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Modeling the dynamics 
of antibody–target binding in living 
tumors
Yu tang1 & Yanguang cao1,2*

Antibodies have become an attractive class of therapeutic agents for solid tumors, mainly because 
of their high target selectivity and affinity. The target binding properties of antibodies are critical 
for their efficacy and toxicity. Our lab has developed a bioluminescence resonance energy transfer 
(BRet) imaging approach that directly supports the measurement of the binding dynamics between 
antibodies and their targets in the native tumor environment. In the present study, we have developed 
a spatially resolved computational model analyzing the longitudinal BRet imaging data of antibody–
target binding and exploring the mechanisms of biphasic binding dynamics between a model antibody 
cetuximab and its target, the epidermal growth factor receptor (EGFR). The model suggested that 
cetuximab is bound differently to EGFR in the stroma-rich area than in stroma-poor regions, which 
was confirmed by immunofluorescence staining. Compared to the binding in vitro, cetuximab bound 
to EGFR to a “slower-but-tighter” degree in the living tumors. These findings have provided spatially 
resolved characterizations of antibody–target binding in living tumors and have yielded many 
mechanistic insights into the factors that affect antibody interactions with its targets and treatment 
efficacy.

The therapeutic antibody is an important class of therapeutics for treating solid tumors. More than 30 therapeutic 
antibodies have been approved for treating tumors at various  stages1,2. These broad applications of therapeutic 
antibodies in solid tumors are largely due to their high target binding selectivity and affinity compared with 
traditional cytotoxic agents. Once bound to their targets, therapeutic antibodies eradicate tumor cells mainly 
by three mechanisms: blocking the pathogenic ligand–receptor interactions, triggering cell apoptosis pathways, 
or activating host effector  functions3. The mechanisms of action are not exclusive but usually differ depending 
on the design of the different classes of antibodies.

Regardless of the mode of antibody action, antibody–target engagement is the first and most critical step 
for antibody efficacy. The patterns of target binding are often associated with the cellular response of the target 
cells and treatment efficacy. Many studies have revealed that tumor cells can receive information by altering the 
temporal behavior (dynamics) of their signaling  molecules4,5. A classic example of this behavior is the extracel-
lular signal-regulated kinase pathway for the epidermal growth factor receptor (EGFR). Transient activation 
(or blocking) of EGFR is associated with tumor cell proliferation, whereas sustained activation can lead to cell 
 differentiation6. In addition, once antibodies have bound to their target cells, they can direct effector cells to 
elicit antibody-dependent cellular cytotoxicity (ADCC). Thus, the residence time of the antibody–target complex 
on tumor cells (determined by the off-rate) becomes critical for increasing lipid raft formation and the prob-
ability of  ADCC7,8. Many tumor cells can initiate fast endocytosis upon antibody binding, leading to resistance 
to antibody  attack9–11. Therefore, different target binding patterns can lead to distinct cellular reactions and 
treatment responses.

The target binding affinity is often assessed in vitro, using either surface plasmon resonance (SPR) or ligand 
competition assays. In SPR analysis, the antibody binds to target molecules that are immobilized on the sensing 
layer. Binding leads to changes in conformation and the angle of reflectivity, from which the association  (kon) and 
dissociation  (koff) can be  quantified12. As in other routinely applied technologies that measure binding dynamics, 
the  kon and  koff that are determined by SPR merely reflect antibody–target interactions at the molecular level. 

open

1Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University 
of North Carolina, Chapel Hill, NC 27599, USA. 2Lineberger Comprehensive Cancer Center, School of Medicine, 
University of North Carolina, Chapel Hill, NC 27599, USA. *email: yanguang@unc.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-73711-y&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:16764  | https://doi.org/10.1038/s41598-020-73711-y

www.nature.com/scientificreports/

These techniques are valuable for antibody screening, but they are not relevant to binding under physiological 
conditions. The target binding properties in living systems remain largely uncharacterized.

Tumor tissues are known to be very heterogeneous, both between and within tumors. In addition to complex 
tumor genotypes, morphological and phenotypic features can differ, even within the same tumor. The stromal 
environment where each tumor cell resides largely shapes its phenotypic  properties13. However, how these stromal 
components can influence the binding dynamics between an antibody and its targets remains largely undefined. 
Unlike in vitro assay systems, where all targets are freely accessible, tumors present many physical barriers that 
influence the diffusion of antibodies, as well as their interactions with the  targets14. Previous studies have shown 
that antibodies are unable to freely reach their targets or cannot drift away after dissociating from the targets in 
the presence of spatial  obstacles15. The resulting shifts in binding dynamics within living tumors can reduce the 
cellular response or even lead to treatment failure.

We have developed a bioluminescence resonance energy transfer (BRET) imaging system that can directly 
monitor the antibody–target binding dynamics in living  systems16. This imaging system leverages a high signal-
to-noise ratio and stringent energy donor–acceptor distance to provide specific measurements of antibody–target 
binding dynamics in a selective and temporal fashion. It is a minimally invasive system, enabling longitudinal 
monitoring of in vivo antibody–target interactions. We have previously used this approach to demonstrate that 
cetuximab binds to its target, EGFR, in a biphasic and dose-shifted manner. In the present study, we have devel-
oped spatially resolved computational models for the analysis of the longitudinal imaging data of antibody–target 
binding in living tumors, and we have compared their binding dynamics in spatially distinct tumor areas. With 
these models, we have assessed possible mechanisms that could explain the biphasic features of cetuximab–EGFR 
binding in a xenograft tumor. The results of this study have provided many insights into the dynamic features 
of antibody–target binding in living tumors and the stroma factors that potentially influence those dynamics.

Methods
Study design. Our lab has developed a BRET approach to support the investigations of antibody–target 
binding dynamics in the native tumor environment. Specifically, a small but bright luciferase, NanoLuc, was 
fused to the extracellular domain of EGFR to serve as the energy donor in the BRET  pair16. An anti-EGFR anti-
body, cetuximab, was labeled with DY605, a fluorophore with an emission wavelength at 625 nm, to serve as the 
energy acceptor. Prior to the binding between DY605-labeled cetuximab (DY605-CTX) and the NanoLuc-fused 
EGFR (NLuc-EGFR), the distance of NanoLuc to the DY605 was too large to trigger BRET, and only the biolu-
minescence emission at 460 nm for NanoLuc was observed. However, binding of DY605-CTX to NLuc-EGFR 
increased the proximity between NanoLuc and DY605 and allowed the transfer of bioluminescence energy to 
DY605 and the emission of fluorescence signals at 625 nm (Fig. 1). The binding affinity between DY605-CTX 
and NanoLuc-EGFR was 0.10 nM, which is in agreement with previously reported  KD for CTX-EGFR binding 
(0.20 nM) (Fig. 1)17. The  kon of DY605-CTX: NanoLuc-EGFR binding was about 0.20 nM−1 min−1 and the  koff 

Figure 1.  The scheme of the experimental design of the Bioluminescence Resonance Energy Transfer (BRET) 
study. A small, but bright, luciferase, NanoLuc, was fused to the extracellular domain of EGFR to serve as the 
energy donor in the BRET pair (Nluc-EGFR). The anti-EGFR antibody cetuximab was labeled with DY605 
as the energy acceptor (DY605-CTX). The binding affinity  (KD) between NLuc-EGFR and DY605-CTX was 
0.10 nM. Twenty nude mice were inoculated with NLuc-EGFR-expressing HEK293 cells; and the BRET imaging 
study was performed after xenograft tumor sizes had reached 500  mm3. DY605-CTX at three doses (1.0, 8.5, 
and 50 mg/kg) or DY605-human IgG was injected via tail vein (n = 5/dose group). Blood samples (30 µL) were 
collected at designated times for pharmacokinetics assessment. The plasma concentrations of DY605-CTX were 
quantified based on fluorescence intensities. Images were acquired using an IVIS Kinetic optical imaging system 
upon administration of the NanoLuc substrate furimazine (i.v., 0.25 mg/kg). The fluorescence intensity was 
determined to quantify the concentrations of the antibody–target complex and to derive the receptor occupancy 
(RO). The tumors were collected at the end of the study (around 192 h) and snap-frozen in liquid nitrogen.
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was 0.02 min−1 (Fig. S1), which are close to the constants of CTX-EGFR binding measured by  SPR18. The DY605-
CTX: NanoLuc-EGFR BRET pair allowed robust and reliable quantification of CTX-EGFR interaction.

The experimental design is shown in Fig. 1. In total, 20 nude mice were inoculated with NLuc-EGFR-express-
ing HEK293 cells. To establish tumor models, 5 × 106 NLuc-EGFR HEK293 cells were suspended in 0.1 mL of 
PBS/ Matrigel (1/1, v/v) and inoculated subcutaneously into the inguinal flank of the nude mice. The BRET 
imaging study was performed when the tumor sizes had reached 500 mm3. The imaging study was initiated by 
injecting the DY605-labeled cetuximab via the tail vein of the xenograft mice at three doses: 1.0, 8.5, and 50 mg/kg 
(n = 5 /dose group), or DY605-labeled human IgG (n = 5). Blood samples (30 µL) were collected at the designated 
times for pharmacokinetics (PK) assessment. The plasma concentrations of cetuximab were quantified based on 
fluorescent intensities. Images at both 460 nm and 625 nm were acquired using an IVIS Kinetic optical imaging 
system (Caliper Life Sciences, Alameda, CA, USA) upon administration of NanoLuc substrate furimazine (i.v., 
0.25 mg/kg). The fluorescence intensity was determined to quantify the concentrations of the antibody–target 
complex, and the receptor occupancy (RO) was calculated (Supplementary methods). The tumors were collected 
at the end of the study (at approximately 192 h) and snap-frozen in liquid nitrogen.

Plasma PK model. The antibody plasma PK was described using a two-compartment model with a lin-
ear tissue distribution  (CLD) and a linear systemic clearance  (CLP) (Fig. 2). The PK data in three dose groups 
(1.0, 8.5, and 50 mg/kg) were analyzed simultaneously using the PK model, using a naïve pooled-data (NPD) 
approach. The volume of plasma  (Vplasma) was set to 0.001 L for 20 g  mice19.

Modeling antibody–target binding dynamics in tumors. The dynamics of antibody–target bind-
ing in solid tumors were further characterized to obtain mechanistic insights by implementing a sequential 
modeling strategy. Here, the PK model was first optimized and then fixed during the second step to explore the 
antibody–target binding dynamics.

The solid tumors were conceptually dissected into two anatomical compartments: a stroma-rich and a stroma-
poor area, to account for the spatial histological heterogeneity (Fig. 2). The stromal-rich compartment described 
the area where tumor cells grew relatively quickly, without any spatial restriction by stromal cells. By contrast, 
the stroma-poor tumor compartment represented the area where tumor cells grew in the presence of dense 
tumor-associated stromal cells (e.g., fibroblasts). The relative volume and blood flow in the two tumor areas 
were evaluated as model parameters.

The extravasation of the antibody from the tumor blood vessels to the interstitial space was assumed to be 
dominated by convection and was described by a vascular reflection coefficient ( σv) and the convective lymph 
flow into either the stroma-rich area  (Lr) or the stroma-poor area  (Lp). The value of σv was set at 0.78, a value 
reported for subcutaneous xenograft  models19. The values of  Lp and  Lr were functions of the tumor blood flow 
(TBF)20, the total tumor volume  (Vtumor), and the relative fraction between the two tumor areas  (ft), as described 
in the following equations:

where  TBFp and  TBFr describe the tumor blood flows in two tumor areas. The value of  fL was set to 0.2%21. The 
total tumor volumes  (Vtumor) were measured using a caliper.

The spaces for antibody distribution and for antibody–target interaction in both tumor compartments were 
set to a fraction  (fav) of the total interstitial space.

The available fraction  fav was set at 27.5%19,22. Notably, the antibody–antigen bindings occurred in the same 
space that was accessible to antibodies  (Vr_a and  Vp_a). The target (i.e., EGFR) was assumed to be synthesized by 
tumor cells at a zero-order rate constant  (ksyn) and to be endocytosed at a first-order rate constant  (kdeg). The 
cetuximab-EGFR complex was assumed to be internalized by the tumor cells at a first-order rate constant  (kint). 
All parameters regarding the target protein  (ksyn,  kdeg, and  kint) were assumed to be conserved inside the tumors. 
The association rate between the antibody and target is denoted as  kon and the dissociation rate constant is  koff.

We used the developed modeling framework primarily to investigate two competing hypotheses: (1) the 
antibodies bind to the targets differentially across two tumor areas (the heterogeneous binding model, HBM) 
and (2) the antibodies are distributed differentially into two tumor areas, but with the same binding profile 
(the heterogeneous distribution model, HDM). The differential equations for both models are provided in the 
Supplementary methods. We optimized both models against the data and evaluated which model made more 
consistent predictions to the observed RO data. The selection of the most suitable model and the parameter 
estimates were confirmed by visual inspection, the measured data vs. individual conditional model predic-
tion plot, the individual conditional standardized residual vs. model prediction plot, the individual conditional 
standardized residual vs. time plot, the CV% of estimated parameters, and the physiological plausibility of the 
estimated parameters.

Lr = ((1− f t) · Vtumor · TBFr) · fL

Lp = (f t · Vtumor · TBFp) · fL

Vr_a = (1− f t) · Vtumor · f isf · fav

Vp_a = ft · Vtumor · f isf · fav
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Immunofluorescence (IF) staining. We assessed the spatial distributions of the antibody in tumors by IF 
staining after the imaging study. The tumor samples were preserved and sliced in OCT medium (Fisher scien-
tific, Waltham, MA, USA). The sliced tumor tissues were fixed in methanol/acetone (1:1) at 4 °C. After blocking 
with phosphate buffered saline (PBS) containing 2% fetal bovine serum (FBS) (Millipore Sigma, Burlington, 
MA, USA), the tumor slices were stained with anti-EGFR and anti-α-SMA antibodies. In brief, the slides were 
incubated with Alexa Fluor 555-conjugated primary rabbit anti-human EGFR antibodies (Thermo, Waltham, 
MA, USA, 1:100 diluted in PBS) and primary mouse anti-mouse α-SMA antibodies (Thermo, Waltham, MA, 
USA, 1:500 diluted in PBS) at 4 °C overnight and then incubated with Alexa Fluor 488-conjugated goat anti-

Figure 2.  The spatially resolved computational model describing the antibody–antigen binding kinetics in 
xenografts. The antibody plasma pharmacokinetics were described using a two-compartment model with a 
linear tissue distribution and a linear systemic clearance. The solid tumors were conceptually dissected into two 
anatomical compartments—stroma-rich and stroma-poor areas—to account for the spatial heterogeneity, as 
seen in the staining slide. The stroma-poor compartment described the area where tumor cells grow without 
any spatial restriction by stromal cells, whereas the stroma-rich tumor compartment represented the area 
where tumor cells grow in the presence of dense tumor-associated stromal cells (e.g., fibroblasts). Antibodies 
were assumed to extravasate from tumor blood vessels into the interstitial space and leave the interstitial space 
via lymphatic vessels. In both tumor compartments, the free receptors were synthesized and degraded on the 
tumor cells. The antibody–receptor complexes were cleared by internalization. The free antibodies bound to 
free receptors at a rate of  kon. The antibodies dissociated from receptors at a rate of  koff_r in the stroma-rich 
compartment and a rate of  koff_p in the stroma-poor compartment.
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mouse antibodies (Thermo, Waltham, MA, USA, 1:2000 diluted in PBS) at room temperature for 1 h. The immu-
nofluorescence images were acquired with a Live Cell Imaging Microscope (Nikon, Melville, NY, USA).

Model simulation. The developed model was applied to simulate the profiles of antibody–target binding 
dynamics and the resultant RO at different conditions. The concentrations of free antibodies, free targets, and 
antibody–target complexes in both tumor areas were simulated and compared. In addition, the SPR-measured 
binding parameters were applied to replace the optimized parameters to allow an examination of differences in 
antibody–EGFR binding dynamics in the living tumors versus in vitro binding in buffers.

Ethical statement. All animal procedures were carried out in accordance with the Guide for the Care 
and Use of Laboratory Animals as adopted and promulgated by the US National Institutes of Health, and were 
approved by the Institutional Animal Care and Use Committee (University of North Carolina, Chapel Hill, NC).

Results
Plasma PK and antibody–target binding dynamics in tumors. In this study, DY605-CTX showed 
bi-exponential and linear PK  profiles16, as the area under the curve (AUC) and the peak plasma concentrations 
increased proportionally to the doses. A temporal shift was observed from the antibody plasma PK to the ROs 
in the tumors. The tumor ROs peaked at approximately 4 h post-dosing, which was consistent across doses, sug-
gesting that the extravasation of DY605-CTX into tumors is a slow and linear process. The increase in the tumor 
ROs was less than dose proportional, indicating a nonlinear process was involved in the conversion of free anti-
bodies in the plasma to bound antibodies in tumors. Notably, the target EGFR in the tumors was not saturated, 
even at a supra-therapeutic antibody dose (50 mg/kg), suggesting fractional target accessibility. Furthermore, 
the RO profiles declined in a biphasic manner and showed a shallow terminal declining phase, particularly at the 
two higher doses. Interestingly, the transition from the rapid to the slowly declining phases was not consistent 
across doses.

The antibody–target binding profiles in tumors were well recapitulated by the HBM. The 
average plasma concentrations and tumor ROs were used for model competition. As shown in Fig.  3A, the 
two-compartment PK model adequately recapitulated the PK profiles at all doses. This confirms the linear PK 
properties of DY605-CTX in xenograft mice within the assessed dose range. The estimated PK parameters and 
CV% are shown in Table 1. The estimated systemic clearance and volume of tissue distribution were consistent 
with those of previous reports.

The tumor RO profiles were well characterized by the HBM at all three doses (Figs. 3B and 4A). The model 
suggested different antibody–target binding dynamics across two tumor spatial areas. The optimized parameters 
are shown in Table 2. The association rates (i.e.,  kon) between cetuximab and its target EGFR in both tumor 
compartments were estimated to be close and were therefore considered as a shared parameter in the two tumor 
compartments. The estimate of  kon was 0.03 nM−1·h−1, a value approximately 1% of the rate measured using  SPR18, 
indicating the impact of physical barriers on the association rate in the living tumors compared to the in vitro 
buffer conditions. Interestingly, the complex dissociation rate (i.e.,  koff_p and  koff_r) was markedly different between 
the two tumor areas. The optimized  koff_p was 0.61 h−1 in the stroma-poor tumor area, which is close to the SPR 
measured values. However, the complex dissociation rate was estimated as much slower  (koff_r = 0.0017 h−1) in 
the stroma-rich tumor  area18. The estimated endocytosis rate  (kint in Table 2) revealed the net endocytosis rate 
of EGFR antigen after subtracting the fraction of recycling, which explains the relatively slower endocytosis rate 
estimated in our model compared to literature  values23.

Notably, HBM elucidated the heterogeneous binding in living tumors in a robust and physiologically-relevant 
manner. The diagnostic plots showed the goodness of fitting of HBM (Fig. S2A). The final parameters of HBM 
were physiologically-relative (Table 2). For example, TBF was estimated to be 15.4 mL/100 mL/min and com-
parable to reported xenograft tumor blood flow (27.5 mL/100 mL/min)20. HBM was not sensitive to R0, which 
cannot be experimentally measured (Fig. S2B).

Unfortunately, as shown in Fig. 4B, the HDM failed to capture the RO profiles across the three doses and 
a clear model misspecification was indicated. Even with a sharp distribution gradient across tumor areas, the 
model could not provide a good prediction of the biphasic dynamic feature in the RO profiles. The RO peaks 
at 50 mg/kg were drastically under-predicted, while the RO values at 1.0 mg/kg were over-predicted. The poor 
performance of HDM indicated that heterogeneous antibody distribution could not be the primary mechanism 
for the biphasic declining feature of antibody–target binding in tumors. The parameter estimations of HDM are 
presented in Table S1.

The different performance between HBM and HDM was also indicated by the Akaike information criterion 
(1505 vs. 1520). We concluded that the biphasic dynamic feature of RO was better explained by the different 
binding profiles than by the different distribution profiles in the two tumor compartments. Therefore, we selected 
the HBM as the model for further exploration.

Cetuximab persisted longer in the stroma-rich area than in the stroma-poor area. At the end 
of the imaging study, we sectioned the tumors and stained the EGFR-positive tumor cells, tumor-associated 
fibroblasts, and cetuximab to evaluate the residual antibodies and their spatial distributions. Figure 5 shows rep-
resentative images of the spatial distribution of the antibody (DY605-CTX), tumor-associated fibroblast (GFP 
Fibroblasts), and EGFR-positive tumor cells (TRITC EGFR). Area P represents the tumor area without many 
stroma cells and with evenly distributed tumor cells. Area R represents the stroma-rich area, where tumor cells 
were surrounded by tumor-associated fibroblasts. As shown in Fig.  5, by 192  h after antibody dosing, some 
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Figure 3.  The PK profiles were well captured by a two-compartment model and the profiles of antibody–
target binding in tumors were well recapitulated by the heterogeneous binding model (HBM). (A) The two-
compartment PK model adequately recapitulated the PK profiles at all doses. (B) The tumor receptor occupancy 
(RO) profiles were well characterized by the heterogeneous binding model (HBM) at three doses. Each data 
point represents the mean plasma concentration or mean RO. Error bars represent ± SD.

Table 1.  Pharmacokinetics parameter estimations.

Parameter Unit Definition Estimation (CV%)

CLD L·h−1 Tissue distribution flow 0.0012 (15%)

CLp L·h−1 Cetuximab systemic clearance 0.00021 (4.8%)

Vother L Other tissue volume 0.0076 (7.1%)

Vplasma L Plasma volume 0.001 (fixed)
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Figure 4.  Uneven distributions of antibodies in tumors could not sufficiently explain the observed binding 
dynamic features in comparison to the heterogeneous binding patterns. (A) The heterogeneous binding model 
(HBM) well-captured the antibody–target binding kinetics, whereas (B) The heterogeneous distribution 
model (HDM) failed to capture the receptor occupancy (RO) profiles across three doses, and a clear model 
misspecification was indicated.

Table 2.  Heterogeneous binding model (HBM) parameter estimations.

Parameter Unit Definition Estimation (CV%)

kdeg h−1 EGFR degradation rate 0.013 (42%)

R0 nM EGFR initial concentration in tumor stroma-rich and stroma-poor space 0.0020 (73%)

kon nM−1·h−1 Cetuximab-EGFR apparent association rate 0.030 (53%)

koff_p h−1 Cetuximab-EGFR apparent dissociation rate in stroma-poor regions 0.61 (55%)

koff_r h−1 Cetuximab-EGFR apparent dissociation rate in stroma-rich regions 0.0017 (54%)

ft / Ratio of tumor stroma-poor volume over total space 0.89 (5.8%)

TBF h−1 Tumor blood flow per 1 L tumor 9.2 (21%)

kint h−1 Cetuximab-EGFR internalization rate 0.14 (26%)
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antibodies were still present in the stroma-rich area, while detection of antibodies in the stroma-poor area was 
negligible. No residual antibodies were observed for nonspecific IgG, suggesting that the residual antibodies 
were associated with Fab binding and not with non-specific binding (Fig. S3A).

A close inspection of the spatial location indicated that residual antibodies had a very high co-localization 
with tumor cells (Fig. 5). We observed that most of the residual antibodies in the stroma-rich area were retained 
on the surfaces of the tumor cells, likely as antibody–target complexes. This observation is consistent with our 
model predictions whereby antibodies would dissociate from the target much more slowly in the stroma-rich 
area. Only a small amount of bound antibodies was observed at the edge of Area P, and most antibodies had 
been degraded in the stroma-poor tumor area. In addition, the total EGFR was sparser in Area R than in Area 
P, suggesting a higher EGFR suppression in the stroma-rich tumor area. These findings agreed with the model 
simulations described in the next section. More representative images were shown in Fig. S3B.

Cetuximab bound EGFR at a “slower-but-tighter” degree in living tumors than in the in vitro 
conditions. We further examined antibody binding dynamics in tumors in comparison to the binding in the 
in vitro condition, which is usually measured using SPR methods. We replaced the target binding parameters 
in the HBM with the SPR-measured values to predict the RO profiles at three doses, which were superimposed 
on the experimental observations. When  kon was set to an SPR-measured value in both tumor compartments, 
the model over-predicted the RO. Even though the biphasic feature on RO curves was predicted, almost no dif-
ference was detected in the predicted RO profiles across the three doses (Fig. 6A). With the SPR-measured  koff 
in both tumor compartments, the model under-predicted the RO data (Fig. 6B). The biphasic declining feature 
disappeared in this parameter setting. When both target binding parameters were set to SPR-derived values, the 
model also over-predicted ROs (Fig. 6C). Collectively, these findings confirmed a marked difference in anti-
body–target binding dynamics between the living tumors and the in vitro buffer systems.

Cetuximab durably suppressed free EGFR but transiently formed antibody–target complexes 
in living tumors. We simulated free cetuximab, free EGFR, cetuximab-EGFR complexes, and the RO in 
both tumor areas. The free cetuximab was similar in both tumor compartments at all doses (Fig. 7A), consist-
ent with the model assumption. Free EGFR was rapidly suppressed, and the suppression lasted for over 150 h, 
particularly at 50 mg/kg (Fig. 7B). At all doses, the free EGFR in the stroma-rich areas (as indicated by the dash 
lines) was suppressed to a higher degree, primarily because of a relatively lower fraction of EGFR-positive tumor 
cells and a tighter antibody-EGFR binding in the stromal-rich tumor areas. Those findings indicated that cetuxi-
mab was predicted to have a stronger suppressive effect on free EGFR in the stroma-rich area. The magnitude 
and duration of EGFR suppression were both dose dependent, so a higher antibody dose gave a larger and longer 
suppression of the free target (Fig. 7B).

Compared to the durable target suppression, the formation of the antibody–target complex was quite tran-
sient (Fig. 7C). In both tumor compartments, the complex concentrations peaked at around 5 h after dosing, 
but the complex decayed shortly after the peaks and was subsequently maintained at relatively low levels for an 
extended period. A small difference was evident in complex concentrations across doses during the terminal 
phase. Despite the similar concentrations in the two tumor areas, the different binding properties of cetuximab 
meant that it showed relatively higher and more durable RO in the stroma-rich than in the stroma-poor areas 
(Fig. 7D). The difference between the two tumor areas became smaller as the dose increased.

Figure 5.  Cetuximab persisted longer in the stroma-rich area than in the stroma-poor area. A representative 
immunofluorescence (IF) image shows the histology of the tumor collected at the end of the bioluminescence 
resonance energy transfer (BRET) imaging study, revealing the spatial distribution of the antibody (Cyan 
DY605-CTX), tumor-associated fibroblast (GFP Fibroblasts), and EGFR-positive tumor cells (TRITC EGFR and 
DAPI). Area P represents the tumor area without many stroma cells and with evenly distributed tumor cells. 
Area R represents the stroma-rich area, where tumor cells were surrounded by tumor-associated fibroblasts. 
Cyan signal denoted the total antibodies, including free DY605-CTX and bound DY605-CTX. As the white 
arrows indicate, residual antibodies are present at the tumor cell surfaces and largely overlap with EGFR 
staining, indicating the bound DY605-CTX. Scale bar = 100 µm.
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Figure 6.  Cetuximab bound EGFR at a “slower-but-tighter” degree in the living tumors than in the in vitro 
conditions. The target binding parameters in the heterogeneous binding model (HBM) were replaced with the 
SPR-measured values to predict the receptor occupancy (RO) profiles at three doses; these are superimposed on 
the experimental observations. (A) When  kon was set to a SPR-measured value in both tumor compartments, 
the model over-predicted the RO. No difference was detected in the predicted RO profiles across the three doses. 
(B) When a SPR-measured  koff was used in both tumor compartments, the model under-predicted the RO data. 
(C) SPR-measured  kon and  koff values could not differentiate the RO profiles across the three doses.
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Discussion
Our understanding of antibody–target interactions, particularly in the native physiological context, is still limited, 
mainly due to the lack of approaches to detect their binding dynamics with temporal and spatial resolution or 
 specificity24. For example, immunohistochemistry (IHC) staining can quantify the spatial distribution, but it often 
fails to incorporate the dynamic factors present in physiological  situations25. Most in vivo imaging methods often 
cannot distinguish signals arising due to specific target engagement versus nonspecific  signals16. We previously 
developed a BRET method that enables longitudinal monitoring of the binding dynamics between the antibody 
and its target in living  tumors16. Using this method, we observed biphasic and dose-shifted binding dynamics 
between cetuximab and its target EGFR. In the present study, we developed a spatially resolved computational 
model to disentangle the dynamic binding patterns and evaluate the mechanisms.

Heterogeneously-distributed tumor stromal cells are likely to cause uneven spatial restrictions and mechanical 
stress in the solid tumors, possibly altering antibody-antigen  interactions26. Our model accounted for this het-
erogeneity in solid tumors and elucidated the antibody binding dynamics. Compared to the in vitro systems, an 
antibody in a living tumor could bind to its target to a “slower-and-tighter” degree. We observed that cetuximab 
was bound differently to its target in the stroma-rich areas than in the stroma-poor regions (Table 2). Cetuximab 
had a much slower apparent dissociation rate in the stroma-rich areas, which was confirmed by immunofluo-
rescence staining. This finding agreed with the longitudinal tumor staining results reported before, in which the 
higher bound antibodies in the stroma-rich regions were  observed27–29. For example, using fluorescently and 
immunohistochemically stained tumor cryosections, cetuximab and trastuzumab showed higher target-bindings 
at the stroma-rich area at the 24 h post-administration27,28. The binding features in the stroma-rich tumor area 
were consistent with experimental observations that the stress stroma could restrict the diffusion of antibodies 
in the  tumors30. This restricted diffusion could reduce both association and dissociation rates. Another possible 
reason for the lower dissociation rate in the stroma-rich tumor regions was the intense extracellular matrix, which 
would prevent the antibody from easily drifting away from the binding zone, thereby resulting in a high fraction 
of  rebinding15. The slow dissociation rate resulted in the accumulation of residual antibodies in the stroma-rich 
tumor areas, even when the systemic antibodies had been largely eliminated.

We developed two spatially resolved computational models by assuming either heterogeneous binding or 
heterogeneous distribution between the stroma-rich and stroma-poor tumor regions (Fig. 4). We then used 
competition studies to test which of the two models would consistently predict the observed the dynamic features 
of cetuximab–EGFR binding. The performance was much better for the model with the heterogeneous binding 

Figure 7.  Cetuximab durably suppressed free EGFR, but the complex was formed transiently in tumors. (A) 
The free cetuximab concentration, (B) free EGFR concentration, (C) cetuximab-EGFR complex concentration, 
and (D) receptor occupancy in the two tumor compartments were simulated based on the heterogeneous 
binding model (HBM). Blue, red, and green lines represent the three cetuximab dose groups: 50, 8.5, and 
1.0 mg/kg. Solid lines represent the tumor stroma-poor compartment, whereas the dashed lines represent the 
tumor stroma-rich compartment.
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assumption than with the heterogeneous distribution, indicating that an uneven distribution of antibodies in 
two tumor areas was not the primary reason for the biphasic declining features in the tumor RO data. One clari-
fication should be made, namely that the inconsistent predictions produced by the HDM only suggest that the 
uneven distributions of antibodies in tumors do not sufficiently explain the observed binding dynamic features. 
Therefore, this precludes making the implication of uniform distribution of antibodies in the tumor. Antibody 
exhibited high perivascular distributions in tumors due to its large size and charges. Of note, our analysis was to 
compare antibody distributions between two histologically different tumor areas, rather than to evaluate antibody 
distribution gradients around tumor vessels.

Another interesting finding is that cetuximab durably suppressed free EGFR but transiently formed anti-
body–target complexes in living tumors (Fig. 7). Cetuximab eradicates tumor cells partially by downregulating 
the EGFR  expression31. ADCC was also observed in cetuximab tumor-killing effects, yet the impact of ADCC 
on cetuximab treatment effects remains unclear. We found that the suppression in EGFR is more sustained than 
cetuximab-EGFR formation, suggesting that the cetuximab-induced EGFR downregulation could have a more 
prolonged impact on cetuximab treatment effects compared to ADCC. Further exploration in the antibody-
antigen binding dynamics will provide more insights into the antibody mechanism of actions.

One limitation of this study was that the model was developed based on the imaging data in xenografts, 
which may not recapitulate the complexity of clinical tumors. Compared to the HEK293 derived xenograft, 
clinical tumors such as pancreatic adenocarcinoma usually consists of high but varied stromal components, 
limiting antibody accessibility to tumor cells and shifting the binding dynamics. Many drug delivery systems 
have been recently developed to target tumor-associated stromal cells to improve target accessibility and bind-
ing  properties32–35. Our approach can support in-depth investigations of the stromal effects on antibody–target 
binding dynamics in various types of tumor microenvironments. Furthermore, two distinctive tumor compart-
ments for stroma-rich and stroma-poor areas are subjective. The tumor vascular structure was not considered 
in the model, which may influence the model results concerning the varying degrees of vascularization and 
vessel membrane structures between stroma-rich and stroma-poor tumor areas. The binding kinetic parameters 
and antibodies strongly influenced the spatial distribution of antibodies within tumor tissues. Antibodies with 
relative lower  KD values showed strong perivascular distribution within tumor tissues, also known as “binding-
site barrier” effect, which further influence the anti-tumor  effects36–38. To fully account for the spatial gradient, 
the diffusion–reaction equation should be more appropriate, but it had an identifiability issue during model 
optimization. In addition, the binding parameters we estimated from the models are all apparent values that 
account for the influence of the physical and stromal factors in the tumor microenvironment. The IF staining 
images were acquired at the end of the BRET imaging study, which was preferably conducted in a longitudinal 
manner to match our model simulation.

Overall, in the present study, we combined the strengths of BRET imaging and spatially resolved computa-
tional models to evaluate the dynamics of binding an antibody to its target in living tumors. We demonstrated that 
spatial heterogeneity exists in antibody-binding profiles between stroma-rich and stroma-poor tumor regions. 
These findings improve our understanding of the complex antibody targeting process and should aid in design-
ing antibodies that show more favorable targeting properties.
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