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The principal axes systems 
for the elastic properties 
of monoclinic gallia
Marius Grundmann

We discuss the principal axes systems of monoclinic and triclinic crystals regarding their elastic 
properties. Explicit formulas are presented for the orientation of these coordinate systems for 
monoclinic crystals. In this context, theoretical results from literature on the elastic properties of 
monoclinic (space group C2/m) gallia and alumina are critically discussed.

The two crystal classes of lowest symmetry are monoclinic and triclinic. In the first, one angle of the unit cell is 
non-orthogonal, for the latter all angles. Accordingly, the stress-strain relation is fairly complicated and contains 
13 or 21 elastic constants, respectively. As already stated by  Voigt1, there are two principal axis systems for these 
crystals with regard to their elastic properties. The one system, the ’principal axes of elastic deformation’ (PA-
D) is a Cartesian system oriented in a way that a rectangular box cut parallel to the axes reacts to equal normal 
forces, i.e. hydrostatic pressure, with (generally different) dilations but does not change its (right) angles. These 
axes are also termed the principal axes of the compression ellipsoid.

The other symmetry adapted system, the ’principal axes of elastic resistance’ (PA-R) is oriented in a way 
that the same dilation in all directions, preserving the right angles of the box, is evoked by (generally different) 
normal forces (and zero shear forces).

Recently, monoclinic semiconductors and their strained heterostructures have found high interest in the 
space group C2/m (Al,Ga)2O3  system2–4. These materials are promising for device applications, e.g. in high 
power  electronics5 and ultraviolet  photodetectors6. For the calculation of strained  heterostructures7–9, of course 
the elastic constants are important input parameters. Various density functional theory based calculations of 
the elastic constants have been reported for the binary end components, β-Ga2O3

10–14,18,24 and θ-Al2O3
15–17. 

Also, for β-Ga2O3 two sets of elastic constants have been determined  experimentally18,23. We find it helpful to 
derive here analytical formulas for the orientation of the PA-D and PA-R coordinate systems. These allow the 
comparison of elastic symmetry of different materials independent of their absolute compliance/stiffness. The 
different theoretical calculations for the same materials will be critically compared.

Definition of the crystal system
The crystal is described with respect to a Cartesian coordinate system x̃ = (1, 0, 0)T , ỹ and z̃ . It must be the same 
as used for the crystal stress-strain relation (12) given below. A vector in this system is denoted as r̃.

The lattice vectors of the unit cell are a1 = (a11, a12, a13)
T , a2 and a3 . A vector in the crystal r is related to r̃ via

with

with a1 = T x̃ , a2 = T ỹ , and a3 = T z̃.
A minimum of six non-zero components is required for the most general case. The standard choice for a 

triclinic crystal  is19,20,

(1)r = T r̃

(2)T =

(

a11 a21 a31
a12 a22 a32
a13 a23 a33

)

,

(3)Tt =





a b cos γ cx
0 b sin γ cy
0 0 cz



.
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with

The monoclinic system is obtained by setting α = γ = π/2,

The ỹ-direction is perpendicular to the ( ̃x,z̃)-plane.

Rotation transformation of the coordinates
The spherical angles θ and φ define the rotational transformation of vectors r in the crystal system into vectors 
r′ in another Cartesian coordinate system. A rotation of the crystal is generally described by a rotation matrix R,

We consider the rotation around the z̃-axis by the angle φ,

and subsequently the rotation around the ỹ-axis by the angle θ,

An arbitrary direction can be generated with the combined rotation (Fig. 1)

The angles have a useful range of −π/2 ≤ θ ≤ π/2 and 0 ≤ φ ≤ 2π.

Stress–strain relation in the crystal
The stress-strain relation in the crystal system reads

with the stiffness components Cij for the 6-tuples of stress σ and strain e in the Voigt notation,

The (symmetrized) strain components are derived from the displacement u via ǫij = (∂ui/∂xj + ∂uj/∂xi)/2 . The 
6× 6 matrix C contains the elastic (stiffness) constants and is given with respect to the same (x̃ , ỹ , z̃) coordinate 
system as chosen in (7). The matrix C is symmetric, i.e. Cij = Cji . For the triclinic system, all entries are non-zero, 
yielding 21 components; by special choice of coordinate system, the number can be reduced to 18 independent 
 constants1. For the monoclinic system, 13 non-zero components remain; by special choice of coordinate system, 

(4)cx =c cosβ

(5)cy =c (cosα − cosβ cos γ )/ sin γ

(6)cz =
√

c2 − c2x − c2y .

(7)Tm =

(

a 0 c cosβ
0 b 0

0 0 c sin β

)

.

(8)r′ = R r,

(9)Rz(φ) =

(

cosφ − sin φ 0

sinφ cosφ 0

0 0 1

)

,

(10)Ry(θ) =

(

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

)

.

(11)R = Ry(θ)Rz(φ).

(12)σ = C e

(13)σ =(σ11, σ22, σ33, σ23, σ13, σ12)
T

(14)e =(ǫ11, ǫ22, ǫ33, 2ǫ23, 2ǫ13, 2ǫ12)
T.

x

y

z
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Figure 1.  Schematic of Cartesian coordinate system x̃ , ỹ , z̃ , with a crystal direction (grey arrow) and the angles 
θ and φ . After the rotation according to Eq. (11), the grey arrow points along z̃.
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the number can be reduced to 12 independent  constants1. Special forms of C are given for all crystals  in1,21 and 
contain many zeros for suitable choices of coordinate system.

For a monoclinic material (mirror plane for y = 0 ) (12) reads

The technicalities of the transformation of the matrix C under rotation into C′ are discussed at length  in8,9. We 
define C5 = C15 + C25 + C35.

For monoclinic (and triclinic) materials, the special PA-R coordination system can be found for which

Here, for isotropic dilation, i.e. e1 = e2 = e3 , without shear strains, i.e. e4 = e5 = e6 = 0 , the tangential forces 
vanish, i.e. σ4 = σ5 = σ6 = 0 and it is evoked only by normal forces.

The reciprocal equation,

contains the compliances Sij with S = C−1 . For the rotated system, S′ = C′−1 . The coordination system fulfilling 
equations (20)–(22) is the principal axes system of elastic deformation (PA-D).

Here, for hydrostatic pressure, i.e. isotropic normal forces, σ1 = σ2 = σ3 and σ4 = σ5 = σ6 = 0 , the shear strains 
vanish, i.e. e4 = e5 = e6 = 0 , meaning that a rectangular box with sides aligned to this coordinate system keeps 
its right angles

For any crystal except monoclinic or triclinic the two PA-D and PA-R coordinate systems coincide. Only for 
these two low symmetry crystal classes, they have different orientations. We note that a parameter (and criterion) 
for triclinicity has been given  in22.

Orientation of the principal axes system of elastic resistance (PA‑R)
We look now for the angles of rotation of the PA-R system relative to the crystal system (x̃, ỹ, z̃) . In the monoclinic 
system for symmetry reasons, the angle φ must be zero and the rotation must lie around the ỹ-axis. Also, if θ0 is 
a solution, θ0 + nπ/2 , n ∈ Z0 must a solution as well. This will come out explicitly.

We assume that C5  = 0 , otherwise the solution is already θ = φ = 0 . In the rotated coordinate system, we 
find,

with q = −C11 − 2C12 + C13 − C22 + C23 + 2C33 and p = −C11 − C13 + C22 + C23 . From (23) and C′
4 = 0 , 

we find φ = 0 and the same from (25) and C′
6 = 0 . Then, (24) and C′

5 = 0 reads,

with

The index ’C’ indicates that this angle belongs to the system for which C′
5 = 0.

(15)C =















C11 C12 C13 0 C15 0

C12 C22 C23 0 C25 0

C13 C23 C33 0 C35 0

0 0 0 C44 0 C46

C15 C25 C35 0 C55 0

0 0 0 C46 0 C66















(16)0 =C′
4 = C′

14 + C′
24 + C′

34

(17)0 =C′
5 = C′

15 + C′
25 + C′

35

(18)0 =C′
6 = C′

16 + C′
26 + C′

36.

(19)e = S σ

(20)0 =S′4 = S′14 + S′24 + S′34

(21)0 =S′5 = S′15 + S′25 + S′35

(22)0 =S′6 = S′16 + S′26 + S′36.

(23)C′
4 =C5 cos θ sin φ + p sin θ cosφ sin φ

(24)C′
5 =C5 cos 2θ cosφ + (q+ p cos 2φ)/4 sin 2θ

(25)C′
6 =C5 sin θ sin φ − p cos θ cosφ sinφ.

(26)cos 2θC + ξ cos θC sin θC = 0,

(27)ξ =
−C11 − C12 + C23 + C33

C15 + C25 + C35

.
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The solutions are

with n ∈ Z0 . We calculate the angular difference of θ+ and θ− ; for ξ = 0 one can see quickly that 
θ+ − θ− = π/4− (−π/4) = π/2 . The derivatives with respect to ξ are the same, θ ′+ = θ ′− = 1/(4+ ξ 2) . Thus 
(θ+ − θ−)

′ = 0 and θ+ − θ− = π/2 for all ξ.
Therefore, the solutions can be finally written as

We chose as solution the angle with the smallest absolute value, i.e. a value in the range −π/4 ≤ θC ≤ π/4 . The 
principal axis system is then given by the directions θC and θC + π/2 in the ( ̃x, z̃)-plane and the ỹ direction.

Orientation of the principal axes system of elastic deformation (PA‑D)
Now we investigate the coordinate system for which S′5 = 0 . Again, we find φ = 0 from S′4 = S′6 = 0 . If S5 = 0 
already, θS = 0 of course; the index ’S’ is used now for distinction. The calculation of the inverse of C′ delivers 
the condition

with ζ expressed via the Cij by,

(28)θC,± = arctan

(

ξ ±
√

4+ ξ 2

2

)

+ nπ ,

(29)θC = arctan

(

ξ +
√

4+ ξ 2

2

)

+ nπ/2.

(30)cos 2θS + ζ sin 2θS = 0.

Table 1.  Elastic constants of monoclinic (C2/m) gallia and alumina  (from16 the values for 0 K with zero-point 
vibrations) (in units of 1011 Pa) and angular positions of specific elastic properties as defined in the text (in 
degrees). AM05: generalized gradient  functional25, GGA: generalized gradient approximation, LDA: local 
density approximation, PBESOL: gradient  functional26, RUS/LDI: resonant ultrasound spectroscopy, LDI: 
laser-Doppler interferometry, FFS: force-field  simulation27.

Material reference 
method

β-Ga2O3 θ-Al2O3

10 11 12 13 14 18 18 18 23 23 24 15 16 17

AM05 LDA LDA GGA PBESOL RUS/LDI LDA GGA RUS FFS LDA LDA LDA GGA 

C11 2.231 2.37 2.349 1.99 2.27 2.428 2.19 2.04 2.38 2.85 2.42 2.838 2.78 2.51

C12 1.165 1.25 1.262 1.12 1.28 1.280 1.27 1.16 1.30 1.35 1.27 1.193 1.15 1.16

C13 1.253 1.47 1.577 1.25 1.35 1.600 1.69 1.39 1.52 1.35 1.40 1.598 1.51 1.52

C22 3.332 3.54 3.638 3.12 3.35 3.438 3.65 3.24 3.59 4.00 3.60 4.204 4.10 3.87

C23 0.750 0.95 1.076 0.62 0.728 0.709 1.06 0.78 0.78 0.90 0.903 0.830 0.77 0.61

C33 3.300 3.57 3.532 2.98 3.13 3.474 3.44 3.05 3.46 3.76 3.55 4.353 4.27 3.87

C15 − 0.174 − 0.18 − 0.206 − 0.02 − 0.036 − 0.0162 − 0.014 − 0.013 − 0.04 − 0.13 − 0.177 − 0.307 − 0.29 − 0.01

C25 0.122 0.11 0.083 0.01 0 0.0036 0.035 0.021 0.02 0.08 0.12 0.123 0.13 0.02

C35 0.073 0.06 0.067 0.17 0.18 0.0097 0.18 0.17 0.19 − 0.35 0.077 0.167 0.16 0.22

C46 0.174 0.19 0.214 0.03 0.064 0.0559 0.13 0.078 0.06 0.22 0.197 0.238 0.23 0.05

C44 0.503 0.54 0.516 0.39 0.453 0.478 0.54 0.45 0.49 0.50 0.58 0.868 0.84 0.62

C55 0.686 0.67 0.633 0.77 0.83 0.886 0.76 0.73 0.91 0.73 0.69 1.043 1.04 1.19

C66 0.942 0.95 0.907 0.95 0.99 1.040 0.99 0.93 1.07 0.93 0.97 1.245 1.24 1.28

θC − 1.84 0.64 3.21 − 16.6 − 21.5 0.35 − 10.6 − 14.7 − 15.6 30.1 − 1.05 0.85 0 − 14.8

θS 5.60 7.14 10.0 − 8.85 − 12.8 0.69 − 3.85 − 7.55 − 8.03 33.3 5.77 7.73 6.81 − 7.85

θS-θC 7.44 6.50 6.79 7.75 8.7 0.34 6.75 7.15 7.57 3.2 6.82 6.88 6.81 6.95

θY,min 19.2 19.8 19.7 5.3 6.3 1.1 5.5 5.6 6.0 42.9 20.5 17.1 17.0 3.4

θY,max 79.3 79.8 77.6 65.7 65.5 61.8 63.9 65.2 64.7 103.8 80.0 74.5 75.0 62.1
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ζ =
[

C2
15(−C22 + C23)+ C2

25C33 + C13C25C35

− 2C23C25C35 − C12C
2
35 + C22C

2
35

+ C11C25(−C25 + C35)+ C15(−C25(C13 + C33)

+ C12(2C25 − C35)+ C23C35)+ C11(C22 − C23)C55

− (C12 − C23)(C12 − C13 + C23)C55

+ (C12 − C22)C33C55]/
[

C15C
2
23 + C2

13C25 + C11C23C25 − C15C22C33

− C11C25C33 + C2
12C35 + C11(−C22 + C23)C35

+ C13(C15(C22 − C23)− (C12 + C23)C25

+ (−C12 + C22)C35)

+C12(−C15C23 + C15C33 + C25C33 − C23C35)].

(a)
(b)

(c) (d)

(e) (f)

Figure 2.  Comparison of the angular dependence of (a, c, e) C15 (green), C25 (red), C35 (blue) and their sum 
(black) and of (b, d, f) S15 (green), S25 (red), S35 (blue) and their sum (black) for various data sets of elastic 
constants of β-Ga2O3 from (a, b)10, (c, d)13, and (e, f)18. Also, the sums according  to11,12 are depicted as black 
dashed (dash-dotted) lines in (a, b). The vertical dashed lines indicate the zeros of the black solid line sums.
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It should be mentioned that this formula does not depend on C44 , C46 and C66.
The solutions of (30) are given by,

n ∈ Z0 . Again we chose −π/4 ≤ θS ≤ π/4 . The principal axis system is then given by the directions θS and 
θS + π/2 in the ( ̃x, z̃)-plane and the ỹ direction.

Numerical results for β‑Ga
2
O
3
 and θ‑Al

2
O
3

For monoclinic gallia and alumina various sets of elastic constants have been reported from density functional 
theory (DFT)10–18,24 , force-field  simulation23 and for gallia in  experiment18,23, as listed in Table 1.

For these sets we have calculated the angles θC of the PA-R and θS for the PA-D system as depicted in Fig. 2. 
Foremost, all calculations arrive at θS  = θC , as expected for monoclinic material. The difference θS − θC is within 
about one degree approximately 7 ◦ for all calculations (except FFS), showing that the effect is present but not 
drastic. For β-Ga2O3 , several independent DFT calculations agree within a few  degrees10–12 that θC is close to 
zero. The absolute angles derived  from13 (14) deviate a lot by about 17◦ ( 22◦ ) from these publications, but several 
theories yield values around 15 degrees.

For Al2O3 , two calculations both from the same  group15,16, deviate  from17 also significantly by about 14−16◦.
The experimental data for β-Ga2O3  from18 yield θC close to zero, but also θS is found close to zero; thus orienta-

tions of the PA-D and PA-R systems are almost identical, increasing the elastic symmetry. Approximately (and 

(31)θS =
arctan(−1/ζ )

2
+ nπ/2,

(a)

(b)

Figure 3.  Young’s module of β-Ga2O3 in the (010)-plane ( φ=0) as a function of the rotation angle θ for three 
selected data sets  from10 (blue),13 (black)  and18 (experimental elastic constants, red).
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within the experimental error), for C′
5 = 0 , also C′

25 = 0 , i.e. C′
15 = −C′

35 . This is in contrast to all available DFT 
calculations where for C′

5 = 0 , clearly none of the C′
i5 components ( i = 1, 2, 3 ) is zero. The experimental data 

for β-Ga2O3  from23 yield an angular difference between the PA-D and PA-R systems of about 7.6◦ , in agreement 
with most theories; the absolute angles are closest to the results  of13.

Young’s module
The monoclinic angle β  = π/2 also leads to a characteristic distortion of the angular dependence of the Young’s 
module Y ′ = 1/S′11 in the ( ̃x,z̃)-plane, i.e. the (010) crystallographic plane, away from mirror symmetries that 
are present for an orthorhombic system. We note that a three-dimensional view of the data  from13 can be found 
in Ref.28. The remaining symmetry is that Y ′(θ) = Y ′(θ + π) . The angular dependence in the ( ̃x, z̃)-plane is 
visualized in Fig. 3 for three data sets with linear angular scale and as polar plot. The angular positions θY,max 
and θY,min of the maximum and minimum values of the Young’s module, respectively, in the ( ̃x, z̃)-plane, are 
listed in Table 1. There seems to be significant disagreement between different theories. The two experimental 
data sets yield rather similar values which agree more or less with theories  in13,14. Notably, the theory  of23 is the 
only one yielding θY,max > π/2.

Summary
We have presented analytical formulas for the orientations of the two symmetry-adapted Cartesian coordi-
nate systems of monoclinic crystals, namely the compression and resistance ellipsoids. Various theoretical and 
experimental data sets for monoclinic gallia and alumina have been analyzed and significant differences between 
theories and theories and experiment have been found, making further investigations necessary to correctly 
capture the anisotropic elastic properties of these technologically important materials.

The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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