free electrons at metal-dielectric interface1,8. However, metal NPs face high absorption at the resonance wave-
length. On the other hand, dielectric NPs do not show this behavior in a narrow band range9. This have captured 
the attention of scientific community recently and being investigated widely. Dielectric NPs at the front of solar 
cells have been demonstrated experimentally10–15 and theoretically8,16–19 with improved device performance. 
Wan et al.’s TiO2 NPs coated solar cell exhibited ca. 30% enhancement in photocurrent13. Whereas, Ha et al. 
demonstrated experimentally more than 30% efficiency gain by using SiO2 NPs on a GaAs solar cell14. These 
NPs were closely packed and worked as an antireflection coating (ARC). The wide-angle improvement was also 
noticed for the entire visible spectrum. Huang et al. measured the normalized current density of with/without 
sub micrometer silica (SiO2) spheres coated amorphous silicon (a-Si) solar cells and noticed the enhancement 
after 40° angle of incidence (AOI)20.

In this manuscript, we perform an analytical modelling on a structure in which SiO2 NPs are embedded in a 
dielectric ARC (SiN), also called �/4 coating, on a GaAs layer. The new ARC structure with NPs is called hybrid 
ARC. We use a dipole model to describe the diffuse reflectance/transmittance behavior of NPs21. However, the 
specular behavior of SiN ARC layer is characterized by Abelès’ famous transfer matrix method (TMM)22. The 
analytical model is presented in detail elsewhere23. The hybrid ARC made of two-dimensional (2D) array of the 
SiO2 NPs of equal period in the dielectric SiN matrix bounded with air and a GaAs absorber layer was investi-
gated, as shown in Fig. 1. All the layers and NPs have wavelength dependent index of refraction which is taken 
from Palik for the calculation24. AOI varies from normal incidence (0°) to 85°. NPs’ surface filling density 

(

f
)

 is 
calculated by f = N ∗

(

πr2
)

/(l ∗ b) , where N is the total no. of embedded NPs; r is the radius of NPs;l  is length, 
and b is breadth of SiN layer. The dipole approximation is valid for f < 0.75.

The ARCs in solar cells are designed to minimize the reflectance and maximize the transmittance across the 
wavelength range of interest.  Figure  2 shows the weighted solar power transmittance: 
Tw =

1200nm
∫

300nm
T(�)S(�)d�/

1200nm
∫

300nm
S(�)d� , where T(�) and S(�) are the transmittance from the ARC layer and the 

intensity of AM1.5D solar spectrum at wavelength � . The intensity of AM1.5D solar spectrum is taken from 
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Ref.25. Thin film SiN ARC layer shows high transmittance for the thickness 60–80 nm over a wide range of AOI 
(Fig. 2A). When the ARC layer thickness increases, the transmittance decreases slowly at normal incidence, 
however with AOI, the change is drastic after 40° AOI. A fixed solar cell on a house roof, receives the sun light 
throughout a day at various AOI. Thus, the ARC should perform better at higher AOI. Embedding Ag NPs in 
the SiN ARC shows better performance at higher AOI (Fig. 2B). However, the performance is bad at normal 
incidence comparing to the thin film SiN ARC because metal NPs absorb the sunlight, and SiN layer doesn’t 
absorb9. Figure 2B also shows an expected behavior that metal NPs have large optical cross section than geo-
metrical cross section26. Smaller Ag NPs (blue region in Fig. 2B) absorb almost all the sunlight incident upon it. 
Therefore, we replaced metal NPs (Ag NPs) with dielectric NPs (SiO2 NPs) because dielectric NPs do not absorb 
the sunlight in a narrow band spectrum as discussed in the beginning. The weighted solar power transmittance 
from hybrid ARC (SiO2 NPs + SiN) is shown in Fig. 2C. SiN ARC and hybrid ARC (SiO2 NPs + SiN) show nearly 
the same behavior for ARC thickness interval 60–80 nm at AOI 0°–40°. Furthermore, the improvement in 
transmittance from hybrid ARC (SiO2 NPs + SiN) is omnidirectional. For comparison, we also calculated the 
transmittance for 100% SiO2 thin film layer as ARC which shows a decrease in the transmittance at higher AOI 
(Fig. 2D). From the principle of single layer antireflection coating13, the refractive index of a perfect ARC should 
follow the following expression: nARC = √

nAir ∗ nSubstrate . If we take nSubstrate = 3.5 (for GaAs or Si), nARC equals 
to 1.87. The refractive index of SiN (nSiN ) and SiO2 

(

nSiO2

)

 is 2.05 and 1.5 approx., respectively. Hence, nSiN is 
near to nARC , but nSiO2

 is far from that. According to the effective medium theory13, embedding SiO2 NPs in the 
SiN dielectric matrix brings the effective refractive index nearer to nARC , therefore we obtained the best ARC 
performance in the hybrid ARC (SiO2 NPs + SiN).

In the solar cell application, photocurrent density (JPH ) is more commonly discussed property of a solar cell 
than the transmittance. So, we calculated JPH = q ∗

870nm
∫

300nm
T(�)PFD(�)IQE(�)d� , where q is the electronic charge; 

PFD(�) and IQE(�) are the photon flux density and the internal quantum efficiency at wavelength � . The photon 
flux density is taken from Ref. 27. Operating wavelength is taken from 300 to 870 nm because GaAs absorbs the 
sunlight in this wavelength range. We assumed that all the photons which reaches to the GaAs layer, got absorbed; 
hence IQE(�) = 1, forall� . We plotted the weighted solar power transmittance (TW ) for an optimum condition 
of the hybrid ARC (SiO2 NPs + SiN) at the surface filling density f = 0.70 and d = 70nm (Fig. 3A). JPH curves 
follow the same trend as TW curves. JPH is almost equal for the SiN ARC structure and the hybrid ARC (SiO2 
NPs + SiN) structure till 45° AOI, and after that the curves split (Fig. 3B). At 85° AOI, the improvement is as 
much as ca. 120% for the hybrid ARC (SiO2 NPs + SiN) structure comparing to the SiN ARC. We also plotted 
JSC and TW curves of the hybrid ARC (SiO2 NPs + SiN) at  f = 0.50 (red curve in Fig. 3B), which is in between 
of the SiN ARC and the hybrid ARC (SiO2 NPs + SiN) at f = 0.70 . This means when f  goes to zero, the hybrid 
ARC acts like the SiN ARC (as expected). With the help of Fig. 3B, we also calculated a net normalized 

Figure 1.   Schematic diagram of the simulated structure.
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Figure 2.   Weighted solar power transmittance (TW ) from (A) thin film SiN ARC, (B) hybrid ARC (Ag 
NPs + SiN), (C) hybrid ARC (SiO2 NPs + SiN), and (D) thin film SiO2 ARC. d: thickness of the ARC layer. The 
diameter of NPs is equal to the thickness of ARC layer. The contours of hybrid ARC (NPs + SiN) are for 70% 
surface filling density. 0° AOI corresponds to normal incidence.

Figure 3.   (A) Weighted solar power transmittance (TW ) , and (B) photocurrent density (JPH ) for 70 nm thick 
ARC layer. The diameter of NPs are equals to the thickness of ARC layer. Ag (70%) + SiN : the surface filling 
density of Ag NPs is 70% in the hybrid ARC.
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photocurrent density over the course of a year w. r. t. the normal incidence by using the following expressions 
at different locations which is summarized in Table 1.

To calculate over the course of a year, average JPH is calculated for each of the day of a year using Eq. 1 and 
summed over. The summation is divided by total no. of days in a year. AOI of the sunlight at the GaAs layer 
changes at every minute of the day and was calculated by the formula given in Ref.28. The GaAs layer is assumed 
to face due south in the Northern Hemisphere, or due north in the Southern Hemisphere. We compared the 
normalized photocurrent density at two different tilt angles cases for the given location: optimum tilt angle29 and 
45°. The sun position calculation was done with a freely available MATALB code30. The improvement in hybrid 
ARC is clearly noticed at every location. The change due to hybrid ARC is more when the tilt angle is far from 
the optimum tilt angle (Table 1). Overall, the hybrid ARC has shown improvement in the antireflection property 
and recommended to use in solar cells.

To the best of our knowledge, the simulated device structure in this study has not been yet reported theoreti-
cally or experimentally. Other structures such as NPs layer on a solar cell absorber1,8,10–12,14,19, NPs layer on a thin 
film ARC layer with an absorber layer13,16,19 or NPs fully buried inside a thin film ARC layer with an absorber 
layer31 have been studied extensively. Ha et al. have reported more than 8% enhancement in the current density 
with 70% surface coverage by SiO2 NPs on a GaAs solar cell at normal incidence comparing to a bare GaAs solar 
cell11. The enhancement is also noticed at non-normal AOI. However, the sunlight still faces high reflection in 
the vicinity of NPs due to the host medium (air) at normal and non-normal AOI. In our device structure, the 
vicinity is filled with dielectric SiN host medium. At normal incidence, both the thin film SiN ARC and SiO2 
NPs show approximately equal TW (a small insignificant increase at 0° AOI is noticeable in Fig. 3). But, due to 
constructive interference at the front surface, the thin film SiN ARC show decrease in TW at higher AOI whereas 
NPs don’t show this behavior, as reported in Ref. 2323. As a result, enhancement in TW at higher AOI has been 
noticed for hybrid ARC (SiO2 NPs + SiN) case (Figs. 2C, 3). Starowicz et al. have grown an ARC structure similar 
to ours in which metal NPs are successfully embedded in a TiOx thin film layer32. The ARC shows 5% increase 
in the short circuit current at normal incidence. In this case, the TiOx film is deposited with sol–gel method. 
Similarly, SiN thin film can also be deposited as reported in Ref.33, nevertheless no results of SiN deposition on 
a solar cell device structure have been reported by using this method due to complexity in synthesis and non-
uniformity in the SiN structure. The controlled size homogeneity and distribution of NPs are also a difficult task, 
but it can be approximated on a device surface by density distribution calculation31,34. Lesina et al. modelled 
and characterize Ag NPs embedded in a SiO2 ARC​31. In this case, Ag NPs are fully buried inside the thin ARC 
layer. Furthermore, NP’s size and surface coverage have been obtained with the density distribution calculation 
using ImageJ software. From the fabrication point of view, metal NPs can be synthesized by evaporation of its 
metal thin films, followed by thermal annealing34–36. However, NPs are also commercially available with various 
manufacturer such as nanoComposix, Inc.10. Hence, our simulated device structure can be studied experimentally 
in future and can also be used to guide future experimental design for wide angle antireflection coating and to 
predict its performance.

In summary, we performed an analytical study which suggests that a combination of �/4 coating ARC with 
dielectric SiO2 NPs (hybrid ARC) improves the photocurrent density in a GaAs layer at higher AOI. We obtained 
more than 100% enhancement in the photocurrent density at 85° AOI. Sunrise to sunset calculation of the 
normalized photocurrent density have also shown improvement in the hybrid ARC case. In future, solar cells 
integrated into buildings, cars, etc. might become more important. In these cases, the panels are typically not 
oriented toward the sun and they have to deal with AOI far from the normal incidence. Conventional �/4 coating 
ARC such as thin film SiN ARC is generally optimized for a certain AOI (typically close to normal incidence). 
Therefore, the hybrid ARC gives a route to alleviate the unwanted reflection at higher AOI and increase the 
overall efficiency of a solar cell.

Methods
The simulation study is performed using an analytical model23 which is a combination of Transfer matrix method 
(TMM), Dipole model and Mie theory. A self-generated MATLAB code is used to solve Mie theory for the scat-
tering efficiency of metal and dielectric NPs. Using the dipole model, an angular distribution of dipole radiation 

(1)JPH(inoneday) =
1

dayduration(inminutes)

sunset
∫

sunrise
norm.JPHdt(inminutes)

Table 1.   Normalized photocurrent density over the course of a year (2020) at different locations (Lat.: latitude; 
Opt.: optimum tilt angle; Hybrid ARC: SiO2 (70%) + SiN).

ARC type

Munich, Germany 
(Lat. = 48.13°)

Chennai, India 
(Lat. = 13.07°)

Perth, Australia 
(Lat. = − 31.93°)

Antofogasta, 
Chile 
(Lat. = − 23.43°)

Opt. = 33° 45° Opt. = 13° 45° Opt. = 27° 45° Opt. = 22° 45°

SiN ARC​ 0.85 0.85 0.87 0.82 0.87 0.85 0.87 0.84

Hybrid ARC​ 0.89 0.88 0.93 0.88 0.92 0.89 0.92 0.89

% Increase 4.71 3.53 6.89 7.32 5.75 4.71 5.75 5.95
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by a NP in the neighboring substrate is obtained which is later used to calculate the total diffuse scattering 
(reflected and transmitted) by a NP. The total transmittance is calculated with a linear summation of specular 
transmittance and diffuse transmittance in which the specular transmittance is calculated with the TMM method 
and the diffuse transmittance is calculated by the diffuse scattering of NPs.

Assuming a perfect absorber layer (IQE = 1) based solar cell device, the transmittance obtained from the 
analytical model is used to calculate the photogenerated current density. For the angle of incidence (AOI) of the 
sunlight on a solar cell surface, the sun’s position is calculated by a freely available MATLAB code30.
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