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Five rules for friendly rivalry 
in direct reciprocity
Yohsuke Murase1 & Seung Ki Baek2*

Direct reciprocity is one of the key mechanisms accounting for cooperation in our social life. According 
to recent understanding, most of classical strategies for direct reciprocity fall into one of two classes, 
‘partners’ or ‘rivals’. A ‘partner’ is a generous strategy achieving mutual cooperation, and a ‘rival’ 
never lets the co-player become better off. They have different working conditions: For example, 
partners show good performance in a large population, whereas rivals do in head-to-head matches. 
By means of exhaustive enumeration, we demonstrate the existence of strategies that act as both 
partners and rivals. Among them, we focus on a human-interpretable strategy, named ‘CAPRI’ after 
its five characteristic ingredients, i.e., cooperate, accept, punish, recover, and defect otherwise. Our 
evolutionary simulation shows excellent performance of CAPRI in a broad range of environmental 
conditions.

Theory of repeated games is one of the most fundamental mathematical frameworks that has long been studied 
for understanding how and why cooperation emerges in human and biological communities. Even when coopera-
tion cannot be a solution of a one-shot game, repetition can enforce cooperation between the players by taking 
into account the possibility of future encounters. A spectacular example is the prisoner’s dilemma (PD) game: 
It describes a social dilemma between two players, say, Alice and Bob, in which each player has two options 
‘cooperation’ (c) and ‘defection’ (d). The payoff matrix for the PD game is defined as follows:

where each entry shows (Alice’s payoff, Bob’s payoff) with T > R > P > S and 2R > T + S . If the game is played 
once, mutual defection is the only equilibrium because Alice maximizes her payoff by defecting no matter what 
Bob does. However, if the game is repeated with sufficiently high probability, cooperation becomes a feasible 
solution because the players have a strategic option that they can reward cooperators by cooperating and/or they 
can punish defectors by defecting in subsequent rounds (see, e.g., Table 1). This is known as direct reciprocity, 
one of the most well-known mechanisms for the evolution of cooperation1.

Through a series of studies, recent understanding of direct reciprocity proposes that most of well-known strat-
egies act either as partners or as rivals2,3. Partner strategies are also called ‘good strategies’4,5, and rival strategies 
have been described as ‘unbeatable’6, ‘competitive’2, or ‘defensible’7,8. Derived from our everyday language, the 
‘partner’ and ‘rival’ are defined as follows. As a partner, Alice aims at sharing the mutual cooperation payoff R 
with her co-player Bob. However, when Bob defects from cooperation, Alice will punish Bob so that his payoff 
becomes less than R. In other words, for Alice’s strategy to be a partner, we need the following two conditions: 
First, πA = πB = R when Bob applies the same strategy as Alice’s, where πA and πB represent the long-term 
average payoffs of Alice and Bob, respectively. Second, when πA is less than R because of Bob’s defection from 
mutual cooperation, πB must also be smaller than R, whatever Bob takes as his strategy. It means that one of the 
best responses against a partner strategy is choosing the same partner strategy so that they form a Nash equilib-
rium. If a player uses a rival strategy, on the other hand, the player aims at a payoff higher than or equal to the 
co-player’s regardless of the co-player’s strategy. Thus, as long as Alice is a rival, it is guaranteed that πA ≥ πB . 
Note that these two definitions impose no restriction on Bob’s strategy, which means that the inequalities are 
unaffected even if Bob remembers arbitrarily many previous rounds.

(1)

OPEN

1RIKEN Center for Computational Science, Kobe, Hyogo  650‑0047, Japan. 2Department of Physics, Pukyong 
National University, Busan 48513, Korea. *email: seungki@pknu.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-73855-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16904  | https://doi.org/10.1038/s41598-020-73855-x

www.nature.com/scientificreports/

Which of these two traits is favoured by selection depends on environmental conditions, such as the popula-
tion size N and the elementary payoffs R, T, S, and P. For instance, a large population tends to adopt partner 
strategies when R is high enough. A natural question would be on the possibility that a single strategy is both 
a partner and a rival simultaneously: The point is not to gain an extortionate payoff from the co-player in the 
sense of the zero-determinant (ZD) strategies9 but to provide an incentive to form mutual cooperation. Let us 
call such a strategy a ‘friendly rival’ hereafter. Tit-for-tat (TFT) or Trigger strategies can be friendly rivals in an 
ideal condition that the players are free from implementation error due to “trembling hands”. However, this is 
not the case in a more realistic situation in which actions can be misimplemented with probability e > 0 . Here, 
the apparent contradiction between the notions of a partner and a rival is seen as the most acute form. That is, 
Alice must forgive Bob’s erroneous defection to be a partner and punish his malicious defection to be a rival, 
without knowing Bob’s intention. This is the crux of the matter in relationships.

In this work, by means of massive supercomputing, we show that a tiny fraction of friendly rival strategies 
exist among deterministic memory-three strategies for the iterated PD game without future discounting. Dif-
ferently from earlier studies9–17, our strategies are deterministic ones, which makes each of them easy to imple-
ment as a behavioural guideline as well as a public policy without any randomization device18. In particular, we 
focus on one of the friendly rivals, named CAPRI, because it can be described in plain language, which implies 
great potential importance in understanding and guiding human behaviour. We also argue that our friendly 
rivals exhibit evolutionary robustness13 for any population size and for any benefit-to-cost ratio. This property 
is demonstrated by evolutionary simulation in which CAPRI overwhelms other strategies under a variety of 
environmental parameters.

Methods
Despite the fundamental importance of memory in direct reciprocity, combinatorial explosion has been a major 
obstacle in understanding the memory effects on cooperation: Let us consider deterministic strategies with 
memory length m, which means that each of them chooses an action between c and d as a function of the m 
previous rounds. The number of such memory-m strategies expands as N = 22

2m , which means Nm=1 = 16 , 
Nm=2 = 65536 , and Nm=3 ≈ 1.84× 1019 . The number of combinations of these strategies grows even more 
drastically, which renders typical evolutionary simulation incapable of exploring the full strategy space. Here, we 
take an axiomatic approach7,8,20 to find friendly rivals. That is, we search for strategies that satisfy certain prede-
termined criteria, and the computation time for checking those criteria scales as O(N) instead of O(N2) or greater.

More specifically, we begin with the following two criteria7,8: 

1.	 Efficiency: Mutual cooperation is achieved with probability one as error probability e → 0+ , if both Alice 
and Bob use this strategy.

2.	 Defensibility: If Alice uses this strategy, she will never be outperformed by Bob when e = 0 regardless of 
initial actions. This is a sufficient condition for being a rival, i.e., lime→0+(πA − πB) ≥ 0.

The efficiency criterion requires a strategy to establish cooperation in the presence of small e when both the play-
ers adopt this strategy. This criterion is satisfied by many generous strategies such as unconditional cooperation 
(AllC), generous TFT (GTFT), Win-Stay-Lose-Shift (WSLS) and Tit-for-two-tats (TF2T). Partner strategies 
constitute a sub-class of efficient ones by limiting the co-player’s payoff to be less than or equal to R regardless of 
the co-player’s payoff2,3,5. On the other hand, a defensible strategy must ensure that the player’s long-time average 
payoff will be no less than that of the co-player who may use any possible strategy, and this idea is equivalent 
to the notion of a ‘rival strategy’2,3. Defensible strategies include unconditional defection (AllD), Trigger, TFT, 
and extortionate ZD strategies. Figure 1a schematically shows how these two criteria narrow down the list of 
strategies to consider. The overlap of efficient and defensible strategies means a set of friendly rivals because it 
is a subset of partner strategies. It assigns the most strict limitation on the co-player’s payoff among the partner 

Table 1.   Description of well-known strategies in the iterated PD game. Whenever possible, each strategy is 
represented as a tuple of five probabilities, i.e., (p0, pR, pS, pT , pP) , where p0 means the probability to cooperate 
in the first round, and pβ means the probability to cooperate after obtaining payoff β in the previous round (see 
Eq. 1). Here, a zero-determinant (ZD) strategy has a positive parameter φ , and its other parameter η lies in the 
unit interval9,13,19.

Strategy Description

AllC (1, 1, 1, 1, 1)

AllD (0, 0, 0, 0, 0)

Tit-for-tat (TFT) (1, 1, 0, 1, 0)

Generous TFT (1, 1, q, 1, q) with 0 < q < 1

Tit-for-two-tats (TF2T) Defect if the co-player defected in the previous two rounds.

Win-Stay-Lose-Shift (WSLS) (1, 1, 0, 0, 1)

generous ZD (1, 1, 1− φ[(1− η)(S − R)+ T − S],φ[(1− η)(R − T)+ T − S],φ(1− η)(R − P))

extortionate ZD (0, 1− φ(1− η)(R − P), 1− φ[(1− η)(S − P)+ T − S],φ[(1− η)(P − T)+ T − S], 0)

Trigger Defect if defection has ever been observed.
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strategies as shown in Fig. 1b. Indeed, the overlap region between these two criteria is extremely tiny: It is pure 
impossibility for m = 1 , and we find only 8 strategies out of N = 65536 for m = 2.

To further narrow down the list of strategies, we impose the third criterion7,8: 

3.	 Distinguishability: The strategy has a strictly higher payoff than the co-player’s when its strategy is AllC in 
the small-error limit, i.e., lime→0+(πA − πAllC) > 0.

This requirement originates from evolutionary game theory: If this criterion is violated, the number of AllC play-
ers may increase due to neutral drift, which eventually makes the population vulnerable to invasion of defectors 
such as AllD. We check these criteria for each strategy by representing it as a graph and analysing its topological 
properties (see Supplementary Methods S1 at the end of this manuscript). If a strategy satisfies all those three 
criteria, it will be called ‘successful’.

Among deterministic memory-two strategies, it is known that only four strategies satisfy these three criteria7. 
They have minor differences from each other, and one of them is called TFT-ATFT, which is a combination of 
TFT and anti-tit-for-tat (ATFT). It usually behaves as TFT, but it takes the opposite moves after mistakenly 
defecting from mutual cooperation. Similar analysis has been conducted for the three-person public-goods 
(PG) game: At least 256 successful strategies exist when m = 3 , whereas no such solution exists when m < 38. It 
has also been shown that a friendly rival strategy must have m ≥ n for the general n-person PG game, although 
such a strategy for n > 3 is yet to be found. These results suggest that a novel class of strategies may appear as 
the memory length exceeds a certain threshold.

For memory-three strategies, we have obtained an exhaustive list of successful strategies by massive supercom-
puting (see Supplementary Methods  S1 at the end of this manuscript). The efficiency and defensibility criteria 
find 7, 018, 265, 885, 034 friendly rivals out of Nm=3 = 264 ≈ 1.84× 1019 strategies. If the distinguishability 
criterion is additionally imposed, 4, 261, 844, 305, 281 strategies are found. There are four actions commonly 
prescribed by all these successful strategies: Let At and Bt denote Alice’s and Bob’s actions at time t, respectively. 
When their memory states are (At−3At−2At−1,Bt−3Bt−2Bt−1) = (ccc, ccc) , (ccc, ddd), (cdd, ddd), and (ddd, ddd), 
all the successful strategies tell Alice to choose c, d, d, and d, respectively. The first one is absolutely required to 
maintain mutual cooperation. The latter three are needed to satisfy the defensibility criterion: If c was prescribed 
at any of these states, Alice would be exploited by Bob’s continual defection.

Except for these four prescriptions, we see a wide variety of patterns. For example, let us assume that both 
Alice and Bob adopt one of these strategies. When Bob defects by error, they must follow a recovery path from 
state (ccc, ccd) to (ccc, ccc). We find 839 different patterns from our successful strategies (Table 2). The most com-
mon one is also the shortest, in which only two time steps are needed to recover mutual cooperation. It cannot be 
shorter because Alice must defect at least once to assure defensibility. It is even shorter than that of TFT-ATFT, 
which is identical to the third entry of Table 2. This finding disproves a speculation that friendly rivals are limited 
to variants of TFT even if m > 27. This shortest recovery path is possible only when m ≥ 3 , indicating a pivotal 
role of memory length in direct reciprocity.

Results
CAPRI strategy.  The shortest recovery path in Table 2 shows that Bob can recover his own mistake simply 
by accepting Alice’s punishment provided that he has m = 3 . Among the strategies using this recovery pattern, 
we have discovered a strategy which is easy to interpret, named ‘CAPRI’, after the first letters of its five constitu-
tive rules listed below: 

1.	 Cooperate at mutual cooperation. This rule prescribes c at (ccc, ccc).

e cient defensible (rivals)
partners

friendly rivals

AllC AllD

generous TFT

generous ZD

WSLS
TF2T

extortionate ZD

TFT

Trigger

more cooperations more defections

(R,R)

(T,S)

(S,T)

(P,P)

(a) (b)

Figure 1.   (Left) A schematic diagram of the strategy space. Strategies that tend to cooperate (defect) are shown 
on the left (right). The blue ellipse represents a set of efficient strategies, which are cooperative to sustain mutual 
cooperation, and its subset of partner strategies is denoted by the dashed blue curve. On the other hand, the 
red ellipse represents a set of defensible strategies, which often defect to defend themselves from malicious 
co-players. In general, their intersection is small. When m = 2 , for instance, the sizes of efficient and defensible 
sets are 7639 and 2144, respectively, whereas the intersection contains only eight strategies. (Right) The diamond 
depicts the region of possible average payoffs for Alice and Bob. The blue triangle shows the feasibility region 
when Alice uses a defensible strategy. If Alice and Bob both use the same strategy satisfying efficiency, they will 
reach (R, R) (the blue dot).
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2.	 Accept punishment when you mistakenly defected from mutual cooperation. This rule prescribes c at 
(ccd, ccc), (cdc, ccd), (dcc, cdc), and (ccc, dcc).

3.	 Punish your co-player by defecting once when he defected from mutual cooperation. This rule prescribes d 
at (ccc, ccd), and then c at (ccd, cdc), (cdc, dcc), and (dcc, ccc).

4.	 Recover cooperation when you or your co-player cooperated at mutual defection. This rule prescribes c at 
(ddd, ddc), (ddc, dcc), (dcc, ccc), (ddc, ddd), (dcc, ddc), (ccc, dcc), (ddc, ddc), and (dcc, dcc).

5.	 In all the other cases, defect.

The first rule is clearly needed for efficiency. In addition, mutual cooperation must be robust against one-bit error, 
i.e., occurring with probability of O(e), when both Alice and Bob use this strategy. This property is provided by 
the second and the third rules. In addition, for this strategy to be efficient, the players must be able to escape 
from mutual defection through one-bit error so that the stationary probability distribution does not accumulate 
at mutual defection, which is handled by the fourth rule. Note that these four rules for efficiency do not neces-
sarily violate defensibility when m > 2 , as we have already seen in Table 2. Actually, due to the fifth rule, both 
efficiency and defensibility are satisfied by CAPRI. The action table and its minimized automaton representation21 
are given in Table 3 and Fig. 2a, respectively. The self-loop via dc at state ‘2’ in Fig. 2a proves that this strategy 
also satisfies distinguishability.

CAPRI requires m = 3 because otherwise it violates defensibility: If CAPRI were a memory-two strategy, 
(cd, dc) → c and (dc, cd) → c must be prescribed to recover from error. However, with these prescriptions, Bob 
can repeatedly exploit Alice by using the following sequence:

TFT-ATFT and its variants are the only friendly rivals when m < 3 . Compared with TFT-ATFT, CAPRI is closer 
to Grim trigger (GT) rather than to TFT. Alice keeps cooperating as long as Bob cooperates, but she switches 
to defection, as prescribed by the fifth rule, when Bob does not conform to her expectation. Due to the similar-
ity of CAPRI to GT, it also outperforms a wider spectrum of strategies than TFT-ATFT. Figure 2b shows the 
distribution of payoffs of the two players when Alice’s strategy is CAPRI, and Bob’s strategy is sampled from the 
64-dimensional unit hypercube of memory-three probabilistic strategies. Alice’s payoff is strictly higher than 

(2). . . c c d c c . . .

. . . c d c d c . . . .

Table 2.   Recovery paths to mutual cooperation for the memory-three successful strategies. Only the most 
common five patterns are shown in this table. The upper and lower rows represent the sequences of actions 
taken by Alice and Bob, respectively, when Bob defected from mutual cooperation by error. The right column 
shows the number of strategies having each pattern, as well as its fraction with respect to the total number of 
successful strategies.

Action sequence # of strategies

. . . c c d c . . .

. . . c d c c . . .
905, 772, 524, 235

(21.3%)

. . . c c d d c . . .

. . . c d c d c . . .
522, 061, 013, 252

(12.2%)

. . . c c d d c . . .

. . . c d d c c . . .
437, 671, 509, 356

(10.3%)

. . . c c d c d c . . .

. . . c d c c d c . . .
409, 458, 612, 318

(9.6%)

. . . c c d c d d c . . .

. . . c d c c d d c . . .
227, 113, 898, 468

(5.3%)

. . . c c d d d c . . .

. . . c d c c d c . . .
184, 052, 002, 852

(4.3%)

Table 3.   Action table of CAPRI. The superscript on the upper left corner of each element indicates which rule 
is involved.

At−3At−2At−1

Bt−3Bt−2Bt−1

ccc ccd cdc cdd dcc dcd ddc ddd

ccc 1c 3d d d 2,4c d d d

ccd 2c d 3c d d d d d

cdc d 2c d d 3c d d d

cdd d d d d d d d d

dcc 3,4c d 2c d 4c d 4c d

dcd d d d d d d d d

ddc d d d d 4c d 4c 4c

ddd d d d d d d 4c d
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Bob’s in most of the samples. On the other hand, when Alice uses TFT-ATFT, payoffs are mostly sampled on the 
diagonal because it is based on TFT, which equalizes the players’ payoffs. However, we also note that CAPRI is 
significantly different from GT in two ways. First, CAPRI is error-tolerant: Even when Bob makes a mistake, Alice 
is ready to recover cooperation after Bob accepts punishment, as described in the second and the third rules. 
Second, whereas GT is characterized by its irreversibility, CAPRI lets the players escape from mutual defection 
according to the fourth rule.

Evolutionary simulation.  Although defensibility assures that the player is never outperformed by the co-
player, it does not necessarily guarantee success in evolutionary games, where everyone is pitted against every 
other in the population. For example, extortionate ZD strategies perform poorly in an evolutionary game12,13,22. 
In this section, we will check the performance of CAPRI in the evolutionary context.

When we consider performance of a strategy in an evolving population, the most famous measure of assess-
ment is evolutionary stability (ES)23. Although conceptually useful, ES is too strong a condition, requiring that 
when a sufficient majority of population members apply the strategy, every other strategy is at a selective disad-
vantage. Evolutionary robustness has thus been introduced as a more practical notion of stability13: A strategy 
is called evolutionary robust if no other strategy has fixation probability greater than 1/N, which is the fixation 
probability of a neutral mutant. In other words, an evolutionary robust strategy cannot be selectively replaced 
by any mutant strategy. Evolutionary robustness of a strategy depends on the population size: Partner strategies 
have this property when N is large enough, whereas for rival strategies, it is when N is small13. Friendly rivals 
have the virtue of both: They keep evolutionary robustness regardless of N, as will be shown below.

As in the standard stochastic model24, let us consider a well-mixed population of size N in which selection 
follows an imitation process. At each discrete time step, a pair of players are chosen at random, and we will call 
their strategies X and Y, respectively. The probability for one of the players to replace her strategy X with Y is 
given as follows:

where sx and sy denote the average payoffs of X and Y against the entire population, respectively, and σ is a 
parameter which denotes the strength of selection. In population dynamics, we assume that the mutation rate 
µ is low enough: That is, when a mutant strategy X appears in a resident population of Y, no other mutant will 
be introduced until X reaches fixation or goes extinct. The dynamics is formulated as a Moran process, under 
which the fixation probability of X is given in a closed form13:

where sxy denotes the long-term payoff of player X against player Y. Using Jensen’s inequality, we see that

(3)fx→y =
1

1+ exp
[

σ
(

sx − sy
)] ,

(4)ρ =
1

∑N−1
i=0

∏i
j=1 e

σ[(N−j−1)syy+jsyx−(N−j)sxy−(j−1)sxx]
,

(5)
1

ρ
=

N−1
∑

i=0

eσ i[(2N−i−3)syy+(i+1)syx−(2N−i−1)sxy−(i−1)sxx]/2

(6)≥Neσ(N−1)[(N−2)(syy−sxx)+(N+1)(syx−sxy)+(N−2)(syy−sxy)]/6.

Figure 2.   (a) Automaton representation of CAPRI. Its prescribed actions are denoted by the node colours (blue 
for c and red for d). The labels on the edges indicate the players’ actions. The transition caused by erroneous 
defection at mutual cooperation (‘0’) is depicted by an orange dashed arrow. (b) Distribution of payoffs when 
Alice’s strategy is CAPRI (left) or TFT-ATFT (right), whereas Bob adopts one of probabilistic memory-three 
strategies uniformly at random. The elementary payoffs are (R,T , S, P) = (3, 4, 0, 1).
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When Y is a partner strategy, it satisfies syy ≥ sxy and syy ≥ sxx . When Y is also a rival strategy, it has another 
inequality, syx ≥ sxy . Therefore, the fixation probability of an arbitrary mutant ρ ≤ 1/N regardless of N and σ.

We have conducted evolutionary simulation to assess the performance of friendly rivals. First, we run 
simulation without CAPRI and TFT-ATFT. This simulation adopts the setting of a recent study3 and serves 
as a baseline of performance. A mutant strategy is restricted to reactive memory-one strategies, according 
to which the player’s action depends only on the co-player’s last action. The reactive strategies are charac-
terized by a pair of probabilities ( pc,pd ), where pα denotes the probability to cooperate when the co-player’s 
last move was α . Rival strategies are represented by pd = 0 , and partners are by pc = 1 and pd < p∗d , where 
p∗d ≡ min{1− (T − R)/(R − S), (R − P)/(T − P)} . Mutant strategies may be randomly drawn from [0, 1] × [0, 1] , 
but we have discretized the unit square in a way that each pα takes a value from {0, 1/10, 2/10, . . . , 9/10, 1} . We 
have run the simulation until mutants are introduced 107 times, and measured how frequently partner or rival 
strategies are observed. As shown in Fig. 3a, evolutionary performance of strategies depends on environmental 

PartnerRival

Other

(a)

CAPRI

Partner Rival Other

(c)

CAPRI

Partner
Rival Other

TFT-ATFT

(d)

(b)

TFT-ATFT Partner

Rival

Other

Figure 3.   (a) Abundance of memory-one partners, rivals, and the other strategies. We consider a simplified 
version of the PD game, parametrized by b, the benefit to the co-player when a player cooperates with a unit 
cost. In terms of the elementary payoffs, this corresponds to R = b− 1 , T = b , S = −1 , and P = 0 . The Moran 
process is simulated with selection strength σ in a population of size N, where the product Nσ is fixed as 10. 
Three parameters (benefit-cost-ratio b, population size N, and error rate e) are varied one by one3. Their default 
values are b = 3,N = 50, and e = 10−3 unless otherwise stated. We also show the simulation results with (b) 
TFT-ATFT, (c) CAPRI, and (d) both TFT-ATFT and CAPRI, introduced with probability µ = 0.01 . These are 
average results over 10 Monte–Carlo runs.
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parameters3,13,14. Rival strategies have higher abundance when the benefit-to-cost ratio is low, population size N 
is small, and error rate e is high. Otherwise, partner strategies are favoured.

Let us now assume that a mutant can also take TFT-ATFT in addition to the reactive memory-one strategies. 
Figure 3b shows that TFT-ATFT occupies significant fractions across a broad range of parameters. The situation 
changes even more remarkably when CAPRI is introduced instead of TFT-ATFT. As seen in Fig. 3c, CAPRI 
overwhelms the other strategies for almost the entire parameter ranges. The low abundance at N = 2 or e = 10−5 
does not contradict with the evolutionary robustness of CAPRI because it is still higher than the abundance of a 
neutral mutant. Although the abundance of partners is higher than CAPRI when e = 10−5 , the reason is that it 
is an aggregate over many partner strategies. If we compare each single strategy, CAPRI is still the most abundant 
one for the entire range of e. The qualitative picture remains the same even if we choose a different value of σ , 
and CAPRI tends to be more favoured as σ increases. Furthermore, by comparing Fig. 3b,c, we see that CAPRI 
shows better performance than TFT-ATFT. The evolutionary advantage of CAPRI over TFT-ATFT is directly 
observed in Fig. 3d), where both CAPRI and TFT-ATFT are introduced into the population. As we have seen 
in Fig. 2b, it tends to earn strictly higher payoffs against various types of co-players, whereas TFT-ATFT, based 
on TFT, aims to equalize the payoffs except when it encounters naive cooperators. This observation shows a 
considerable amount of diversity even among evolutionary robust strategies25.

Summary
To summarize, we have investigated the possibility to act as both a partner and a rival in the repeated PD game 
without future discounting. By thoroughly exploring a huge number of strategies with m = 3 , we have found 
that it is indeed possible in various ways. The resulting friendly rivalry directly implies evolutionary robustness 
for any population size, benefit-to-cost ratio, and selection strength. We observe its success even when e is of a 
considerable size (Fig. 3). It is also worth noting that a friendly rival can publicly announce its strategy because 
it is guaranteed not to be outperformed regardless of the co-player’s prior knowledge. Rather, it is desirable that 
the strategy should be made public because the co-player can be advised to adopt the same strategy by know-
ing it from the beginning to maximize its payoff. The resulting mutual cooperation is a Nash equilibrium. The 
deterministic nature offers additional advantages because the player can implement the strategy without any 
randomization device. Moreover, even if uncertainty exists in the cost and benefit of cooperation, a friendly rival 
retains its power because it is independent of (R, T, S, P). This is a distinct feature compared to the ZD strategies, 
whose cooperation probabilities have to be calculated from the elementary payoffs. Furthermore, the results are 
independent of the specific payoff ordering T > R > P > S of the PD. These are valid as long as mutual coopera-
tion is socially optimal ( R > P and 2R > T + S ) and exploiting the other’s cooperation pays better than being 
exploited ( T > S ). This condition includes other well-known social dilemma, such as the snowdrift game (with 
T > R > S > P ) and the stag-hunt game (with R > T > P > S).

This work has focused on one of friendly rivals, named CAPRI. We speculate that it is close to the optimal one 
in several respects: First, it recovers mutual cooperation from erroneous defection in the shortest time. Second, 
it outperforms a wide range of strategies. Furthermore, its simplicity is almost unparalleled among friendly 
rivals discovered in this study. CAPRI is explained by a handful of intuitively plausible rules, and such simplicity 
greatly enhances its practical applicability because the required cognitive load will be low when we humans play 
the strategy11,26,27. It is an interesting research question whether this statement can be verified experimentally.

In particular, we would like to stress the importance of memory length in theory and experiment, considering 
that much research attention has been paid to the study of memory-one strategies2,5,13,14,28–30. Besides the combi-
natorial explosion of strategic possibilities, one can argue that a memory-one strategy, if properly designed, can 
unilaterally control the co-player’s payoff even when the co-player has longer memory9. It has also been shown 
that m = 1 is enough for evolutionary robustness against mutants with longer memory13. However, the payoff 
that a strategy receives against itself may depend on its own memory capacity13,25, and this is the reason that 
a friendly rival is feasible when m > 1 . We can gain some important strategic insight only by moving beyond 
m = 1 . Related to the above point, one of important open problems is how to design a friendly-rival strategy 
for multi-player games. Little is known of the relationship between a solution of an n-person and that of an 
(n− 1)-person game of the same kind. For example, it is known that TFT-ATFT for the PD game7 is not directly 
applicable to the three-person PG game8. We nevertheless hope that the five rules of CAPRI may be more easily 
generalized to the n-person game, considering that its working mechanism seems more comprehensible than 
that of TFT-ATFT to the human mind.

In a broader context, although ‘friendly rivalry’ sounds self-contradictory, the term captures a crucial aspect 
of social interaction when it goes in a productive way: Rivalry is certainly ubiquitous between artists, sports 
teams, firms, research groups, or neighbouring countries31–34. At the same time, they are subject to repeated 
interaction, whereby they eventually become friends, colleagues, or business partners to each other. Our finding 
suggests that such a seemingly unstable relationship can readily be sustained just by following a few simple rules: 
Cooperate if everyone does, accept punishment for your mistake, punish defection, recover cooperation if you 
find a chance, but in all the other cases, just take care of yourself. These seem to be the constituent elements for 
such a sophisticated compound of rivalry and partnership.

Data availability
The source code for this study is available at https​://githu​b.com/yohm/sim_exhau​stive​_m3_PDgam​e.
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