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Unsupervised learning 
for large‑scale corneal topography 
clustering
Pierre Zéboulon1, Guillaume Debellemanière1 & Damien Gatinel1,2*

Machine learning algorithms have recently shown their precision and potential in many different use 
cases and fields of medicine. Most of the algorithms used are supervised and need a large quantity 
of labeled data to achieve high accuracy. Also, most applications of machine learning in medicine are 
attempts to mimic or exceed human diagnostic capabilities but little work has been done to show 
the power of these algorithms to help collect and pre‑process a large amount of data. In this study 
we show how unsupervised learning can extract and sort usable data from large unlabeled datasets 
with minimal human intervention. Our digital examination tools used in clinical practice store such 
databases and are largely under‑exploited. We applied unsupervised algorithms to corneal topography 
examinations which remains the gold standard test for diagnosis and follow‑up of many corneal 
diseases and refractive surgery screening. We could extract 7019 usable examinations which were 
automatically sorted in 3 common diagnoses (Normal, Keratoconus and History of Refractive Surgery) 
from an unlabeled database with an overall accuracy of 96.5%. Similar methods could be used on any 
form of digital examination database and greatly speed up the data collection process and yield to the 
elaboration of stronger supervised models.

Machine learning (ML) is getting more and more traction in many fields of  medicine1 including  ophthalmology2. 
ML has been used successfully in a wide range of applications in ophthalmology including photograph based 
diabetic retinopathy  detection3, Optical Coherence Tomography (OCT)  diagnosis4, image  segmentation5, 
intraocular lens  calculation6,7 and refractive surgery  screening8. Most ML algorithms are supervised and therefore 
require a large quantity of manually labeled data. All of our digital diagnostic tools (topography, OCT, optical 
biometers etc.…) have enormous databases of examinations that could be used for research purposes but are 
usually unlabeled and hence unusable. The manual labeling process is very time-consuming for physicians and 
it would be interesting to be able to automatically label or pre-label these large amounts of data to constitute 
groups for clinical studies. These large groups of labeled examinations could for example help improve screening 
and diagnostic tests or help to understand disease pathophysiology using the power of data science and machine 
learning. Unsupervised  learning9 is the field of ML that uses unlabeled data and specifically, clustering is its 
most common application. It uses algorithms that have no prior knowledge of the data labels to regroup data 
in clusters based on data similarity. In the field of ophthalmology, recent studies have shown that it is possible 
to effectively perform clustering for keratoconus  staging10 and glaucoma visual  field11 and retinal nerve fiber 
 layer12 pattern analysis. Nevertheless, little work has been done to highlight the capabilities of unsupervised 
learning to help collect and sort large amounts of data for use in subsequent studies. Corneal topography is the 
primary examination performed for refractive surgery screening, corneal diseases diagnosis and follow-up and 
contact lens fitting. Its computer-assisted version as we know it today has been used worldwide for at least thirty 
 years13. Modern topographs capture precise curvature, elevation and thickness data of the cornea and present the 
results as color maps. In this study, we test the efficiency of unsupervised algorithms to extract and sort usable 
examinations from a large unlabeled corneal topography database into different diagnostic clusters, with little 
human intervention, data cleaning or feature selection.

Results
The repartition of all examinations’ ground truth diagnoses is shown in Table 1. The dataset consisted of 13,705 
examinations, 6882 right eyes and 6823 left eyes of 6979 different patients. A three dimensional representation 
of the dataset, obtained from dimensionality reduction, is shown in Fig. 1 (and Supplementary Video 1) with 
ground truth diagnoses color-coded (two dimensional representations are available in Supplementary Figure S1). 
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Clustering results
7019 examinations were included and clustered and 6686 examinations were excluded by the clustering 
algorithm. The ground truth diagnosis repartition of excluded and included examinations is shown in Table 1. 
Most examinations manually labeled as ‘Other’ were excluded by the clustering algorithm. The clustered data was 
organised in 4 clusters. These clusters represented Normal examinations, History of Myopic Refractive Surgery 
(RS) and Keratoconus (KC) diagnoses. The keratoconus examinations were separated into two clusters, one for 
the left eyes and one for the right eyes. For clarity purposes we will consider both keratoconus clusters together 
as one ‘KC’ cluster. Figure 2 shows the clusters resulting from the clustering algorithm and the clusters ground 
truth diagnosis composition. The same results colored by ground truth diagnosis are available in Supplementary 
Figure S2 and Supplementary Video 2.

The overall classification accuracy for the clustered examinations was 96.5%. Sensitivity and specificity for 
each diagnosis are reported in Table 2.

The mean ± standard deviation number of missing values per examination was higher for incorrectly classified 
examinations 349.4 ± 538.9 than for correctly classified examinations 52.4 ± 145.0 (p < 0.0001) and also higher for 
excluded examinations 128.6 ± 313.7 than for included examinations 65.3 ± 179.4 (p < 0.0001).

The number of correctly classified examinations with less than 1% and more than 1% of missing values were 
3191 and 906 respectively, and 81 and 122 for incorrectly classified examinations. Chi Square independence 
test showed an association between the number of missing values and the number of correctly or incorrectly 
classified examinations (p < 0.0001).

Discussion
This clustering method was efficient in both eliminating low quality examinations (with missing values and 
artefacts) and constituting relatively pure clusters of the most represented classes in the dataset with little human 
intervention. Even though roughly half of the dataset was excluded in the clustering process, the specificity and 
sensitivity results on the clustered examinations highlight our method’s performance in automatically extracting 
and sorting a large number of examinations from a noisy dataset.

Many algorithms have been  described14–17 to perform diagnosis or screening on corneal topography and 
elevation data. Although our approach is not intended for precise diagnosis, it is interesting to note that, 
compared to previous methods, our technique is not based on human defined features. Indeed most other 
algorithms use specific parameters that were designed or selected by humans (for example I-S index or KISA). 
In our approach, on the other hand, we tried to use almost no human intervention in the feature selection 
process. The dimensionality reduction technique automatically created three features (x, y, and z axes of the 3D 
representation) from the raw data of 4 corneal maps frequently used by physicians in clinical practice. Those 

Table 1.  Ground truth diagnosis repartition in examinations included and excluded by the clustering 
algorithm.

Ground truth label
Examinations included
(n = 7019)

Examinations excluded
(n = 6686)

Total examinations
(n = 13,705)

Normal 5775 4443 10,218

KC 796 521 1317

RS 325 353 678

Fuchs 29 206 235

Other 94 1163 1257

Figure 1.  3 Dimensional representation of the dataset after dimensionality reduction. (a: Top view, b: Bottom 
view). Ground truth labels are color coded. Left and right eyes are represented respectively as squares and 
circles. (KC = Keratoconus, RS = History of Refractive Surgery, Fuchs = Fuchs endothelial dystrophy).
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three features allowed the separation of corneal examinations in groups that are coherent to clinical diagnosis 
with no human intervention regarding which corneal parameter to use or not use.

Unsupervised learning has been previously used on corneal parameters in three studies.
The first one studied keratoconus severity with a somewhat similar  methodology10. It showed that it was 

possible to separate examinations in groups of different severity according to the Ectasia Status Index (ESI) pro-
vided by an OCT based corneal instrument. The study population differed from ours as it was composed solely 
of examinations with a valid ESI measurement, whereas we used a large sample of unlabeled data with any kind 
of diagnosis and no exclusion criteria. Also, they selected 420 parameters for clustering analysis which were not 
detailed, whereas we used raw matrices of the 4 most frequently used topography maps in clinical practice. Our 
approach was to test topography clustering in a broader context in an attempt to roughly and automatically sort 
a large amount of data with very little a priori human feature selection or data cleaning. When considering only 
the normal and advanced keratoconus clusters, the authors report a specificity for diagnosis of normal cases of 
94.1% and a sensitivity for keratoconus diagnosis of 97.7%. In our study, when considering only the normal and 
keratoconus clusters, those values would respectively be 100% and 81.2%. The results are not exactly comparable, 
as we considered all keratoconus and normal patients and did not exclude less severe cases that are more prone 

Figure 2.  Clustering algorithm results. Clusters composition analysis (a), 3D representation of the results 
colored by cluster label (b). Each constituted cluster is represented by a different color. Red and yellow 
clusters both represent keratoconus clusters and are considered as one for the cluster composition analysis. 
(KC = Keratoconus, RS = History of Refractive Surgery, Fuchs = Fuchs endothelial dystrophy).

Table 2.  Sensitivity (Sn) and specificity (Sp) for each diagnosis.

Clustering 
algorithm 
results
(n = 7019)

Sn Sp

Normal 99.8% 85.9%

KC 88.0% 99.9%

RS 93.2% 99.2%
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to be miss-classified as normal. The second study used Zernike polynomial decomposition of the corneal surface 
to perform unsupervised clustering of normal corneal anterior  surfaces18. This study first showed that Zernike 
decomposition was an effective way to perform feature selection and dimensionality reduction for the anterior 
surface of the cornea. Second, the authors found that anterior surfaces of normal corneas could be clustered 
in 4 groups of different curvatures. Finally, the third  study19 used unsupervised learning to predict the risk of 
future keratoplasty based on corneal OCT parameters. Their model separated the patients in non-overlapping 
clusters of different keratoconus severity and other corneal conditions, from which they calculated the likeli-
hood of future keratoplasty.

Regarding methodology, we used the central 50 × 50 values of each matrix because of a large number of miss-
ing values in the peripheral data which could affect clustering accuracy. Before using the dimensional reduction 
algorithm we selected, it is usually recommended to reduce the number of dimensions to around 50 dimensions 
with another dimensionality reduction algorithm such as Principal Component Analysis. We found that the 
algorithm was efficient even using the raw 10,000 dimensions. Thus, to simplify the methodology and to use the 
totality of the raw data, we decided not to add another dimensionality reduction technique. This was possible, 
probably because of the highly correlated nature of the raw topography data. It should be noted that corneal 
topography data is highly standardized, and typical examinations of each clustered diagnosis are very similar to 
each other (see Supplementary Figure S1). This explains why flattening the data to a 10,000 dimensions vector 
did not impair the clustering abilities of the algorithm. Considering the nature of the data, a convolutional neural 
network could have been used as a feature extractor before performing clustering. However, most pre-trained 
networks available use 3 input channels instead of 4 as we would have needed here.

We acknowledge that it is usually preferred to have the data be annotated manually by 3 different experts. 
Although only 2 experts performed the labeling in this study, our goal was not to match human diagnostic 
capabilities but to roughly sort and extract examinations from a noisy dataset.

Studying the dimensionality reduction algorithm results, it is interesting to note that most right eyes have 
been correctly separated from most left eyes (Figs. 1 and 2, Supplementary Video 1 and 2). For RS patients on the 
other hand, this separation was not as obvious. This is probably due to the fact that the laser treatment tends to 
erase natural corneal asymmetry in its central part. It should be noted that the 3 created parameters (x, y and z) 
do not represent any known parameter and would be different for every run of the algorithm and every dataset. 
Therefore they do not help understand how the algorithm separated the data and do not allow the comparison 
of the results to another dataset, but only offer a 3 dimensional representation of the dataset, and the subsequent 
use of a clustering algorithm which would be inefficient on a 10,000 dimensions dataset.

The selected clustering algorithm is useful in real unclean datasets containing noise, such as this one. Indeed, 
we found that excluded examinations had more missing values on average and comprised most examinations 
manually labeled as ‘Other’. It also allows the detection of complex structures in data. We can see this through the 
shape of the ‘Normal’ cluster, which has a hole in its center. This suggests that the algorithm correctly extracted 
the underlying complex structure of the core “Normal” cluster. Although no “Fuchs” cluster was detected by the 
algorithm, it is interesting to note that most “Fuchs” examinations were grouped in the same area of space in 
the dimensionality reduction process (Fig. 1, Supplementary Video 1, supplementary Fig. S1, green datapoints). 
Therefore one could suppose that more examinations with a diagnosis of Fuchs corneal dystrophy would have 
created a denser cluster in that area that could have been detected by the clustering algorithm. It should be noted 
that the “Other” diagnosis class is heterogeneous. It is composed of low quality examinations with many missing 
values, artefacts and examinations from less frequent diagnoses such as pterygium, scars of infectious keratitis 
and patients who received penetrating keratoplasty, or radial keratotomies. These are data that are not similar to 
each other and therefore have no reason to be located together in space and constitute a cluster.

This methodology might not be directly applicable to other datasets. Indeed, the dimensionality reduction 
algorithm parameters depend on the dataset itself. Although the provided parameters can be a starting point 
when using a similar dataset, they might need some tuning for optimized results on another dataset. This is a 
potential limitation, as several hours of computational time is needed for each run of the algorithm. Also, this 
computational time increases non linearly with the number of examinations, and thus it could be difficult to 
find optimal parameters on bigger datasets.

As we found that the number of missing values per examination was related to classification error rate, it 
could be interesting to first exclude the examinations having a number of missing values above a specific thresh-
old to achieve better accuracy. But this would imply analyzing the missing values distribution beforehand, and 
assigning a somewhat arbitrary value to that threshold. Using the clustering algorithm capabilities to exclude 
examinations that are too different from the clusters examination is a simpler process that can be used even with 
little or no expert knowledge on the type of data used and is therefore applicable to any kind of numerical data.

In summary, we have shown that unsupervised techniques can be used efficiently to ease and automate the 
processes of constituting large groups of corneal topography examinations for research purposes. Higher error 
rates compared to diagnostic or screening tests are acceptable in this context. These methods could be used on 
any other type of digital examinations of which we have large databases, to rapidly sort the cases in groups of 
the most common diagnoses to be used subsequently in more powerful studies with a great number of observa-
tions. This process could be facilitated by manufacturers by allowing exportation of all examinations’ raw data 
contained in the devices at once.

Method
Data collection. This study was approved by the Institutional Review Board at Rothschild foundation and 
followed the tenets of the Declaration of Helsinki. Informed consent was obtained from all subjects. 22,066 
Orbscan (Bausch&Lomb, U.S.A) examinations were randomly extracted from our Orbscan database using the 
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batch export functionality. The last examination of the first visit for each eye of each patient was selected. This 
process reduced the number of examinations to 13,705. The raw data from 4 commonly used maps in clinical 
practice was selected for each examination: ‘Elevation against the anterior Best Fit Sphere (BFS)’,´Elevation 
against the posterior BFS’, ‘Axial anterior curvature’, and ‘Pachymetry’. Each map was a square matrix of 100 × 100 
numerical values. Each matrix was cropped to its 50 × 50 central elements. The 4 maps thus constituted a total of 
4 × 2500 = 10,000 numerical values (Fig. 3).

Tracers and manual labeling. A sample of 248 examinations were randomly selected, and will be referred 
to as “Tracers” in the rest of this article. All tracers were manually reviewed and labeled. The 4 most represented 
identifiable diagnoses were used as classes for the clustering experiment of the whole dataset. Those classes were, 
“Normal”, “Keratoconus (KC)”, “History of Myopic Refractive surgery (RS)”, “Fuchs corneal dystrophy (Fuchs)”. 
A fifth class named “Other” was constituted of all examinations that could not be assigned to a specific class 
with a good level of confidence, including bad quality examinations. All 13,705 examinations were manually 
labeled and checked by two corneal topography experts (5 years of practice in a corneal and refractive surgery 
department) in a random order. Examinations were classified as “KC” if the anterior curvature map showed 
one of the classic keratoconus patterns described by Rabinowitz et al.20 associated with corneal thinning. “RS” 
examinations were cases that underwent myopic laser surgery and had an oblate anterior surface (flat in its 
center), a prolate posterior surface (steep in its center) , a central corneal thinning and lower central curvature 
values compared to the periphery. Finally, “Fuchs” examinations had a central pachymetry over 600 microns 
with reduced peripheral thickness in the corneal periphery and an oblate posterior surface. This pattern suggests 

Figure 3.  Schematic representation of the methodology. Values of 4 different corneal topography maps 
are used: ‘Elevation against the anterior BFS’, ‘Elevation against the posterior BFS’, ‘Axial anterior curvature’, 
and ‘Pachymetry’. Each map is a matrix composed of 50 × 50 elements. An enlargement of the anterior axial 
curvature matrix is shown in the lower left corner. All data points can be visualized in 3 dimensions after 
dimensionality reduction by t-SNE algorithm (bottom right). Examinations are roughly grouped by diagnosis. 
t-SNE = t-distributed Stochastic Neighbor Embedding, Curvature = Anterior axial curvature matrix, Ant 
BFS = Elevation against the anterior Best Fit Sphere matrix, Post BFS = Elevation against the posterior Best Fit 
Sphere matrix, Pachy = Pachymetry matrix.
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a Fuchs corneal dystrophy with central corneal edema. Our goal was not to achieve state-of-the-art diagnostic 
capabilities but merely to see if an unsupervised learning algorithm could help facilitate the extraction and 
sorting of a usable fraction of the dataset, as a human would do by simply reading the examinations. Therefore, 
all manual labeling was performed by solely analyzing the examinations, with no knowledge of the patients’ 
medical records.

“Tracers” examinations were used together with the unlabelled data to quickly assess the relevance of the 
dimensionality reduction and clustering algorithm, and choose the best parameters (Fig. 4). Indeed, labeled 
examinations of the same class should be roughly grouped together and separated from examinations of other 
classes. Metaphorically, they can be compared to radioactive tracers in the human body from which we can 
suppose the location of non-radioactive similar molecules (in our case, unlabeled similar data).

Data preprocessing and algorithms. Minimal data preprocessing included 3 steps: missing value 
replacement, scaling and dimensionality reduction. Missing values were replaced from all maps by the mean 
value for each matrix element, which is the simplest data replacement strategy. Data from each type of map 
were scaled between 0 and 1 using data from all  patients21. Finally, dimensionality reduction from 10,000 to 3 
dimensions was performed using the t-SNE  algorithm22 (t-distributed Stochastic Neighbor Embedding) (see 
Table 3 : Glossary) with a perplexity of 50, a learning rate of 1000 and an angle of 0.9 (Figs. 1 and 3). Clustering 
was performed on all 13,705 patients with HDBSCAN  algorithm23 using values of 53 and 325 for minimum 

Figure 4.  Three-dimensional representation of the Tracers examinations’ locations after dimensionality 
reduction (a: Top view, b: Bottom view). Unlabeled data has been removed. Ground truth diagnoses are color 
coded.

Table 3.  Glossary.

Terms Description

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Appli-
cations with Noise)

HDBSCAN automatically clusters examinations based on the density 
of data points in space and the distance between points and dense 
areas. It has the ability to exclude certain examinations from the 
clustering if they are considered as noise

 Minimum cluster size Minimum cluster size is a HDBSCAN parameter which controls the 
minimum number of points in a cluster

 Minimum samples
Minimum samples is a HDBSCAN parameter which controls the 
initial dilation of space: points in less dense areas are viewed even 
further away from the other points

t-SNE (t-distributed Stochastic Neighbor Embedding)
t-SNE is a non-linear dimensionality reduction algorithm. The t-SNE 
algorithm builds a 2 or 3 dimensional representation of the data in 
which points that are close to each other in high dimensional space 
are also close in this low dimensional space

 Angle
Angle is a t-SNE parameter used to speed up calculation by consider-
ing points very close to each other as only one point (values closer to 
1 implies more approximation)

 Gradient descent
Gradient descent is a very commonly used algorithm to iteratively 
optimize a complex function. In t-SNE, it is used to minimize the 
difference between the distributions of pairwise distances of points in 
high dimension and in low dimension

 Learning rate Learning rate is a t-SNE parameter which controls the updates of the 
gradient descent algorithm (see gradient descent)

 Perplexity
Perplexity is a t-SNE parameter which controls the balance between 
local and global structure in the data. A smaller value tends to create 
many small clusters while a larger value tends to create fewer larger 
clusters
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samples and minimum cluster size parameters respectively. (Clustering results obtained from other parameter 
combinations are available in supplementary Figure S3).

Performance indices and statistics. For each constituted cluster, the number of examinations of each 
ground truth diagnosis was counted. The diagnosis class of each cluster was assigned to the most represented 
diagnosis of each cluster. Performance of the clustering process was evaluated through overall accuracy, and 
diagnosis-wise, sensitivity and specificity. Overall accuracy was defined as the number of correctly labeled 
observations divided by the total number of observations included by the clustering algorithm. All performance 
measurements were calculated on both tracers and unlabeled data, as they were considered equally by the 
algorithm and might as well be erroneously labeled.

The number of missing values of each examination (before missing values replacement) was counted. To test 
the relationship between the number of missing values and a correct or incorrect classification by the algorithm, 
we used the Chi Square independence test. The examinations were grouped in two categories: less than 1% and 
more than 1% of missing values per examination. The mean and standard deviation of missing values in correctly 
and incorrectly classified labels were compared as well as in examinations included and excluded by the clustering 
algorithm with a Student t test after testing for normality of data distribution with Kolmogorov–Smirnov test. 
P-value < 0.05 were considered significant.

Programming language and libraries. All calculations, algorithms and figures were done in python 3.6. 
Scikit-learn library’s algorithms was used for t-SNE. HDBSCAN library was used for clustering.

Seaborn and Plotly libraries were used for figure plotting. Statistics were calculated using Scipy Stats module.

Data availability
The datasets generated during and analysed during the current study are available from the corresponding author 
on reasonable request.
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