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Direct stimulation of ERBB2 
highlights a novel cytostatic 
signaling pathway driven 
by the receptor  Thr701 
phosphorylation
Marco Gaviraghi1,13, Andrea Rabellino2,11,13, Annapaola Andolfo3, Matthias Brand4,12, 
Chiara Brombin5, Paola Bagnato2, Giuseppina De Feudis4, Andrea Raimondi4, 
Alberta Locatelli6, Daniela Tosoni7, Davide Mazza4, Luca Gianni6, Giovanni Tonon1,8, 
Yosef Yarden9, Carlo Tacchetti4,10,13* & Tiziana Daniele2,4,13*

ERBB2 is a ligand-less tyrosine kinase receptor expressed at very low levels in normal tissues; when 
overexpressed, it is involved in malignant transformation and tumorigenesis in several carcinomas. 
In cancer cells, ERBB2 represents the preferred partner of other members of the ERBB receptor 
family, leading to stronger oncogenic signals, by promoting both ERK and AKT activation. The 
identification of the specific signaling downstream of ERBB2 has been impaired by the lack of a 
ligand and of an efficient way to selectively activate the receptor. In this paper, we found that 
antibodies (Abs) targeting different epitopes on the ERBB2 extracellular domain foster the activation 
of ERBB2 homodimers, and surprisingly induce a unique cytostatic signaling cascade promoting an 
ERK-dependent ERBB2  Thr701 phosphorylation, leading to AKT de-phosphorylation, via PP2A Ser/
Thr phosphatases. Furthermore, the immunophilin Cyclophilin A plays a crucial role in this pathway, 
acting as a negative modulator of AKT de-phosphorylation, possibly by competing with Ser/Thr 
phosphatases for binding to AKT. Altogether, our data show that Ab recognizing ERBB2 extracellular 
domain function as receptor agonists, promoting ERBB2 homodimer activation, leading to an 
anti-proliferative signaling. Thus, the ultimate outcome of ERBB2 activity might depend on the 
dimerization status: pro-oncogenic in the hetero-, and anti-oncogenic in the homo-dimeric form.

ERBB2 belongs to the ERBB family of receptor tyrosine kinase (RTK), which comprises also EGF receptor 
(EGFR or ERBB1 or HER1), ERBB3 (HER3), and ERBB4 (HER4). ERBB2 is expressed at very low levels in 
normal  tissues1, but it is overexpressed in breast, ovary, prostate, non-small cell lung cancer and in several other 
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carcinomas, and is involved in malignant transformation and  tumorigenesis2,3. In particular, around 20% of 
breast cancers (BrCa) display overexpression of ERBB2 (ERBB2-BrCa), leading to a more aggressive clinical 
course and a worst  outcome4,5.

Whereas the specific outcome of ERBB2 activation and its downstream signaling are not yet fully understood, 
the molecular events induced by ligand stimulation of the prototypical ERBB receptor, i.e. EGFR, have been thor-
oughly investigated. Ligand binding to the receptor triggers receptor dimerization and the trans-phosphorylation 
of tyrosine residues in the cytoplasmic domain of the partner  receptor6. The phosphorylated tyrosine residues 
represent docking sites for several different adaptor proteins, leading to the activation of downstream signaling 
pathways, including the PI3kinase (PI3K)/AKT and the RAS/MAPK  cascades7–9.

Compared to other members of the family, ERBB2 has no known ligand; thus, in physiological conditions 
its activation depends on heterodimerization with other ERBB family  members10,11. Because of its structural 
conformation, displaying an extended dimerization arm at steady state, ERBB2 represents the preferred partner 
for other  ERBBs12–14. In a heterodimer context ERBB2 prevents the downregulation of the dimeric receptor, 
decreasing the rate of its internalization and of ligand release from the partner ERBB, thus potentiating the ERK 
and AKT signaling  cascades15–19. Indeed, ERBB2 activation in a heterodimer context has been shown to promote 
cell survival and breast  carcinogenesis16,20–24. Accordingly ERBB2 silencing has been reported to induce an arrest 
in the G1 phase of the cell cycle, primarily as a result of AKT  inactivation25,26.

The absence of a known ligand for ERBB2 has been the major difficulty to address how the receptor func-
tions in ERBB2-overexpressing BrCa cells, and indeed most studies have relied on the stimulation of the partner 
receptor in ERBB2-containing heterodimers.

Here, by exploiting two different antibodies targeting ERBB2, we identified a common downstream signaling 
leading to an ERK-dependent AKT de-phosphorylation. In particular, upon binding to ERBB2, the antibod-
ies stimulate the phosphorylation of ERK, which in turn phosphorylates the  Thr701 residue of the receptor and 
triggers AKT inactivation. We report that the immunophilin Cyclophilin A (CyPA) is a master switch of this 
signaling pathway, as it normally binds to phospho-AKT, protecting it from de-phosphorylation. Upon activa-
tion of ERBB2 and consequently of ERK, CyPA translocates onto the receptor cytoplasmic tail, possibly leaving 
AKT available for the activity of PP2A phosphatases. Furthermore, we show that ERK and CyPA cooperate in a 
positive feedback loop keeping ERBB2 active.

Altogether, our data demonstrate that antibodies function as agonists for ERBB2, promoting receptor homodi-
merization and a specific and previously unidentified signaling pathway, counteracting the oncogenic pro-
survival effect induced by ERBB2-containing heterodimers.

Results
Antibodies against ERBB2 extracellular domain promote AKT de-phosphorylation via 
ERK. To identify ERBB2-specific contribution in modulating intracellular signaling pathways, we sought to 
stimulate the receptor with two antibodies (Abs) targeting different epitopes in the ERBB2 extracellular domain 
(ECD). In particular, we used Pertuzumab  (PZ27) recognizing domain II, and Trastuzumab  (TZ28) targeting 
domain IV of the  receptor29.

PI3K/AKT survival and RAS/MAPK proliferation pathways are the major signaling pathways activated by 
ERBB2  heterodimers30, thus we initially investigated their phosphorylation kinetics in response to treatments 
with Abs in SK-Br3 human breast cancer cells. For AKT we focused on the two major phosphorylation residues 
phosphorylated in response to RTK activation, and necessary for AKT full enzymatic activity, i.e.  Thr308 and 
 Ser473. To avoid long-term signaling adaptation mechanisms, short-term kinetics (2, 20 and 45 min) after treat-
ment with Abs was evaluated. By western blotting (WB) upon treatment with either TZ or PZ, we observed 
an early persistent increase of phospho-ERK, and a dramatic reduction of the AKT  Thr308 and  Ser473 residues 
phosphorylation, preceded by a transient mild increase (Fig. 1a).

As Abs modulate ERK and AKT in opposite directions, we tested whether the two events are interdependent, 
evaluating the ERK and AKT phosphorylation state upon treatment with either one of the two Abs in the pres-
ence of the MEK1 inhibitor U0126, to prevent ERK activation (Ab/U0126). Ab/U0126 treatment significantly 
delayed AKT de-phosphorylation of both  Thr308 and  Ser473 residues (Fig. 1a), showing that the reduction in 
phospho-AKT levels in the presence of ERBB2-targeted antibodies depends on ERK activation.

To corroborate these findings, we performed TZ treatment in an additional cell line (BT474) showing ERBB2 
levels comparable to SK-Br3 and in MDA-MB-468 cells, which express negligible levels of ERBB2 (Supplementary 
Fig. 1a). We found that only cells expressing high levels of ERBB2 responded to TZ, showing an ERK-dependent 
AKT de-phosphorylation (Supplementary Fig. 1b).

As a proof of principle that our findings obtained in SK-Br3, and BT474 cells could be reproduced in primary 
human ERBB2-BrCa, we established primary cell cultures from patient-derived-xenografts (PDX) developed 
from one ERBB2-positive patient and one ERBB2-negative BrCa patient, as control. The fraction of cells express-
ing ERBB2 was assessed by immunofluorescence (IF, data not shown), and only cell cultures obtained from the 
ERBB2-positive PDX displayed ERBB2 expression in a sizable proportion of the cells (18%).

ERBB2-positive PDX derived cells, but not ERBB2-negative PDX derived cells, responded to TZ and TZ/
U0126, displaying an ERK-dependent reduction of the levels of phospho-AKT (Supplementary Fig. 1c), thus sup-
porting the data obtained using SK-Br3, and BT474 immortalized cell lines (Fig. 1a, and Supplementary Fig. 1b).

Ab-induced AKT de-phosphorylation is an exclusive ERBB2 signaling. As SK-Br3 cells express 
high ERBB2 levels, detectable levels of EGFR and ERBB3, and very low or no ERBB4 (Supplementary Fig. 1a), 
we sought to assess whether ERBB2 requires the cooperation of other ERBB family members to respond to Abs. 
Thus, we silenced SK-Br3 cells for both EGFR and ERBB3 (Supplementary Fig. 2a), and treated them with either 
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Figure 1.  Abs trigger an ERBB2-specific downstream signaling and induce ERBB2 homodimerization. (a) SK-Br3 cells were serum-
starved for 20 min, in the presence of 10 μM U0126 or vehicle (DMSO), and treated with 20 μg/ml PZ or 10 μg/ml TZ at 37 °C for the 
indicated times. Lysates were analysed by WB. One experiment is shown as representative of three. Changes in phospho-AKT and 
phospho-ERK levels are not due to protein degradation, as supported by total AKT and total ERK labelling. The total ERBB2, p-Ser473 
AKT and GAPDH blots were cropped from the same gel. The p-ERK and p-Thr308 AKT blots were cropped from the same gel. The 
total ERK and total AKT blots were cropped from the same gel. TZ- and PZ-treated samples derive from the same experiment and 
the gels/blots have been processed in parallel. The images of the full scan western blots are provided in Supplementary Fig. 8. (b,c) 
SK-Br3 cells were serum-starved for 20 min at 37 °C, and treated with 10 μg/ml TZ or TZ-Fab (b) or with 20 μg/ml PZ or PZ-Fab (c) 
for additional 10 min at 37 °C. Lysates were immunoprecipitated with an ERBB2-specific antibody (starved) and/or an anti-human 
specific antibody (all samples). Immunoprecipitates were subjected to non-reducing SDS-PAGE and Coomassie staining followed by 
mass spectrometry. Graphs show mean ± st. dev. from three technical replicates (p < 0.0001 for TZ and TZ-Fab, and p = 0.0003 for PZ, 
Student’s t test). For TZ, one experiment is shown as representative of two.
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Ab or Ab/U0126. In all conditions, cells responded as control cells transfected with a non-targeting (NT) siRNA 
(Supplementary Fig. 2b), suggesting that EGFR and ERBB3 are dispensable for the response to ERBB2-targeted 
Abs. We then asked whether stimulation of ERBB1 or ERBB3 would mimic the downstream signaling elicited 
by Abs. Thus, SK-Br3 cells were treated with EGF (ligand for EGFR), or heregulin β1 (HRG, ligand for ERBB3): 
in contrast to Abs (Supplementary Fig. 3a), treatment with EGF or HRG promoted both ERK and AKT phos-
phorylation (Supplementary Fig. 3b or 3c, respectively), suggesting that the ERK-dependent AKT inactivation 
is an Ab-exclusive signaling.

Abs binding promotes ERBB2 homodimerization. EGFR and ERBB3 dispensability for the response 
to the Abs suggest that the ERK-dependent AKT inactivation is likely due to ERBB2 homodimerization.

Based on this hypothesis, we first evaluated the role of the ERBB2 tyrosine kinase activity in the process, by 
treating SK-Br3 cells with Abs in presence or absence of Lapatinib, an ERBB2 and EGFR tyrosine kinase inhibitor. 
Under these conditions, Lapatinib completely abrogated the Ab-dependent signaling (Supplementary Fig. 3d), 
confirming that an active ERBB2 tyrosine kinase is required.

To assess whether Ab binding promotes ERBB2 homodimerization, we performed a mass spectrometry 
analysis of the ERBB2 containing complexes immunoprecipitated after 10 min of treatment with TZ or PZ (Sup-
plementary Fig. 4 and Supplementary Table S1), and cross-linking with membrane-impermeable DTSSP. WB 
analysis in not-reducing conditions showed a decrease in the abundance of the monomeric form and an increase 
of the ERBB2-positive high molecular weight species upon treatment with TZ or PZ (Supplementary Fig. 4d). 
Peptide analysis revealed that Ab treatment induced a 20-fold (TZ, Fig. 1b) or a five-fold (PZ, Fig. 1c) increase 
in the abundance of ERBB2-containing dimers.

To rule out the possibility that the higher levels of ERBB2 dimerization might be due to the clustering effect 
promoted by the bivalent Abs, we generated TZ and PZ Fab fragments (TZ-Fab and PZ-Fab, respectively). By 
immunoprecipitation (IP) experiments followed by mass spectrometry, we found that, similarly to the bivalent 
Ab, TZ-Fab promoted a 13-fold increase in the abundance of ERBB2-containing dimers (Fig. 1b). Moreover, 
by quantifying the fraction of EGFR (to estimate heterodimers) and ERBB2 (to estimate all dimers) engaged 
in dimers (normalizing the values for their respective amounts in the input fractions), we found that in each 
condition heterodimers represented approximately 7% of all dimers (Fig. 1b). By contrast, IP experiments fol-
lowed by mass spectrometry showed that, at odds with the bivalent antibody, PZ-Fab did not induce receptor 
dimerization, possibly because it engages the dimerization arm of ERBB2 (Fig. 1c).

Altogether, these results support the conclusion that Abs promote the two major events leading to ERBB 
activation upon ligand binding, i.e. receptor dimerization and activation of a downstream signaling, thus acting 
as agonists for ERBB2.

Ab-induced AKT de-phosphorylation depends on Ser/Thr phosphatase activity. There are three 
main alternative ways to obtain an ERK-dependent reduction of phospho-AKT levels: (i) inhibition of the PI3K/
AKT phosphorylation axis; (ii) activation of Ser/Thr phosphatases leading to AKT de-phosphorylation; (iii) a 
combination of the two.

We first tested the possible contribution of the well-known ERK-dependent inhibition of the PI3K/AKT 
phosphorylation axis, i.e.  PI3K31,32, and  PTEN33 (Supplementary Fig. 5).

Phospho-ERK may control the PI3K-dependent activation of AKT via mTORC1. We assessed the phosphoryl-
ation status of the mTORC1 downstream effector p70S6 kinase (S6kinase), as readout of mTORC1  activation32,34,35 
(Supplementary Fig. 5a), and found no differences in samples treated with TZ or TZ/U0126 (Supplementary 
Fig. 5c), thus excluding an inhibitory effect on PI3K and subsequently of AKT phosphorylation. Accordingly, 
SK-Br3 cells treated with either the mTORC1 inhibitor rapamycin, or the PI3kinase inhibitor LY294002, before 
and during TZ treatment showed a complete inhibition of S6kinase phosphorylation, thus excluding a role for 
the ERK pathway in controlling mTORC1 activity in this cellular model (Supplementary Fig. 5e).

We then evaluated the possible involvement of PTEN, a cytoplasmic phosphatidylinositol-3,4,5-trisphosphate 
3-phosphatase, able to counteract the activity of PI3K, once recruited on the plasma membrane (PM). It has been 
reported that PTEN recruitment to the PM involves the kinase activity of ERK, the subsequent phosphorylation 
of MEK1  Thr292 residue, and the formation and translocation of a tri-partite complex comprising phosphoryl-
ated MEK1, MAGI1 and PTEN to the  PM33 (Supplementary Fig. 5b). Thus, we analysed the membrane/cytosol 
partitioning of the three components of the complex and found that it is similar in cells treated with TZ and 
TZ/U0126 (Supplementary Fig. 5d). In particular, phospho-MEK1 was exclusively present in the cytosolic frac-
tion, MAGI1 in the membrane fraction, and PTEN mainly in the cytosol, excluding also this pathway in the 
Ab-induced AKT inactivation.

Having excluded a mechanism involving the inhibition of the AKT phosphorylation process, to explain the 
reduced levels of phospho-AKT promoted by TZ or PZ, we then evaluated the possible contribution of Ser/
Thr phosphatase activity. Different phosphatases have been reported to function on AKT specific phospho-
residues; in particular, PP2C family members work exclusively on  Ser473, PP2A holoenzymes on  Thr308, and PP1 
complexes on  Thr450 and/or  Ser47336,37. Thus, we exploited well-established inhibitors of PP1 and PP2A families 
of Ser/Thr phosphatases, i.e. calyculin, okadaic acid, and tautomycin, in SK-Br3 cells treated with TZ, either as 
single agents or in combination. While the phosphorylation levels of AKT  Ser473 residue were not affected by 
any of the inhibitor combinations (Supplementary Fig. 6a and 6c), the phosphorylation levels of AKT  Thr308 
residue increased significantly in the presence of higher concentrations of okadaic acid. As the shape of the 
de-phosphorylation kinetics curves in control and phosphatase inhibitors-treated samples was comparable, 
we concluded that inhibition of the catalytic activity of Ser/Thr phosphatases per se does not mimic the TZ/
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U0126 condition (Supplementary Fig. 6a and 6b). By contrast, TZ/U0126 treatment significantly delayed AKT 
de-phosphorylation kinetics, leading to the possibility that ERK may regulate the association of phosphatases 
to phospho-AKT.

Cyclophilin A interacts with phospho-AKT in an ERK-dependent manner. To unravel the machin-
ery involved in the regulation of ERBB2-dependent AKT de-phosphorylation, we analysed phospho-AKT inter-
acting proteins by mass spectrometry. Lysates of cells treated for 20  min (time point displaying the greatest 
difference in phospho-AKT levels between Ab and Ab/U0126, Fig. 1 and Supplementary Fig. 6b) with TZ, or 
TZ/U0126, were immunoprecipitated using an anti-phospho-Thr308 AKT antibody. Proteomic analysis showed 
that, in the TZ/U0126-treated cells, phospho-AKT interacted, among other proteins, with the Ser/Thr-protein 
phosphatase 2A (PP2A)-catalytic subunit beta isoform (PPP2CB, UniProtKB accession number: P62714, 5% 
sequence coverage), and the peptidyl-prolyl cis–trans isomerase A (Cyclophilin A, CyPA) (PPIA, UniProtKB 
accession number: P62937, 23% sequence coverage) (Fig. 2a and Supplementary Table S2). In the TZ-treated 
cells, instead, we could not detect any PP2A or CyPA bound to the residual phospho-AKT.

CyPA silencing promotes AKT de-phosphorylation in the absence of ERK signaling. CyPA is a 
member of the immunophilin family, which comprises cyclophilins, FK506-binding proteins and  parvulins38. 
The best-known member of the parvulin group is Pin1, which has been reported to control AKT phosphoryla-
tion and  stability36.

We found that CyPA is associated to phospho-AKT, suggesting two alternative scenarios, i.e. CyPA exerts a 
regulatory role on AKT de-phosphorylation or CyPA is a target of AKT activity.

Since it has been described that AKT can phosphorylate  CyPA39, we tested whether this event occurred in our 
experimental setting. Thus, we immunoprecipitated CyPA from cells treated with TZ or TZ/U0126, and probed 
with two antibodies specific for phospho-AKT substrates (RXXS/T* and RXRXXS/T*)40 by WB. In neither case 
we could detect any labelling (Supplementary Fig. 7a), suggesting that in our system phospho-AKT does not act 
upstream of CyPA, but it is rather a downstream effector of CyPA.

To identify the role of CyPA in the TZ-induced AKT de-phosphorylation, we silenced CyPA expression 
by transducing SK-Br3 cells with a short hairpin RNA (shRNA) targeting CyPA, and evaluated the AKT de-
phosphorylation kinetics upon TZ/U0126 administration (condition in which we found CyPA associated to 
phospho-AKT, Fig. 2b,c and Supplementary Fig. 7b). In five independent experiments, CyPA silencing consist-
ently impaired the AKT  Thr308 de-phosphorylation delay observed upon TZ/U0126 treatment (Fig. 2b,c), but 
not the AKT  Thr308 de-phosphorylation promoted by TZ (Supplementary Fig. 7c), suggesting that ERK may 
stimulate AKT de-phosphorylation by promoting the detachment of CyPA from phospho-AKT.

CyPA is recruited by ERBB2 upon Ab treatment. To better understand the role of CyPA in regulating 
AKT de-phosphorylation, we explored the landscape of molecular interactions between the members of ERBB2 
signaling pathway and CyPA by performing direct and reverse IP experiments. Lysates from SK-Br3 cells either 
untreated, or treated with TZ or TZ/U0126 for 20  min, were immunoprecipitated with an antibody against 
phospho-Thr308 AKT. We found that in TZ-treated, compared to untreated cells, phospho-AKT co-immunopre-
cipitated about ten folds higher amounts of the phosphorylated form of ERBB2 (phospho-ERBB2), and about 
two folds the amount of CyPA, but almost no ERK or PP2A catalytic subunit (possibly because of the low 
amount of AKT still phosphorylated in this condition); conversely, when TZ/U0126-treated cells were compared 
to untreated cells, phospho-AKT co-immunoprecipitated equal amounts of ERK, higher amounts of CyPA and 
PP2A catalytic subunit, but not phospho-ERBB2 (Fig. 3a,c).

The IP using a CyPA-specific antibody confirmed these data, with two noteworthy exceptions: a more efficient 
precipitation of ERK in TZ-treated as compared to untreated cells (Fig. 3b,c), and the lack of PP2A precipitation 
in both TZ and TZ/U0126 conditions. Strikingly, we also found that in TZ treated, but not in TZ/U0126 treated 
cells, CyPA co-immunoprecipitated phospho-ERBB2.

To further support this observation, we investigated the subcellular distribution of CyPA (an abundant cyto-
solic protein), with respect to the PM-associated ERBB2 receptor, in SK-Br3 cells upon Ab or Ab/U0126 treat-
ment. Cells were analysed by means of direct stochastic optical reconstruction super-resolution microscopy 
(dSTORM), and co-localization assessed by pair cross-correlation41. We found that in Ab, compared to Ab/U0126 
condition, the co-localization between CyPA and ERBB2 was significantly higher (Fig. 3d,e), further supporting 
the finding that ERBB2-targeted Abs induced the recruitment of CyPA onto ERBB2 receptor.

Altogether, these results suggest a model in which Abs induce a phospho-ERK-dependent recruitment of a 
signaling complex comprising phospho-ERK, CyPA, and phospho-AKT, onto the C-terminal domain of ERBB2. 
Inhibition of ERK phosphorylation, in turn, leads to an increased interaction between CyPA and phospho-AKT 
and impairs the recruitment of the complex to the receptor. Because phospho-AKT levels are dramatically 
reduced upon Ab, but not upon Ab/U0126 treatment, and CyPA appears to play a role in protecting AKT from 
de-phosphorylation, we hypothesize that CyPA recruitment onto ERBB2 C-terminal domain might release AKT 
from CyPA, leaving it accessible to Ser/Thr phosphatases (see below ).

CyPA and PP2A bind to the same AKT residues. In order to identify the putative AKT moieties 
involved in CyPA binding, we generated FLAG-tagged wt and biomimetic mutants of the  Thr308 residue of AKT1 
(i.e.  AKTT308A, not phosphorylatable, and  AKTT308D, phosphomimetic) and performed IP experiments on cells 
expressing either one of the FLAG-AKT constructs. Unexpectedly, we found that upon 20 min of TZ/U0126 
treatment, both biomimetic AKT mutants, with putative different outcomes on AKT activation, immunoprecipi-
tated approximately 50% of CyPA and 60% of PP2A, as compared to wt AKT (Fig. 4a,b). These findings suggest 
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Figure 2.  CyPA protects phospho-AKT from de-phosphorylation. (a) SK-Br3 cells were serum-starved for 
20 min and treated with 10 μg/ml TZ at 37 °C for additional 20 min either in the presence of U0126 or DMSO, 
as control. Lysates were immunoprecipitated using an anti-phospho-Thr308 AKT antibody or rabbit IgG, as 
control. Venn diagrams compile the comparison of the mass spectrometry results from the phospho-Thr308 AKT 
and rabbit IgG IP in each experimental condition. Numbers indicate proteins identified either specifically in 
each of the two samples or shared between them. (b,c) SK-Br3 cells were either not transduced or transduced 
with a non-targeting (nt) or a CyPA-specific shRNA for 15 days. Cells were serum-starved for 20 min in the 
presence of the MEK inhibitor U0126, and treated with 10 μg/ml TZ at 37 °C for the indicated times. (b) Lysates 
were analysed by WB. The not transduced (SK-Br3), control (nt) shRNA- or CyPA-specific (CyPA) shRNA-
transduced samples derive from the same experiment and the gels/blots have been processed in parallel. The 
images of the full scan western blots are provided in Supplementary Fig. 9. (c) Data points from one experiment 
are displayed. One experiment is shown as representative of five. A statistically significant difference was found 
at 20 and 45 min of treatment upon comparison of CyPA-silenced with control SK-Br3 cells (Kruskal Wallis and 
post-hoc test with Bonferroni correction, p = 0.026 and p = 0.014, respectively).
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Figure 3.  Abs recruit an ERK/CyPA/phospho-AKT signaling hub onto ERBB2. (a–c) SK-Br3 cells were either 
left untreated or serum-starved for 20 min, in the presence of 10 μM U0126 or vehicle (DMSO), and treated 
with 10 μg/ml TZ at 37 °C for 20 min. Lysates were immunoprecipitated with antibodies specific for either 
P-Thr308 AKT (a) or CyPA (b). Immunoprecipitates were analysed by WB. (a,b) The images of the full scan 
western blots are provided in Supplementary Fig. 10. (c) Amounts of co-immunoprecipitated (co-IP) proteins 
were normalized both on the amount of the immunoprecipitated (IP) protein (P-Thr308 AKT in a and CyPA 
in b) and on their levels in control TZ-untreated SK-Br3 cells. One experiment is shown, as representative of 
two. Signal in the control IgG lanes in the TZ and TZ + U0126 samples might be due to the direct binding of 
TZ antibody to Protein G dynabeads, and was subtracted before normalization. The higher molecular weight of 
bands in the IP, as compared to the input, lanes might be due to the crosslinker. (d,e) SK-Br3 cells were serum-
starved for 20 min, in the presence of 10 μM U0126 or vehicle (DMSO), and treated with 10 μg/ml TZ (d) or 
20 μg/ml PZ (e) at 37 °C for 20 min. On the day of acquisition, cells were processed for immunofluorescence 
and analysed by dSTORM super-resolution microscopy. Co-localization was assessed by pair cross-correlation 
analysis. For TZ, ten regions/field were chosen and eleven fields were analysed, out of three independent 
experiments that were pooled together. Data are presented as mean ± s.e.m. (p < 5 ×  10–9 upon Kolmogorov–
Smirnov test on cross-correlation signal amplitude). For PZ, ten regions/field were chosen and eight fields were 
analysed, out of two independent experiments that were pooled together. Data are presented as mean ± s.e.m. 
(p < 0.05 upon Kolmogorov–Smirnov test on cross-correlation signal amplitude). Scale bar: 4 μm.
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that any substitution of  Thr308 affects CyPA binding. Furthermore, as CyPA and PP2A do not directly interact 
(Fig. 3b,c), it is feasible that they may compete for the same binding site on AKT.

Since CyPA is a peptidyl-prolyl isomerase, we tested whether the proline residues of AKT close to  Thr308 were 
relevant for the binding to CyPA. Thus, we mutagenized  Pro313 and  Pro318 of AKT to generate single and double 
mutants. We then treated cells expressing FLAG-tagged wt,  AKTP313A,  AKTP318A or  AKTP313A/P318A constructs, 
with TZ/U0126 for 20 min, and performed IP experiments using an anti-FLAG antibody. Under these conditions, 

Figure 4.  CyPA binds to AKT on  Thr308 and  Pro318 as PP2A. (a,b) SK-Br3 cells were transfected with constructs 
coding for FLAG-tagged AKT Thr or Pro mutants (as indicated) or wt AKT (as control). Cells were serum-
starved for 20 min in the presence of 10 μM U0126, and incubated with 10 μg/ml TZ for 20 min. (a) Cells were 
immunoprecipitated with an antibody specific for the FLAG tag. (b) Amounts of co-immunoprecipitated (co-
IP) proteins were normalized both on immunoprecipitated protein and their amount in the input. Individual 
data points obtained in two (PP2A) or three (CyPA) independent experiments are shown. T308A, p < 0.01; 
T308D, p < 0.01; P318A, p < 0.05; P313A + P318A, p = 0.01 Student’s t test. (c,d) SK-Br3 cells were transfected 
with FLAG-tagged wt or T308A mutant AKT (as indicated). Cells were serum-starved and incubated with TZ 
for 20 min. Cells were immunoprecipitated with an antibody specific for CyPA. (d) CyPA immunoprecipitated 
approximately 40% less phospho-ERBB2 in the cells expressing mutant AKT, as compared to wt AKT (p < 0.05, 
Student’s t test). The membrane was initially labelled with the anti-phospho AKT Ab, stripped and afterwards 
probed with the anti-FLAG Ab. The images of the full scan western blots are provided in Supplementary Fig. 11.
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 Pro318 substitution (either alone or in combination with P313A mutation) reduced the interaction between AKT 
and CyPA by about 60% (Fig. 4a,b). Similarly to  Thr308,  Pro318 substitution impaired also PP2A binding to AKT.

Thus, we can envisage that CyPA inhibits AKT de-phosphorylation, by competing with PP2A for the binding 
to AKT  Thr308 residue. Co-IP experiments (Fig. 3) suggest that the recruitment of CyPA to the ERBB2 cyto-
plasmic tail could be necessary to displace CyPA from phospho-AKT, thus making the latter available to PP2A 
phosphatase activity.

Since CyPA is a cytosolic protein and it binds to phospho-AKT, which is phosphorylated on  Thr308 by P-PDK1 
on the PM, we hypothesized that CyPA is recruited onto ERBB2 upon Ab treatment by means of its interaction 
with phospho-AKT. Therefore, we immunoprecipitated CyPA in cells expressing FLAG-AKTT308A treated with TZ 
for 20 min, and found that it binds approximately 40% less phospho-ERBB2 as compared to wt AKT (Fig. 4c,d). 
Thus, we conclude that TZ-induced ERK-dependent phospho-AKT recruitment to ERBB2 leads also to CyPA 
relocalization to the receptor.

ERK and CyPA positively regulate ERBB2-Tyr1248 activation via a feedback loop involving 
ERBB2-Thr701 phosphorylation. Since the Ab-induced recruitment of the complex comprising ERK, 
CyPA and phospho-AKT onto ERBB2 depends on phospho-ERK, we reasoned that active ERK might either 
function as a scaffold protein, docking the complex onto the receptor cytoplasmic domain, or exert an enzymatic 
activity on ERBB2, rendering it accessible to the complex. Indeed, while both AKT and CyPA are not ERK sub-
strates, as they do not comprise consensus sequences for ERK-mediated  phosphorylation42, evidences from the 
literature suggest that ERBB2 can be a target of phospho-ERK43.

In particular, ERBB2 intracellular domain comprises four target consensus sequences PX[S/T]P for ERK 
 kinase42. To evaluate whether ERBB2 was a putative target for ERK activity upon Ab binding, we immunopre-
cipitated ERBB2 at different time-points following Abs treatment, and revealed ERK kinase consensus target sites 
with an antibody recognising anti-phospho-Threonine-Proline (P-TP) by  WB44. The results showed that both TZ 
and PZ treatment induced a transient increase in P-TP signal, as compared to starved cells, with a peak around 
2 min for TZ and 20 min for PZ (Fig. 5a). Noteworthy, under these conditions we observed that phospho-ERK 
co-immunoprecipitated with ERBB2 (Fig. 5a).

To identify the specific receptor residues specifically phosphorylated by ERK we immunoprecipitated ERBB2 
after 5 min of TZ or TZ/U0126 and after 20 min of PZ or PZ/U0126 treatment and performed label-free quan-
titative mass spectrometry. Peptide analysis revealed that  Thr701 was specifically phosphorylated upon both TZ 
(Fig. 5b, upper table) and PZ (Fig. 5b, lower table) treatments, but not in the corresponding Ab/U0126 conditions. 
Noteworthy, PZ treatment induced the ERK-dependent phosphorylation of additional sites, namely  Ser998 and 
 Ser1073 (Fig. 5b, lower table).

As it has been reported that the ERK-mediated phosphorylation of a Thr residue in the juxtamembrane 
region of the EGFR cytoplasmic domain modulates the EGF-induced receptor downstream  signaling44,45, we 
tested whether ERK would control the activation of ERBB2 as well. To this end, we assessed the phosphorylation 
state of the ERBB2  Tyr1248 residue.  Tyr1248 is an autophosphorylation  site46 in the receptor C-terminal tail and 
its phosphorylation is considered a pre-requisite for ERBB2 signaling, and transforming  activity2. By WB, we 
observed that both TZ and PZ treatments induced a strong  Tyr1248 phosphorylation in SK-Br3 cells (Fig. 5a,c), 
and that this response was lowered in the corresponding Ab/U0126 condition (Fig. 5c). These data suggest that 
the Ab-induced ERK-dependent phosphorylation of ERBB2 juxtamembrane region  (Thr701) may function as 
a positive feedback mechanism to promote ERBB2 C-terminal  (Tyr1248) activation, and downstream signaling.

Since ERK ability to phosphorylate its substrates has been shown to be sensitive to the conformation of the 
substrate backbone [(Ser/Thr)-Pro]47, in the ERBB2 context, we hypothesized that CyPA could be involved in the 
positive feedback loop controlling ERBB2 C-terminal tail phosphorylation. To test this hypothesis, we analyzed 
the levels of ERBB2  Tyr1248 phosphorylation in SK-Br3 cells silenced for CyPA, and found significantly reduced 
levels of phospho-ERBB2 [50% as compared to control nt shRNA-transduced cells, Fig. 6a,b], supporting the 
conclusion that CyPA positively modulates ERBB2 activation state.

Thus, as we have shown that the immunophilin recruitment onto ERBB2 depends on phospho-ERK (Fig. 3), 
we mutagenized the  Pro702 residue of the receptor into Ala, expressed the recombinant mutant GFP-tagged 
proteins in SK-Br3 cells, and treated them with TZ or PZ. We found that  ERBB2P702A-GFP recruits less CyPA as 
compared to wt ERBB2-GFP upon treatment with either Ab (Fig. 6c–f).

Altogether, these results suggest that upon Ab treatment: (i) ERK takes part to a positive feedback loop keep-
ing ERBB2 active through the phosphorylation of ERBB2  Thr701 residue; (ii) CyPA participate to the regulation 
of ERBB2 activation and (iii)  Pro702 represents the ERBB2 binding site for CyPA.

Discussion
While almost undetectable or expressed at very low levels in normal  tissues1, ERBB2 is overexpressed in several 
carcinomas, including breast cancers that display a more aggressive clinical course and a worst outcome com-
pared to non ERBB2-positive  BrCa4,5. ERBB2 represents the preferred partner of the other ERBB  receptors14, 
and ERBB2-containing heterodimers are more oncogenic than other ERBB  combinations15–19. Thus, it is widely 
accepted that ERBB2 has a pro-oncogenic role. However, its precise function and downstream signaling pathway 
have not been assessed: the absence of a known ligand for ERBB2 has been the major difficulty to address this 
issue, and most studies have relied on the stimulation of the partner receptor in ERBB2-containing heterodimers.

Here, we show that, at variance to ligand activation of ERBB2-ERBB3 heterodimers by HRG or of EGFR-
ERBB2 heterodimers by EGF, triggering both ERK and AKT signaling pathways, treatment with ERBB2-targeting 
Abs leads mainly to receptor homodimerization and to an ERK-dependent AKT inactivation. This signaling is 
ERBB2-specific and appears not to depend on ERBB2 heterodimers as in the context of the breast cancer cell 
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line used here (expressing negligible ERBB4 levels), silencing of EGFR and ERBB3 does not impair the ERK-
dependent AKT de-phosphorylation elicited by Abs. On the other hand, the very early transient peak in AKT 
phosphorylation, preceding its de-phosphorylation, is likely due to ERBB2 activity in a heterodimeric context. 
Indeed, at variance to EGFR and ERBB3, ERBB2 has no binding sites for PI3K in its cytosolic  domain7, thus it 
cannot directly stimulate AKT phosphorylation. Hence, Ab binding to ERBB2 leads to two independent events: 
in the heterodimeric context, ERBB2 cooperates on the phosphorylation of AKT induced by the partner; in the 
homodimeric form, the receptor triggers the specific negative modulation of the AKT pathway, thus counteract-
ing the pro-survival activity promoted by ERBB heterodimers.

This agonist role played by the Abs on ERBB2 is further supported by structural studies/simulations showing 
that TZ or PZ binding to ERBB2 promotes conformational changes of the receptor, similar to those reported 
for EGFR upon binding to EGF (reviewed  in48), in particular: (1) fluctuation in domain II of the receptor upon 
TZ binding and in domain IV upon PZ  binding49, (2) displacement of the transmembrane domain, which loses 
its interaction with the inner leaflet of the membrane bilayer, upon TZ  binding50 and (3) interference with the 
antiparallel alignment of the juxtamembrane domains upon TZ  binding50.

The Ab-induced ERK-dependent signaling cascade triggering AKT de-phosphorylation involves both PP2A 
Ser/Thr phosphatases and the cytosolic immunophilin CyPA. Immunophilins exert different important func-
tions in the cell, acting either as molecular chaperones assisting and/or correcting protein folding, or as enzymes 
catalysing the cis–trans isomerization at Pro  residues51. It has been reported that the immunophilin Pin1 is 
overexpressed in breast cancer and that its up-regulation is prevalent in ERBB2-positive  tumours52,53; however, 
its silencing or functional inhibition does not potentiate TZ activity, possibly because it accelerates receptor 
 degradation54. Similarly to Pin1, CyPA is found overexpressed in different types of tumours, including breast 

Figure 5.  ERK controls a positive feedback keeping ERBB2 active. (a) Cells were serum-starved for 20 min, 
and treated with 10 μg/ml TZ or 20 μg/ml PZ at 37 °C for the indicated times. Lysates were immunoprecipitated 
with an ERBB2-specific antibody. Samples were analysed by WB. One experiment is shown as representative of 
two. (b) SK-Br3 cells were serum-starved for 20 min at 37 °C in the presence of U0126 or vehicle (DMSO), and 
treated with 10 μg/ml TZ for additional 5 min (upper table) or with 20 μg/ml PZ for additional 20 min (lower 
table) at 37 °C. Lysates were immunoprecipitated with an ERBB2-specific antibody. Samples were analysed 
by mass spectrometry. In the tables, mean ± st. dev. from one experiment is reported (out of two technical 
replicates). The results shown are representative of two independent biological replicates. (c) SK-Br3 cells 
were either left untreated or serum-starved for 20 min, in the presence of 10 μM U0126 or vehicle (DMSO), 
and treated with 10 μg/ml TZ or 20 μg/ml PZ at 37 °C for 20 min. Lysates were analysed by WB. For TZ, one 
experiment is shown as representative of nine; for PZ, one experiment is shown as representative of three. 
ERK inactivation reduces ERBB2  Tyr1248 phosphorylation induced by TZ or PZ down to 66% and 69% (where 
control sample is normalized as 100 percent), respectively (p = 0.02, paired Student’s t test, for either TZ or PZ 
treatment). The images of the full scan western blots are provided in Supplementary Fig. 12.
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cancer, and in some reports a correlation between CyPA overexpression and malignant transformation has been 
 reported55,56.

Our knock down experiments show that CyPA counteracts Ser/Thr phosphatase activity on phospho-AKT, 
possibly by competing with PP2A for binding to phospho-AKT, as suggested by IP experiments with AKT 
mutants. Upon Ab treatment, a complex comprising phospho-ERK, CyPA and phospho-AKT is recruited 
onto the cytoplasmic domain of ERBB2, and a reduction in phospho-AKT levels is observed. Altogether, these 
findings support the hypothesis that the recruitment of CyPA onto ERBB2, induced by Ab treatment, renders 

Figure 6.  CyPA partake to a positive feedback keeping ERBB2 active. (a,b) SK-Br3 cells were transduced with 
a non-targeting (NT) or a CyPA-specific shRNA for 15 days. (a) Lysates were analysed by WB. One experiment 
is shown as representative of three. (b) Graph shows phospho-ERBB2 levels (p < 0.05, Student’s t test). Lines 
indicate mean out of three independent experiments. Data points are shape-coded. (c–f) SK-Br3 cells were 
transfected with constructs coding for GFP-tagged P702A ERBB2 mutant or wt ERBB2 (as control). Cells were 
serum-starved for 20 min, and incubated with 10 μg/ml TZ (c) or 20 μg/ml PZ (d) at 37 °C for 20 min. Lysates 
were immunoprecipitated with an antibody specific for the GFP tag. (c,d) Samples were analysed by WB. (e,f) 
Amounts of co-immunoprecipitated (co-IP) CyPA were normalized both on immunoprecipitated protein (GFP) 
and their amount in the input. Individual data points obtained in two independent experiments are shown. The 
images of the full scan western blots are provided in Supplementary Fig. 13.
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phospho-AKT accessible to Ser/Thr phosphatase activity, explaining the results we obtained with the phosphatase 
inhibitors, i.e. that TZ regulates the association of the phosphatase to its substrate rather than the catalytic activ-
ity. This unanticipated role of Ser/Thr phosphatases in TZ action reconciles published observations implicating 
these enzymes both in breast  carcinogenesis24 and in the onset/development of resistance to TZ  treatment57. 
Furthermore, our findings are in agreement with published data showing that AKT  Ser473 de-phosphorylation 
is essentially mediated by PP2C phosphatases, whereas AKT  Thr308 de-phosphorylation is performed by PP2A 
 holoenzymes36,37.

ERK activity is pivotal in Ab-mediated ERBB2 signaling, as it plays a dual role: it promotes the recruitment of 
the ERK/CyPA/phospho-AKT complex onto ERBB2, leading to AKT de-phosphorylation, and the full activation 
of the receptor C-terminal domain, through the phosphorylation of the  Thr701 residue in the juxtamembrane 
domain, identified by mass spectrometry (see model in Fig. 7). 

The role of phospho-ERK in the full activation of ERBB2 by Abs is highlighted by the observation that the use 
of MEK inhibitors reduces the phosphorylation levels of the ERBB2  Tyr1248 residue, which is required for ERBB2 
signaling, and its transforming  activity2,46. Noteworthy, this positive feedback functions at odds with what has 
been previously reported. In particular, EGF has been shown to promote an ERK-dependent phosphorylation of 
EGFR  Thr693, homologous to ERBB2  Thr701, which negatively regulates the Tyr phosphorylation of the receptor 
C-terminal  domain44,45,58. Similarly, 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced ERK-dependent 
ERBB2  Thr701 phosphorylation has been shown to abrogate ERBB2 phosphorylation on  Tyr1248 and  Tyr119643. 
Noteworthy, EGF binding to EGFR activates both the MAPK and the AKT signaling pathways, whereas ERBB2-
targeted Abs have opposite effects on the two cascades, as the direct activation of ERK is propaedeutic to AKT 
inactivation. By contrast, TPA has been reported to stimulate ERK and inhibit AKT activity, by interfering with 
the heterodimerization between ERBB2 and  ERBB343. On the contrary, our results show that Abs function 
mainly on ERBB2 homodimers, thus providing a possible explanation for the discrepancies with the published 
observation.

Figure 7.  Proposed ERBB2 intracellular mechanism of action. (a,b) Abs treatment induces ERBB2 
homodimerization and transactivation of  Tyr1248. (b,c) ERBB2 C-terminal domain phosphorylation induces 
MAPK (ERK) pathway activation. (c,d) Active ERK binds to and phosphorylates ERBB2  Thr701 residue, 
sustaining ERBB2 C-terminal domain phosphorylation (positive feedback loop), and fostering the recruitment 
of phospho-AKT and CyPA onto the receptor. (d,e) CyPA binding to ERBB2  Pro702 residue possibly 
sequesters the immunophilin from the interaction with phospho-AKT, which becomes accessible to and is 
de-phosphorylated by PP2A Ser/Thr phosphatase.
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Furthermore, phospho-ERK renders ERBB2 accessible to CyPA and phospho-AKT upon Ab treatment. 
Here, we provide evidence for the ERK-dependent recruitment of CyPA to the membrane-localized ERBB2, by 
both biochemical (IP) and morphological (dSTORM super-resolution microscopy) approaches, suggesting that 
CyPA is a key molecular switch in ERBB2 downstream signaling. Ab-bound ERBB2 is phosphorylated by ERK 
and the kinase ability to phosphorylate its substrates has been shown to be sensitive to the conformation of the 
substrate backbone [(Ser/Thr)-Pro]47. Furthermore, a peptidyl-prolyl isomerase has been shown to target and 
isomerize the Pro residue next to the Ser/Thr residue phosphorylated by  ERK59. Indeed, our results show that 
CyPA silencing significantly reduces the levels of phospho-ERBB2, thus supporting the involvement of CyPA in 
the regulation of ERBB2 phosphorylation and activation. Moreover, we identified ERBB2  Pro702 as the binding 
site for CyPA (see model in Fig. 7). However, whether the isomerase activity of CyPA is involved in ERK-mediated 
receptor phosphorylation still remains an open issue.

In conclusion, we identified and characterized for the first time an ERBB2-specific downstream anti-onco-
genic signaling induced by treatment with Ab, negatively modulating the AKT pro-survival pathway, and rec-
ognized CyPA as a key regulator of this process.

These data shed new light on a dichotomous role of ERBB2: pro-oncogenic in the heterodimeric context and 
anti-proliferative in the homodimeric form. This previously unrecognized role of ERBB2 as a negative modulator 
of other ERBBs activity opens new perspectives for the treatment of ERBB2-positive carcinomas.

Methods
dSTORM super-resolution microscopy and pair cross-correlation. dSTORM super-resolution 
imaging was performed on a Leica SR GSD 3D TIRF microscope equipped with 300 mW 532 nm and 642 nm 
lasers; a 30 mW 405 nm laser; a Leica HCX PL APO 160 ×/1.43 Oil CORR GSD objective; a quad-band fil-
ter set with 417  nm, 496  nm, 544  nm, 655  nm dichroic and 421–477  nm, 497–519  nm, 547–621  nm, 666–
732 nm emission bands. Images were collected with an Andor iXon Ultra 897 EM-CCD camera over an area of 
18 × 18 µm. For TZ, samples were immunostained for CyPA (Alexa 647) and ERBB2 (Alexa 568) as described 
above. During acquisition, samples were embedded in MEA-Glucose Oxidase imaging buffer [PBS, 10  mM 
β-mercaptoethylamine (MEA) pH 7.4, 10% glucose (w/v), 0.5 mg/ml glucose oxidase, 40 µg/ml catalase] freshly 
prepared before each acquisition. In order to minimize photobleaching, Alexa 647 was imaged first, followed 
by Alexa 568. Fluorophores were initially pumped into dark states by illumination with 642  nm or 532  nm 
lights at 80% laser power until single fluorophore blinking was observed (< 15 s). Subsequently, single molecules 
were imaged at 60% laser power with a frame rate of 140 frames per second until a total of  106 (CyPA) and  105 
(ERBB2) events was reached, using a detection threshold of 20 photons and 40 photons for event recognition, 
respectively. For PZ, samples were immunostained for CyPA (Alexa 647) and ERBB2 (Alexa 555) as described 
previously. During acquisition, samples were embedded in dSTORM Super Resolution buffer (Abbelight). In 
order to minimize photobleaching, Alexa 647 was imaged first, followed by Alexa 555. Fluorophores were ini-
tially pumped into dark states by illumination with 642 nm or 532 nm lights at 40% and 60% laser power until 
single fluorophore blinking was observed (< 15  s), respectively. Subsequently, single molecules were imaged 
at 40% and 60% laser power with a frame rate of 140 frames per second until a total of  106 (CyPA) and 2 ×  105 
(ERBB2) events was reached, using a detection threshold of 40 photons and 60 photons for event recognition, 
respectively. The final images were calculated using a pixel size of 20 nm in the histogram mode.

CyPA recruitment on ERBB2 was assessed by performing pair cross-correlation analysis on 1 × 1 µm regions 
of interest (ROIs), as previously  described41.

Fab fragment preparation. TZ and PZ were enzymatically cleaved on immobilized papain for 10 h at 
37 °C, according to Thermo Scientific Pierce Fab Preparation Kit instructions. Digestion was verified by SDS-
page, and Fab fragments purified using high recovery regenerated cellulose membranes (Amicon Ultra centrifu-
gal filter units) with 100 kDa (to remove uncleaved whole Ab) and 30 kDa (to remove the Fc portion) cut-offs. 
Fab concentration was assessed by Bradford assay (Bio-Rad).

Immunoprecipitation (IP). p‑Thr308 AKT and CyPA interactors identification. SK-Br3 cells were either 
left untreated, or serum-starved for 20 min at 37 °C either in the absence or in the presence of U0126 and treated 
with TZ for additional 20 min at 37 °C. Before cell lysis, cells were washed twice with r.t. PBS and treated with 
1 mM DSP in PBS for 10 min at r.t. The cross-linker was quenched by incubation with 20 mM Tris for 5 min at 
r.t. Cells were washed twice with cold PBS, scraped in lysis buffer (containing 20 mM Hepes, 150 mM NaCl, 1% 
Triton-X100, 10% glycerol, and protease inhibitor cocktail, phosphatase inhibitor cocktail, 1 mM NaF, 1 mM 
sodium orthovanadate, 1 mM beta-glycerophosphate), incubated for 10 min on ice and sonicated. Cells were in-
cubated for 45 min on ice, and centrifuged at 16,000g for 5 min at 4 °C to remove nuclei and membranes. Protein 
concentrations were determined (BCA protein assay). Meanwhile, antibody binding to protein G dynabeads was 
performed with the protocol described  in60 with slight modifications. The antibody-crosslinked beads (50 μl) 
were incubated overnight at 4 °C with lysates of SK-Br3 cells. The following day, after removing the supernatant 
(unbound) and washing with buffer (containing 20 mM Hepes, 300 mM NaCl, 1% Triton-X100, 10% glycerol, 
and protease inhibitor cocktail, phosphatase inhibitor cocktail, 1 mM NaF, 1 mM sodium orthovanadate, 1 mM 
beta-glycerophosphate) for 5 × 5 min, the immunoprecipitates were eluted with 30 μl of 2 × Laemmli buffer with-
out reducing agent at 37 °C for 10 min. The eluate was transferred into a new tube, and samples were subjected to 
SDS-PAGE separation for Coomassie and mass spectrometry analysis. Alternatively, the eluate was transferred 
into a new tube, 10% β-mercaptoethanol added to cleave DSP, and samples were subjected to SDS-PAGE separa-
tion for Western blotting.
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AKT mutants analysis. SK-Br3 cells were transfected with constructs coding for FLAG-tagged AKT mutants, 
on the following day serum-starved for 20 min at 37 °C in the presence of U0126, and treated with TZ for addi-
tional 20 min at 37 °C. Before cell lysis, cells were washed twice with PBS and cross-linked with DSP, as described 
above. The cross-linker was quenched by incubation with 20 mM Tris for 5 min at r.t. Cells were washed with 
PBS, scraped in lysis buffer, incubated for 10 min on ice and sonicated. After 45 min on ice, cells were centrifuged 
at 16,000g for 5 min at 4 °C. Protein concentrations were quantified by BCA. Afterwards, anti-FLAG magnetic 
beads were incubated with 4–5 mg of protein lysates of transfected SK-Br3 cells for 3 h at 4 °C. After removing 
the supernatant (unbound) and washing with washing buffer (see above) for 5 × 5 min, the immunoprecipitates 
were eluted with 40 μl/sample of 2 × Laemmli buffer at 95 °C for 10 min, and then underwent SDS-PAGE separa-
tion for Western blotting.

ERBB2 phospho‑peptide analysis. SK-Br3 cells were serum-starved for 20 min at 37 °C either in the absence or 
in the presence of U0126 and treated with TZ for additional 5 min at 37 °C or with PZ for additional 20 min at 
37 °C. Cells lysates were prepared and their protein concentration determined as described above. Meanwhile, 
protein G dynabeads were incubated with antibody for 30 min at r.t. The antibody-bound beads (900 μl/sam-
ple) were incubated overnight at 4 °C with 15–20 mg of protein lysates of SK-Br3 cells. The following day, the 
supernatant (unbound) was removed, the beads were washed with washing buffer (see above) 5 times for 5 min, 
and the immunoprecipitates were eluted with 300 μl/sample of 2 × Laemmli buffer at 95 °C for 10 min (450 rpm 
agitation). The eluates were transferred into a new tube, and the samples were analysed by SDS-PAGE separation 
on 6% gels followed by either Coomassie staining and mass spectrometry or Western blotting.

ERBB2 dimerization analysis. SK-Br3 cells were serum-starved for 20 min at 37 °C and treated with TZ/PZ or 
Fab for additional 10 min at 37 °C. Before cell lysis, cells were washed with PBS and treated with 1 mM DTSSP 
in PBS for 10 min at r.t. The cross-linker was quenched as described above. Lysates were prepared as described 
above. Meanwhile, protein A dynabeads were incubated with rabbit anti-human antibody for 30 min at r.t. (to 
immunoprecipitate only the ERBB2 cohort bound to the treatment, TZ/PZ or Fab). One third of protein A 
dynabeads (already coated with rabbit anti-human antibody) were incubated with TZ/PZ for 30 min at r.t. (to 
immunoprecipitate the starved sample). The antibody-bound beads (450 μl/sample) were incubated overnight at 
4 °C with 7.5 mg of protein lysates of SK-Br3 cells. The following day, after removing the supernatant (unbound) 
and washing with washing buffer (see above) for 5 × 5 min, the immunoprecipitates were eluted with 200 μl/
sample of 2 × Laemmli buffer without reducing agent at 95 °C for 10 min (450 rpm agitation). The eluates were 
transferred into a new tube, and the samples underwent SDS-PAGE separation on 6% gels for Coomassie and 
mass spectrometry analysis or Western blotting.

ERBB2 mutants analysis. SK-Br3 cells were transfected with constructs coding for GFP-tagged ERBB2 mutants, 
on the following day serum-starved for 20 min at 37 °C, and treated with TZ or PZ for additional 20 min at 37 °C. 
Cells were washed with r.t. PBS and treated with DSP as described above. The cross-linker was quenched by 
incubation with 20 mM Tris for 5 min at r.t. Cell lysates were prepared as described above. Meanwhile, anti-
rabbit IgG F(ab’)2 Fragment-conjugated Sepharose beads were incubated with anti-GFP antibody for 90 min at 
r.t. (to immunoprecipitate only the ERBB2 cohort comprising at least one mutated ERBB2 partner). The anti-
body-bound beads (50 μl/sample) were incubated overnight at 4 °C with 5–6 mg of protein lysates of transfected 
SK-Br3 cells. The following day, the supernatant (unbound) was removed, the beads were washed with washing 
buffer (see above) for 5 × 5 min, and the immunoprecipitates were eluted with 50 μl/sample of Laemmli buffer at 
95 °C for 10 min (500 rpm agitation). The eluates were subjected to SDS-PAGE separation and WB.

Antibody crosslinking to dynabeads. Antibody binding to dynabeads was performed following the pro-
tocol reported  in60 with slight modifications. In particular, protein G dynabeads slurry (100 μl) was washed twice 
with 400 μl PBS buffer, and incubated with 18 μg phospho-AKT or 20 μg CyPA specific antibody (or rabbit/mouse 
IgG as control, respectively) prepared in PBS (200 μl final volume) at r.t. for 30 min on a wheel. The supernatant 
was discarded and the beads were washed three times with 600 μl PBS, followed by incubation with 200 μl DSS 
solution (20 μl 10 × PBS + 160 μl  H2O + 20 μl 100 mM DSS in DMSO) at r.t. for 60 min on a wheel. After removing 
the supernatant the beads were washed three times with 200 μl 1 M Tris–HCl pH 7.4, twice with 600 μl PBS buffer 
containing 1% Tween-20, then once with 600 μl PBS. The antibody-crosslinked beads (50 μl) were incubated over-
night at 4 °C with 4 mg or 1.5 mg (for phospho-AKT or CyPA, respectively) of lysate of SK-Br3 cells.

Mass spectrometry analysis. p‑Thr308 AKT interactors identification. The entire lanes were individu-
ally cut in nine bands and in-gel digested prior to mass spectrometry analysis. In particular, the bands, once 
excised from the gels, were de-stained, sequentially reduced, alkylated and digested overnight with sequencing-
grade trypsin, as previously  described61. Aliquots of the sample containing tryptic peptides were desalted using 
StageTip C18 (Thermo Scientific) and analysed by nLC-MS/MS using an LTQ-Orbitrap (Thermo Scientific, 
Bremen, Germany) equipped with a nano-electrospray ion source (Proxeon Biosystems) and an nHPLC Easy 
LC (Proxeon Biosystems). Peptide separations occurred on a homemade (75 µm i.d., 25 cm long) reverse phase 
silica capillary column, packed with 3-µm ReproSil-Pur 120 C18-AQ (Dr. Maisch GmbH, Germany). The nLC-
MS/MS was performed with the protocol described  in62 with slight modifications. A gradient of eluents A (dis-
tilled water with 2% v/v acetonitrile and 0.5% v/v acetic acid) and B (acetonitrile and 20% v/v distilled water 
with 0.5% v/v acetic acid) was used to achieve separation (150 nl/min flow rate), from 8% B to 50% B in 50 min. 
Full scan spectra were acquired with the lock-mass option, resolution set to 60,000 and mass range from m/z 300 
to 1750 Da. The ten most intense doubly and triply charged ions were selected and fragmented in the ion trap. 
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All MS/MS samples were analysed using Mascot (version 2.6, Matrix Science) search engine to search the Uni-
Prot_Human Complete Proteome_cp_hum_20170315 (92,919 sequences; 36,868,442 residues). Searches were 
performed with 3-missed cleavages allowed, carbamidomethylation on cysteine as fixed modification, protein 
N-terminus-acetylation, methionine oxidation and addition of 145.0198 Da on lysine and protein N-terminus 
(CAMthiopropanoyl modification) due to the cross-linking as variable modifications. Mass tolerance was set to 
5 ppm and 0.6 Da for precursor and fragment ions, respectively.

ERBB2 post translational modifications (PTM) assessment. The band, corresponding to ERBB2 protein, was 
excised from the gel, de-stained, sequentially reduced, alkylated with iodoacetamide and digested overnight with 
sequencing-grade trypsin, as above described. The peptides were extracted from the bands and subdigested over-
night with endoproteinase Glu-C (Roche Diagnostics). The phosphopeptides were enriched on  TiO2 resin and 
subsequently desalted using POROS Oligo R3 reversed-phase resin, as previously  reported63. The flow-through 
peptides were also desalted using a Stage Tip C18 (Thermo Scientific). All the peptide mixtures were analysed 
by nLC-MS/MS using a Q-Exactive mass spectrometer (Thermo Scientific, Bremen, Germany) equipped with 
a nano-electrospray ion source (Proxeon Biosystems) and a nUPLC Easy-nLC 1000 (Proxeon Biosystems) as 
described  in64 with slight modifications. Peptide separations occurred on a homemade (75 µm i.d., 12 cm long) 
reverse phase silica capillary column, packed with 1.9-µm ReproSil-Pur 120 C18-AQ (Dr. Maisch GmbH, Ger-
many). A gradient of eluents A (distilled water with 0.1% v/v formic acid) and B (acetonitrile with 0.1% v/v for-
mic acid) was used to achieve separation (300 nl/min flow rate), from 0% B to 45% B in 45 min. Full scan spectra 
were acquired with the lock-mass option, resolution set to 70,000 and mass range from m/z 300 to 2000 Da. The 
ten most intense doubly and triply charged ions were selected and fragmented in the ion  trap64. The experiments 
were performed in technical duplicates and biological duplicates. In order to quantify the amount of phos-
phorylation on each site, the raw data were loaded into the MaxQuant software version 1.5.2.8. Searches were 
performed against the UniProt_Human Complete Proteome_cp_hum_20170315 (92,919 sequences; 36,868,442 
residues), with trypsin + Glu-C as proteolytic enzymes, 2-missed cleavages allowed, carbamidomethylation on 
cysteine as fixed modification, protein N-terminus-acetylation, methionine oxidation and phosphorylation on 
Ser/Thr/Tyr as variable modifications. Mass tolerance was set to 5 ppm and 20 ppm for precursor and fragment 
ions, respectively. The intensities of precursors were used for the label-free protein quantification. Peptides and 
proteins were accepted with a FDR less than 1%, two minimum peptides per protein with one unique.

ERBB2 dimerization assessment. The high molecular weight bands containing ERBB2 protein, as indicated 
by WB analysis, were excised from the gel, de-stained, sequentially reduced, alkylated with iodoacetamide and 
digested overnight with sequencing-grade trypsin, as previously  described61,65. The peptides were extracted from 
the bands, desalted using a Stage Tip C18 (Thermo Scientific) and analysed by nLC-MS/MS using a Q-Exactive 
mass spectrometer (Thermo Scientific, Bremen, Germany) equipped with a nano-electrospray ion source (Prox-
eon Biosystems) and an UPLC Easy-nLC 1000 (Proxeon Biosystems), as above reported. The experiments were 
performed in technical triplicates and biological duplicates. In order to quantify the amount of proteins in the 
high-molecular weight bands, the raw data were loaded into the MaxQuant software version 1.5.2.8. Searches 
were performed against the UniProt_Human Complete Proteome_cp_hum_20180228 (93,786 sequences; 
37,179,059 residues), with the same parameters reported above plus the addition of 145.0198 Da on lysine and 
protein N-terminus (CAMthiopropanoyl modification) due to the cross-linking as variable modifications. Mass 
tolerance was set to 5 ppm and 20 ppm for precursor and fragment ions, respectively. The intensities of precur-
sors were used for the label-free protein quantification. Peptides and proteins were accepted with an FDR less 
than 1%, two minimum peptides per protein with one unique. In order to normalize the amount of proteins, 
the rabbit anti-human antibody, which was equally added to the samples during the IP, was also quantified. 
In this case, when using the MaxQuant software for the label free analysis of the bands corresponding to the 
Ab (Supplementary Fig. 4) searches were performed against the UniProt_Rabbit Complete Proteome_cp_rab-
bit_20180228. All the other parameters were as above reported. To quantify the relative abundance of heterodi-
mers vs homodimers, we normalized the intensities of EGFR (to estimate heterodimers) and ERBB2 (to estimate 
homodimers) peptides (per μg of immunoprecipitate) for the equivalent peptides obtained per μg of control 
SK-Br3 lysate.

Ethics statement. All experimental protocols were approved by the Institutional Ethical Board of the Euro-
pean Institute of Oncology (IEO, Milan, Italy); all patients recruited for this study signed informed consent 
under these ethics, and all methods were carried out in accordance with relevant guidelines and regulations.

Received: 5 March 2020; Accepted: 16 September 2020

References
 1. Press, M. F., Cordon-Cardo, C. & Slamon, D. J. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal 

tissues. Oncogene 5, 953–962 (1990).
 2. Segatto, O., Lonardo, F., Pierce, J. H., Bottaro, D. P. & Di Fiore, P. P. The role of autophosphorylation in modulation of erbB-2 

transforming function. New Biol. 2, 187–195 (1990).
 3. Hudziak, R. M., Schlessinger, J. & Ullrich, A. Increased expression of the putative growth factor receptor p185HER2 causes trans-

formation and tumorigenesis of NIH 3T3 cells. Proc. Natl. Acad. Sci. U.S.A. 84, 7159–7163 (1987).



16

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16906  | https://doi.org/10.1038/s41598-020-73835-1

www.nature.com/scientificreports/

 4. Mayer, I. A. Treatment of HER2-positive metastatic breast cancer following initial progression. Clin. Breast Cancer 9(Suppl 2), 
S50–S57 (2009).

 5. Arteaga, C. L. & Engelman, J. A. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer thera-
peutics. Cancer Cell 25, 282–303 (2014).

 6. Jorissen, R. N. et al. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res. 284, 31–53 (2003).
 7. Olayioye, M. A., Neve, R. M., Lane, H. A. & Hynes, N. E. The ErbB signaling network: receptor heterodimerization in development 

and cancer. EMBO J. 19, 3159–3167 (2000).
 8. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell. Biol. 2, 127–137 (2001).
 9. Citri, A. & Yarden, Y. EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell. Biol. 7, 505–516 (2006).
 10. Tzahar, E. et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/

neuregulin and epidermal growth factor. Mol. Cell. Biol. 16, 5276–5287 (1996).
 11. Klapper, L. N. et al. The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple 

stroma-derived growth factors. Proc. Natl. Acad. Sci. U.S.A. 96, 4995–5000 (1999).
 12. Graus-Porta, D., Beerli, R. R., Daly, J. M. & Hynes, N. E. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, 

is a mediator of lateral signaling. EMBO J. 16, 1647–1655 (1997).
 13. Cho, H. S. et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421, 756–760 

(2003).
 14. Garrett, T. P. et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with 

other ErbB receptors. Mol. Cell 11, 495–505 (2003).
 15. Karunagaran, D. et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J. 

15, 254–264 (1996).
 16. Harari, D. & Yarden, Y. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19, 6102–6114 (2000).
 17. Holbro, T., Civenni, G. & Hynes, N. E. The ErbB receptors and their role in cancer progression. Exp. Cell Res. 284, 99–110 (2003).
 18. Nahta, R. & Esteva, F. J. Herceptin: mechanisms of action and resistance. Cancer Lett. 232, 123–138 (2006).
 19. Mosesson, Y. & Yarden, Y. Oncogenic growth factor receptors: implications for signal transduction therapy. Semin. Cancer Biol. 

14, 262–270 (2004).
 20. Baselga, J., Albanell, J., Molina, M. A. & Arribas, J. Mechanism of action of trastuzumab and scientific update. Semin. Oncol. 28, 

4–11 (2001).
 21. Yakes, F. M. et al. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects 

on p27, cyclin D1, and antitumor action. Cancer Res. 62, 4132–4141 (2002).
 22. Nicholson, K. M. & Anderson, N. G. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 14, 381–395 

(2002).
 23. Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 

8, 627–644 (2009).
 24. Seshacharyulu, P., Pandey, P., Datta, K. & Batra, S. K. Phosphatase: PP2A structural importance, regulation and its aberrant expres-

sion in cancer. Cancer Lett. 335, 9–18 (2013).
 25. Choudhury, A. et al. Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and 

induces apoptosis of Her2/neu positive tumor cell lines. Int. J. Cancer 108, 71–77 (2004).
 26. Faltus, T. et al. Silencing of the HER2/neu gene by siRNA inhibits proliferation and induces apoptosis in HER2/neu-overexpressing 

breast cancer cells. Neoplasia 6, 786–795 (2004).
 27. Franklin, M. C. et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5, 317–328 

(2004).
 28. Carter, P., Fendly, B. M., Lewis, G. D. & Sliwkowski, M. X. Development of herceptin. Breast Dis. 11, 103–111 (2000).
 29. Fisher, R. D. et al. Structure of the complex between HER2 and an antibody paratope formed by side chains from tryptophan and 

serine. J. Mol. Biol. 402, 217–229 (2010).
 30. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).
 31. Lehr, S. et al. Identification of major ERK-related phosphorylation sites in Gab1. Biochemistry 43, 12133–12140 (2004).
 32. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional inactivation of TSC2 by 

Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193 (2005).
 33. Zmajkovicova, K. et al. MEK1 is required for PTEN membrane recruitment, AKT regulation, and the maintenance of peripheral 

tolerance. Mol. Cell 50, 43–55 (2013).
 34. Shah, O. J., Wang, Z. & Hunter, T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin 

resistance, and cell survival deficiencies. Curr. Biol. 14, 1650–1656 (2004).
 35. Ma, L. et al. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR 

activation in tuberous sclerosis and human cancer. Cancer Res. 67, 7106–7112 (2007).
 36. Liao, Y. & Hung, M. C. Physiological regulation of Akt activity and stability. Am. J. Transl. Res. 2, 19–42 (2010).
 37. Xiao, L. et al. Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and dif-

ferentiation. Cell Death Differ. 17, 1448–1462 (2010).
 38. Lu, K. P., Finn, G., Lee, T. H. & Nicholson, L. K. Prolyl cis-trans isomerization as a molecular timer. Nat. Chem. Biol. 3, 619–629 

(2007).
 39. Lin, Z. L., Wu, H. J., Chen, J. A., Lin, K. C. & Hsu, J. H. Cyclophilin A as a downstream effector of PI3K/Akt signalling pathway in 

multiple myeloma cells. Cell. Biochem. Funct. 33, 566–574 (2015).
 40. Obata, T. et al. Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J. Biol. Chem. 275, 36108–

36115 (2000).
 41. Sengupta, P. et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods 

8, 969–975 (2011).
 42. Pearson, R. B. & Kemp, B. E. Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods 

Enzymol. 200, 62–81 (1991).
 43. Kawasaki, Y. et al. Feedback control of ErbB2 via ERK-mediated phosphorylation of a conserved threonine in the juxtamembrane 

domain. Sci. Rep. 6, 31502 (2016).
 44. Li, X., Huang, Y., Jiang, J. & Frank, S. J. ERK-dependent threonine phosphorylation of EGF receptor modulates receptor down-

regulation and signaling. Cell Signal. 20, 2145–2155 (2008).
 45. RedBrewer, M. et al. The juxtamembrane region of the EGF receptor functions as an activation domain. Mol. Cell 34, 641–651 

(2009).
 46. Hazan, R. et al. Identification of autophosphorylation sites of HER2/neu. Cell Growth Differ. 1, 3–7 (1990).
 47. Weiwad, M., Kullertz, G., Schutkowski, M. & Fischer, G. Evidence that the substrate backbone conformation is critical to phos-

phorylation by p42 MAP kinase. FEBS Lett. 478, 39–42 (2000).
 48. Bessman, N. J., Freed, D. M. & Lemmon, M. A. Putting together structures of epidermal growth factor receptors. Curr. Opin. Struct. 

Biol. 29, 95–101 (2014).
 49. Fuentes, G., Scaltriti, M., Baselga, J. & Verma, C. S. Synergy between trastuzumab and pertuzumab for human epidermal growth 

factor 2 (Her2) from colocalization: an in silico based mechanism. Breast Cancer Res 13, R54 (2011).



17

Vol.:(0123456789)

Scientific Reports |        (2020) 10:16906  | https://doi.org/10.1038/s41598-020-73835-1

www.nature.com/scientificreports/

 50. Franco-Gonzalez, J. F., Ramos, J., Cruz, V. L. & Martinez-Salazar, J. Exploring the dynamics and interaction of a full ErbB2 recep-
tor and Trastuzumab-Fab antibody in a lipid bilayer model using Martini coarse-grained force field. J. Comput. Aid. Mol. Des. 28, 
1093–1107 (2014).

 51. Wang, P. & Heitman, J. The cyclophilins. Genome Biol. 6, 226 (2005).
 52. Wulf, G., Ryo, A., Liou, Y. C. & Lu, K. P. The prolyl isomerase Pin1 in breast development and cancer. Breast Cancer Res. 5, 76–82 

(2003).
 53. Stancovski, I. et al. Mechanistic aspects of the opposing effects of monoclonal antibodies to the ERBB2 receptor on tumor growth. 

Proc. Natl. Acad. Sci. U.S.A. 88, 8691–8695 (1991).
 54. Lam, P. B. et al. Prolyl isomerase Pin1 is highly expressed in Her2-positive breast cancer and regulates erbB2 protein stability. Mol. 

Cancer 7, 91 (2008).
 55. Obchoei, S. et al. Cyclophilin A: potential functions and therapeutic target for human cancer. Med Sci Monit 15, RA221–RA232 

(2009).
 56. Lee, J. & Kim, S. S. Current implications of cyclophilins in human cancers. J. Exp. Clin. Cancer Res. 29, 97 (2010).
 57. Hamel, S. et al. Both t-Darpp and DARPP-32 can cause resistance to trastuzumab in breast cancer cells and are frequently expressed 

in primary breast cancers. Breast Cancer Res. Treat. 120, 47–57 (2010).
 58. Sato, K. et al. Inverse correlation between Thr-669 and constitutive tyrosine phosphorylation in the asymmetric epidermal growth 

factor receptor dimer conformation. Cancer Sci. 104, 1315–1322 (2013).
 59. Hsu, T., McRackan, D., Vincent, T. S. & Gert de Couet, H. Drosophila Pin1 prolyl isomerase Dodo is a MAP kinase signal responder 

during oogenesis. Nat. Cell Biol. 3, 538–543 (2001).
 60. Huang, B. X. & Kim, H. Y. Effective identification of Akt interacting proteins by two-step chemical crosslinking, co-immunopre-

cipitation and mass spectrometry. PLoS ONE 8, e61430 (2013).
 61. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. 

Anal. Chem. 68, 850–858 (1996).
 62. Magagnotti, C. et al. Identification of nephropathy predictors in urine from children with a recent diagnosis of type 1 diabetes. J. 

Proteomics 193, 205–216 (2019).
 63. Thingholm, T. E., Jorgensen, T. J., Jensen, O. N. & Larsen, M. R. Highly selective enrichment of phosphorylated peptides using 

titanium dioxide. Nat. Protoc. 1, 1929–1935 (2006).
 64. Niada, S., Giannasi, C., Gualerzi, A., Banfi, G. & Brini, A. T. Differential proteomic analysis predicts appropriate applications for 

the secretome of adipose-derived mesenchymal stem/stromal cells and dermal fibroblasts. Stem Cells Int. 2018, 7309031 (2018).
 65. Barber, D. S., Stevens, S. & LoPachin, R. M. Proteomic analysis of rat striatal synaptosomes during acrylamide intoxication at a 

low dose rate. Toxicol. Sci. 100, 156–167 (2007).

Acknowledgements
The authors would like to thank Prof. Pier Paolo Di Fiore for helpful discussion, Prof. Giulio Draetta for help-
ful suggestions and critical reading of the manuscript, Prof. Paolo Antonelli and Dr. Alessandro Nonis for help 
with statistical analysis, and Dr. Fabiana Vallone for help with mass spectrometry analyses. Mass spectrometry 
analyses were performed at ProMiFa (Protein Microsequencing Facility), Ospedale San Raffaele, Milan, Italy. 
Super-resolution microscopy was carried out in Alembic (Advanced Light and Electron Microscopy BioImaging 
Center), Ospedale San Raffaele, Milan, Italy.

Author contributions
Conceived and designed the experiments: T.D., and C.T. Performed the experiments: M.G., A.Rab., A.A., M.B., 
P.B., G.D.F., A.Rai., D.M., T.D. Analysed and interpreted the data: M.G., M.B., C.B., A.A., D.M., C.T., T.D. Wrote 
the paper: T.D., C.T. Drafted or revised the article: G.T., L.G., Y.Y. Contributed data or reagents: A.L., D.T., L.G., 
G.T. Co-last authors: C.T., and T.D. All authors reviewed the manuscript.

Funding
Financial support from Compagnia San Paolo (grant number 2011.1172 and 2015.0323) to CT, and from 
AIRC (Associazione Italiana Ricerca sul Cancro, IG number 12035 and 17109) to CT and GT is gratefully 
acknowledged.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https:// doi. org/ 10. 1038/ s41598- 020- 73835-1.

Correspondence and requests for materials should be addressed to C.T. or T.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2020, corrected publication 2021

https://doi.org/10.1038/s41598-020-73835-1
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Direct stimulation of ERBB2 highlights a novel cytostatic signaling pathway driven by the receptor Thr701 phosphorylation
	Results
	Antibodies against ERBB2 extracellular domain promote AKT de-phosphorylation via ERK. 
	Ab-induced AKT de-phosphorylation is an exclusive ERBB2 signaling. 
	Abs binding promotes ERBB2 homodimerization. 
	Ab-induced AKT de-phosphorylation depends on SerThr phosphatase activity. 
	Cyclophilin A interacts with phospho-AKT in an ERK-dependent manner. 
	CyPA silencing promotes AKT de-phosphorylation in the absence of ERK signaling. 
	CyPA is recruited by ERBB2 upon Ab treatment. 
	CyPA and PP2A bind to the same AKT residues. 
	ERK and CyPA positively regulate ERBB2-Tyr1248 activation via a feedback loop involving ERBB2-Thr701 phosphorylation. 

	Discussion
	Methods
	dSTORM super-resolution microscopy and pair cross-correlation. 
	Fab fragment preparation. 
	Immunoprecipitation (IP). 
	p-Thr308 AKT and CyPA interactors identification. 
	AKT mutants analysis. 
	ERBB2 phospho-peptide analysis. 
	ERBB2 dimerization analysis. 
	ERBB2 mutants analysis. 

	Antibody crosslinking to dynabeads. 
	Mass spectrometry analysis. 
	p-Thr308 AKT interactors identification. 
	ERBB2 post translational modifications (PTM) assessment. 
	ERBB2 dimerization assessment. 

	Ethics statement. 

	References
	Acknowledgements


