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Diagnosis of common pulmonary 
diseases in children by X‑ray 
images and deep learning
Kai‑Chi Chen1,7, Hong‑Ren Yu2,3,7, Wei‑Shiang Chen1, Wei‑Che Lin4, Yi‑Chen Lee2,3, 
Hung‑Hsun Chen5, Jyun‑Hong Jiang6, Ting‑Yi Su1, Chang‑Ku Tsai2,3, Ti‑An Tsai2,3, 
Chih‑Min Tsai2,3 & Henry Horng‑Shing Lu1*

Acute lower respiratory infection is the leading cause of child death in developing countries. 
Current strategies to reduce this problem include early detection and appropriate treatment. Better 
diagnostic and therapeutic strategies are still needed in poor countries. Artificial‑intelligence chest 
X‑ray scheme has the potential to become a screening tool for lower respiratory infection in child. 
Artificial‑intelligence chest X‑ray schemes for children are rare and limited to a single lung disease. We 
need a powerful system as a diagnostic tool for most common lung diseases in children. To address 
this, we present a computer‑aided diagnostic scheme for the chest X‑ray images of several common 
pulmonary diseases of children, including bronchiolitis/bronchitis, bronchopneumonia/interstitial 
pneumonitis, lobar pneumonia, and pneumothorax. The study consists of two main approaches: 
first, we trained a model based on YOLOv3 architecture for cropping the appropriate location of 
the lung field automatically. Second, we compared three different methods for multi‑classification, 
included the one‑versus‑one scheme, the one‑versus‑all scheme and training a classifier model based 
on convolutional neural network. Our model demonstrated a good distinguishing ability for these 
common lung problems in children. Among the three methods, the one‑versus‑one scheme has the 
best performance. We could detect whether a chest X‑ray image is abnormal with 92.47% accuracy 
and bronchiolitis/bronchitis, bronchopneumonia, lobar pneumonia, pneumothorax, or normal with 
71.94%, 72.19%, 85.42%, 85.71%, and 80.00% accuracy, respectively. In conclusion, we provide a 
computer‑aided diagnostic scheme by deep learning for common pulmonary diseases in children. 
This scheme is mostly useful as a screening for normal versus most of lower respiratory problems 
in children. It can also help review the chest X‑ray images interpreted by clinicians and may remind 
possible negligence. This system can be a good diagnostic assistance under limited medical resources.

The high rates of hospitalization for acute lower respiratory infection (ALRI) among children have been 
 highlighted1,2 The hospitalization rate for children with acute lower respiratory infection is 5772 per 100,0001. 
ALRI is also the leading cause of child death worldwide, accounting for 20% of mortality in children less than 
5 years  old3,4. The importance of acute lower respiratory diseases is reflected not only in the morbidity and mor-
tality rates, but also in the long-term consequences. In developed countries, the etiology and clinical features of 
ALRI have been extensively investigated; however, ALRI remains a serious cause of childhood death in develop-
ing countries with an estimated 4 million deaths  annually5. Current strategies for reducing pneumonia deaths 
include early detection and appropriate treatment of pneumonia. However, better diagnostic and therapeutic 
strategies are still urgently needed for children in low-income countries.

Bronchiolitis/bronchitis and pneumonia are the most common and significant causes of ALRI in  children6. 
They are also expected to be among the four leading causes of death by  20307. Bronchiolitis, a viral small 
airway infection, which is characterized by wide-spread inflammation of the small airways and increases in 
mucous production and bronchiolar epithelial cell  necrosis8. Bronchiolitis is a clinical diagnosis characterized 
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by tachypnea, wheezing, or crepitation in young children of less than 2 years  old9. Bronchiolitis is a clinical 
diagnosis based primarily on the typical history and a physical examination of the patient. Chest radiographs 
may be considered in children specifically when bronchiolitis is recurrent or pneumonia is suspected. Chest 
radiographs for bronchiolitis can be variable and non-specific, including lung hyperinflation, peri-bronchial 
thickening, increased interstitial markings, and a diffuse infiltration but without a confluence consolidation or 
 collapse10. As with acute bronchiolitis, acute bronchitis is a lower respiratory tract infection involving the large 
airways (bronchi) without evidence of pneumonia in older children. For acute bronchitis, chest X-rays are also 
often unclear. Thickening of the bronchial wall has been shown in some  reports11. Although a chest radiograph is 
not always advised for acute bronchitis in clinical practice, a chest X-ray can help distinguish between bronchitis 
and pneumonia. Pneumonia is defined as a condition typically associated with fever, respiratory symptoms, and 
evidence of lung parenchymal involvement, either by physical examination or the presence of infiltrates in the 
chest radiograph. According to clinical guidelines, the gold standard for the diagnosis of pneumonia is the pres-
ence of lung infiltrates as indicated by a chest  radiography12. Radiographically, lobar pneumonia, manifests as 
a non-segmental, homogeneous consolidation involving a single lobe, or less commonly, multiple lobes. Larger 
bronchi often remain patent with air, establishing the characteristic air bronchogram.

With recent medical developments, better diagnostic and therapeutic strategies are still urgently required 
for children in low-income countries. Chest radiography is the most common and important diagnostic imag-
ing technique for pulmonary disease in clinical settings. An automated analysis can help control the variability 
among radiologists and advise clinicians about abnormal cases for further interpretation. Deep learning skills 
have been applied to the construction of models for diagnosis, such as an automated classification of pulmonary 
 tuberculosis13, breast cancer  detection14, and retinal disease  detection15. However, most artificial-intelligence 
based chest X-ray schemes have focused on a single disease such as pneumonia or  pneumothorax16–18, and 
there has been limited radiologist-level detection for multiple diseases based on CheXNet for  adults19. We need 
a powerful system as a diagnostic tool for most of lung diseases in children. We had developed methods based 
on machine learning for medical image  analysis20 and deep learning for the other types of medical  images21,22. 
In this study, we used the recent development of deep learning techniques for the task of medical investigation.

The common lung diseases and chest X-ray features differ between children and adults. In clinical practice, 
several conditions, and not just pneumonia or pneumothorax, may be encountered by physicians. Thus, we 
designed a solution for a computer-aided diagnostic (CAD) scheme for chest X-ray images of several common 
pulmonary diseases in children.

Materials and methods
Design. This study used chest X-ray images from Kaohsiung Chang Gung Memorial Hospital and a convolu-
tional neural network (CNN), a deep learning technique used to construct a CAD scheme. The dataset contained 
chest X-ray images of four different lung diseases and normal images. To deal with this problem, we used three 
schemes to construct the model, including a one-versus-one (OVO) scheme, one-versus-all (OVA) scheme, 
and a classifier trained model based on a  CNN23. We built ten and five binary classifiers for the OVO and OVA 
schemes, respectively. A transfer learning model based on a residual network (ResNet)24 or  DenseNet25 archi-
tecture was used to establish each binary classifier by applying our dataset, which was cropped using  YOLOv326. 
The outputs of the binary classifiers were then aggregated to predict the final output label. Finally, a test set was 
used to evaluate the effectiveness of the three schemes. The framework of this study is shown in Fig. 1.

Image source. This study was conducted at the Department of Pediatrics, Kaohsiung Chang Gung Memo-
rial Hospital, Kaohsiung, Taiwan, from January 1, 2018 to December 31, 2019 in accordance with relevant guide-
lines and regulations. The study was approved by the Institutional Review Board of Kaohsiung Chang Gung 
Memorial Hospital (201801029B0C601 and 201901277B0). Informed consent was waived by the ethics commit-
tee of Kaohsiung Chang Gung Memorial Hospital because data are decoded. This study retrospectively reviewed 

Figure 1.  Framework of the present study. The chest X-ray images were cropped using YOLOv3 to reduce 
potential noise and then split into training and test set. The training set were split to conduct a fivefold cross-
validation for the parameter selection. The DenseNet or ResNet algorithm was adopted to build the CNN 
classifier for the three different schemes. The performances of the schemes were evaluated using the test set.



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17374  | https://doi.org/10.1038/s41598-020-73831-5

www.nature.com/scientificreports/

radiographs in children and adolescents 1–17 years in age that admitted the Department of Pediatrics, Kaohsi-
ung Chang Gung Memorial Hospital for acute lower airway infections, pneumothorax, or other non-respiratory 
disease with a normal chest X-ray were recruited. All the chest X-ray images were taken for clinical demand. 
Each radiological interpretations was provided both by a pediatric pulmonologist and a pediatric radiologist. 
Radiographic images were then classified into five categories: normal, bronchiolitis/bronchitis, bronchopneu-
monia/interstitial pneumonitis, lobar pneumonia, or pneumothorax. All chest radiographs were taken digitally, 
either with a flat panel detector or with a digital storage system. Uniform and regular quality assessments were 
conducted on the system performance, including the display characteristics.

Preprocessing of images. To accurately localize the relevant region of interest, we used YOLOv3 to auto-
matically crop the original images. YOLOv3 is widely used in object detection in chest cavities. As the input of 
the model, an entire image was applied along with a bounding box, which is a rectangle marking the position of 
the desired object. There were four parameters of the bounding box: x (x coordinate of the center of the rectan-
gle), y (y coordinate of the center of the rectangle), w (width of the rectangle), h (length of the rectangle). The 
trained model could predict the bounding box parameters of the desired object of the test image, which we used 
to frame the position of the chest cavity. For training, if the images cropped by YOLOv3 had not been square, 
they would have been filled with black edges. The workflow of the image preprocessing is shown in Fig. 2.

One‑versus‑one (OVO) scheme. In the one versus one scheme, there were k(k − 1)/2 binary classifiers for 
a k-class multi-classification problem. Each binary classifier was responsible for distinguishing a different pair 
of categories, using only two categories of the dataset for learning. For validation, the test set was placed into 
all models and the corresponding outputs were aggregated to obtain the final output of the system. A weighted 
voting strategy was used to aggregate the output in this  scheme27. Each binary classifier provided a predicted 
confidence level for the two categories. The category with the largest summed confidence was the final output.

One‑versus‑all (OVA) scheme. In the one-versus-all scheme, there were k binary classifiers for a k-class 
multi-classification problem. Each binary classifier was responsible for distinguishing a specified category among 
all other categories. For validation, the test set was placed into all models and the corresponding outputs were 
aggregated to obtain the final output of the system. The maximum confidence strategy was used to aggregate the 
output in this scheme. Each binary classifier provided a predicted confidence for the category it focused on. The 
category with the largest confidence was the final output category.

Five‑fold image classification based on CNN. This study was built on fast.ai version 1.0.60 and PyTorch 
version 1.2.0, and using a PC with an NVIDIA GeForce GTX 1080 Ti GPU. Each classifier was constructed 
based on transfer learning, extracting features based on the ResNet architecture or DenseNet architecture, which 
replaced the fully connected layer with some randomly initialized layers such as a batch normalization layer, a 
dropout layer, and an activation layer. A dropout layer deactivated a certain proportion of neurons per layer to 
prevent an overfitting. A rectified linear unit function, which is a type of activation layer, is used for replacing a 
negative input with a zero to increase the nonlinearity of the model. A batch normalization layer standardized 
the input layer by re-centering and re-scaling to more efficiently improve the training of the neural network. 
There was degradation problem in some deep CNN. When the CNN was deeper, we often thought the result 
might be better. The degradation problem was that when CNN was deeper, the accuracy was not better or even 
worse. ResNet with residual learning was proposed to solve the problem. The convolutional layer connected the 
former 2 or 3 layer by element-wise addition to form a shortcut connection which could learn more efficiently 
and for solving this problem. Every convolutional layer of DenseNet was concatenated with all previous layers 
by channel-wise addition to form a dense connection which could reuse the low-level features. Since each layer 
received feature maps from all previous layers, the network could be thinner and more compact. It could com-
pute more efficiently than ResNet. We used the two relatively new CNN models for training in this study. We 
used the ResNet34 architecture and DenseNet169 architecture established in fast.ai, along with our own devel-

Figure 2.  Workflow of the image preprocessing: (a) original image, (b) the location of the bounding box and a 
schematic of the parameters, (c) image cropped by the bounding box, and (d) image filled with black edges.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17374  | https://doi.org/10.1038/s41598-020-73831-5

www.nature.com/scientificreports/

oped dataset and focal  loss28 for the training, where α and γ are the two focal loss parameters applied. The former 
was helpful for the problem of an imbalanced number of categories, and the latter can down-weight easy exam-
ples and thus focus the training on difficult examples. Each category was split into a training set and a test set at 
a ratio of 8:2 at random based on stratified sampling. The number of split images was shown in Table 1. Because 
our dataset was small, the training set was used to conduct a fivefold cross-validation29 to select hyperparameters 
to avoid an overfitting. The training set would be split into five sets. Regarded a set as the validation set and the 
others as the training set then repeated the step five times. Different sets would be regarded as the validation 
set each time. Used the hyperparameters with the best average performance on validation set. Finally, trained a 
model with the selected hyperparmeters and the original training set then used the test set to get the test per-
formance. The hyperparameters we used for each classifier are shown in the Supplementary Table S1–S3 online.

Visual explanations via gradient‑weight class activation mapping (Grad‑CAM). In an image 
classification model, a good visual explanation means that the model can find the location of the predicted 
category in the test image and capture fine-grained details. Grad-CAM30 uses the gradient information of the 
last convolutional layer of the model to infer the importance of each neuron for the final decision, and the cor-
responding result is presented in the form of a heatmap. This tool is helpful for establishing appropriate trust in 
predictions from deep networks.

Statistical analysis. In our binary classifiers, the performance was evaluated based on the total accuracy 
and the accuracy of each category. The accuracy was defined as the ratio of the number of correctly classified 
images to the total number of test images. The accuracy of each category was the accuracy of that specified cat-
egory. In the binary classifiers of disease versus normal conditions, the accuracy of the disease was the same as 
sensitivity, and the accuracy of the normal conditions was the same as specificity. In our multiple classifiers, the 
performance was evaluated based on the classification rate and Cohen’s  kappa31,32. The former was defined as the 
ratio of the number of correctly classified images of all categories to the number of total test images, the latter 
scores the successful hits independently for each class and then aggregates them, and thus is less sensitive to the 
randomness caused by the unbalanced amount of each category.

For all performances, we used R (version 3.6.1) and the boot package to calculate the confidence interval 
of the metrics, applying the BCa bootstrap  method33 because we were unsure whether the measurements were 
normally distributed.

Results
Comparison of using or not using YOLOv3 to crop images. We constructed binary classifiers for our 
four disease versus normal images. Table 1 shows the number of images used for the models trained by the origi-
nals and the number of cropped images. The performance when using test images from the originals to train the 
disease models reached 93.99% for lobar pneumonia, 86.38% for bronchopneumonia/interstitial pneumonitis, 
85.84% for bronchiolitis/bronchitis, and 92.25% for pneumothorax versus the normal images. The performance 
when using images trimmed by YOLOv3 was 96.69% for lobar pneumonia, 90.55% for bronchopneumonia/
interstitial pneumonitis, 87.50% for bronchiolitis/bronchitis, and 94.49% for pneumothorax. The details of the 
performance are shown in Table 2.

The performance of the models trained using the cropped images was better than that with the original 
images. As Table 2 showed, the accuracy was generally higher and the corresponding confidence intervals were 
narrower. The cropped images for training had resulted in higher sensitivity or specificity. We hoped that the 
clinical features could be focused in Grad-CAM. The regions captured by the model trained with the cropped 
images were shown in Fig. 3. Based on the above experiment, we used the trimmed images for the subsequent 
study.

Performance of multiple classification. In clinical, unexpected condition may be encountered by phy-
sicians, we would like to expand the binary classifiers to multi-class classifier since only using binary classi-
fiers needed some prior assumptions. For example, a new X-ray image would be put in the binary classifier of 
pneumothorax versus normal if it was assumed to be pneumothorax. To find single solution for five categories 
of the common pediatric lower airway problems, we investigated three schemes combined with a deep learning 
technique. The number of images used is shown in the last row of Table 1. A total of 531 test set images were 

Table 1.  Split between training and test sets and total number for each category.

Training set Test set Total number

Bronchopneumonia 676 169 845

Bronchiolitis 560 139 699

Lobar pneumonia 387 96 483

Normal 342 85 427

Pneumothorax 172 42 214

All category 2137 531 2668
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used, which contained 169 bronchopneumonia images, 139 bronchiolitis images, 96 lobar pneumonia images, 
42 pneumothorax images, and 85 normal images.

First, the OVO scheme used the output of the ten binary classifiers to aggregate the final output. The perfor-
mance of the ten binary classifiers was shown in Supplementary Table S4 online and reached almost over 90%. 
No gaps were shown between the accuracies of the two categories for the binary classifiers, which indicates that 
the classifiers did not tend to learn the features of a specified category. The aggregated results based on the OVO 
scheme achieved a classification rate of 76.84% and a Cohen’s Kappa score of 69.76%. From the confusion matrix 
in Fig. 4a, bronchopneumonia and bronchitis were easily misclassified.

Second, the accuracy of the binary classifiers of the OVA scheme were all over 80%, as shown in the Supple-
mentary Table S5 online, although the accuracy of the “other” category was consistently higher than that of each 
specified category. The aggregated results of the OVA scheme reached a classification rate of 74.58% and a Cohen’s 
Kappa score of 66.74%. From the confusion matrix shown in Fig. 4b, bronchopneumonia and bronchiolitis were 
easily misclassified, and bronchiolitis was easy misclassified as normal.

Table 2.  Diagnostic performance of binary classifiers for diseases versus normal conditions built using the 
original images and cropped images, where the numbers of test images are as listed in Table 1.

Type

Binary classifier Performance

Category Accuracy Sensitivity Specificity

Original images

Bronchiolitis
85.84% 89.21% 80.46%

(0.8029–0.8982) (0.8273–0.9394) (0.6980–0.8750)

Bronchopneumonia
86.38% 88.82% 81.61%

(0.8054–0.8988) (0.8323–0.9321) (0.7210–.8915)

Lobar pneumonia
93.99% 94.79% 93.10%

(0.8962–0.9627) (0.8823–0.9796) (0.8509–0.9749)

Pneumothorax
92.25% 80.95% 97.26%

(0.8529–0.9535) (0.6600–0.9111) (0.9212–1.0000)

Cropped images

Bronchiolitis
87.50% 89.21% 84.71%

(0.8259–0.9063) (0.8280–0.9328) (0.7590–0.9162)

Bronchopneumonia
90.55% 91.72% 88.24%

(0.8622–0.9331) (0.8710–0.9545) (0.8049–0.9412)

Lobar pneumonia
96.69% 96.88% 96.47%

(0.9194–0.9834) (0.9145–0.9900) (0.9065–0.9884)

Pneumothorax
94.49% 90.48% 96.47%

(0.8818–0.9685) (0.9026–0.9892) (0.8922–0.9886)

Figure 3.  Image pairs of radiographs and the corresponding Grad-CAM of the test set: (a) bronchopneumonia, 
(b) bronchiolitis, (c) lobar pneumonia, (d) pneumothorax.
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Finally, the simple classifier achieved a classification rate of 73.82% and a Cohen’s Kappa of 65.70%. From 
the confusion matrix shown in Fig. 4c, except for pneumothorax, which might be easily distinguished from the 
other conditions, the proportion of correct classifications for the other diseases was not high. In detail, there 
were three pairs that were not easy to identify: bronchiolitis and bronchopneumonia, bronchiolitis and normal, 
and bronchopneumonia and lobar pneumonia.

As Table 3 shows, the OVO scheme achieved the best results among the three approaches, with the highest 
classification rate of 76.84% and a Cohen’s Kappa of 69.76%. Under this scheme, the proposed model could 
diagnose whether a patient has a lung disease with 92.47% accuracy, 90.77% sensitivity, and 80.00% specificity; 
the corresponding confusion matrix is shown in Fig. 5.

Figure 4.  Confusion matrix of (a) OVO scheme, (b) OVA scheme, and (c) simple classifier.

Table 3.  Performances of OVO and OVA schemes and a simple classifier.

OVO OVA Simple classifier

Bronchopneumonia 72.19% 73.96% 74.56%

Bronchiolitis 71.94% 64.75% 71.94%

Lobar pneumonia 85.42% 81.25% 75.00%

Normal 80.00% 78.82% 69.41%

Pneumothorax 85.71% 85.71% 83.33%

Classification rate 76.84%
(0.7274–0.8001)

74.58%
(0.7081–0.7815)

73.82%
(0.7024–0.7759)

Cohen’s kappa 69.76%
(0.6465–0.7458)

66.74%
(0.6143–0.7197)

65.70%
(0.6103–0.7051)

Figure 5.  Confusion matrix of diagnosis of lung diseases or normal conditions.
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Discussion
In resource-rich countries, the annual incidence of pneumonia in children is estimated to be 1.5 to 3 per  100034. 
Approximately one-half of children younger than 5 years of age with community-acquired pneumonia require 
 hospitalization2. In a systematic review, the annual incidence of pneumonia in children younger than 5 years in 
age from resource-limited countries in 2015 was estimated to be 231 per 1000, with 50–80% of children having 
severe pneumonia requiring  hospitalization2. Chest radiographs are required for confirmation/exclusion of the 
diagnosis in children with clinical evidence of pneumonia.

Community acquired pneumonia can be divided into three distinctive patterns through imaging examina-
tions, namely, consolidation (lobar pneumonia), peribronchial nodules (bronchopneumonia), and ground-glass 
opacity (interstitial pneumonia). In this study, we divided our pneumonia images into two groups (broncho-
pneumonia/interstitial pneumonitis and lobar pneumonia) because we found that peribronchial infiltration 
and ground-glass opacity often coexist in the case of pneumonia. This phenomenon has also been described in 
a previous  report36.

Bronchopneumonia is radiographically identified by its patchy appearance with peribronchial thickening 
and ill-defined air-space opacities. As the illness becomes more severe, consolidation involving the terminal and 
respiratory bronchioles and alveoli results in the development of centrilobular nodular opacities or air-space 
nodules. The consolidation can develop further and coalesce to give a lobular or lobar pattern of involvement. 
Unlike lobar pneumonia, which starts in the alveoli, bronchopneumonia starts in the airways as acute bronchitis. 
This can explain the relative inaccuracy in differentiating between bronchitis and bronchopneumonia.

Although chest radiography is considered the best method for diagnosing pneumonia, a radiographic evalu-
ation is subjective and inconsistencies are found in the interpretation among different radiologists of the same 
chest  radiograph35,36. Significant inconsistencies exist for minor changes and in the description of the infiltrates, 
although the agreement regarding the presence or absence of a consolidation/ infiltrates was high. Levels of 
disagreement were highest for children of less than 5 years in  age34. For the radiographic findings, a significant 
inter-observer variability was determined in the interpretation of patchy (48.8%) and perihilar (28.1%) changes.

In general, it is difficult to determine a specific pathogen for pneumonia based solely on imaging findings. 
However, a radiographic image can help confirm the diagnosis of  pneumonia36. Imaging studies also play an 
auxiliary role in evaluating the effectiveness of medical treatment. We provided a method for cropping a cavity 
automatically. Another study reviewed previous methods for localizing a lung  region37. Because the features 
might not only occur in the lung, we tried to focus on the cavity and then applied YOLOv3 to train our own 
model for use. With this model, we can save a significant amount of time because it is no longer necessary to 
crop images by hand.

The methods focusing on a single disease often achieved a good performance. Approaches developed by Liang 
and  Zheng16 and Saraiva et al.17 obtained accuracy over 90% and Taylor et al.18 achieved an accuracy of over 90% 
AUC on their own dataset and over 80% AUC on an external dataset. As shown in Table 2, we also obtained more 
than 90% of accuracy, sensitivity, and specificity for both pneumonia and pneumothorax. Nearly 90% accuracy 
was also obtained for the other two diseases. However, from a clinical perspective, several conditions, and not 
just pneumonia or pneumothorax, may be encountered by physicians. Based on this dilemma, we designed a 
holistic method for diagnosing the common diseases for children, and we attempted three different schemes for 
such an aim. Among these three schemes, the OVO scheme achieved the best results. A study comparing the 
OVO scheme and the OVO scheme under different classifier methods was also  conducted23 but did not include 
classifiers based on deep learning. The results showed that the performance of the OVO scheme is typically 
better than that of the OVA scheme, and we obtained a similar conclusion. In our study, binary classifiers of the 
OVO scheme mostly performed well, and thus the aggregation also likely achieved good results. The unbalanced 
number of different categories might have caused the OVA scheme to perform poorly. In the simple classifier, 
the unbalanced data were also important. The radiographic findings were different in terms of degree in certain 
diseases and some patients might have had subtle radiographic findings, thereby causing the simple classifier to 
perform poorly because it had to learn the features of each category simultaneously.

From the confusion matrix of the three schemes, we found that bronchopneumonia and bronchiolitis are 
easier misclassified than other disease. This is not surprising because there is substantial inter-observer vari-
ability in the reporting of chest radiographs particularly in young children with pneumonia by  radiologists36. The 
radiographic findings in acute bronchiolitis/bronchitis include hyperinflation, patchy areas of consolidation or 
atelectasis, streaky perihilar opacities or tram tracks due to bronchial wall or interstitial thickening, and reticular 
or reticulonodular opacities. Bronchopneumonia begins with airway mucosa infection and subsequently extends 
into the adjacent alveoli, the bronchopneumonia pattern consists of multiple areas of patchy consolidation, often 
bilaterally, lack of air bronchograms and progressive coalescence of the patchy consolidation with time. During 
the early disease stage of bronchopneumonia, there are similar findings of acute bronchiolitis/bronchitis and 
 bronchopneumonia38. A previous study conducted for chest radiography of pediatric pneumonia observed wide 
variability in the interpretation of chest radiographs among radiologists. The inter‐rater reliability for alveolar 
infiltration demonstrated substantial reliability (κ = 0.69) and less reliability (κ = 0.14) for interstitial infiltration. 
Similarly, the intra‐rater assay for interstitial infiltration also demonstrated a wide variability and less reliable 
 result39. Strengthening the classification of these two diseases is an important area of future study. Clinical data 
may help in diagnosing between the two diseases, and we may consider applying a two-stage classification.

Here we have constructed a computer-aided scheme by deep learning for common pulmonary diseases in 
children. This scheme is mostly useful as a screening for normal versus most of lower respiratory problems in 
children. It can also help review the chest X-ray images interpreted by clinicians and may remind possible neg-
ligence. This system can be a good diagnostic assistance under limited medical resources.
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