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comparative study between deep 
learning and QSAR classifications 
for tnBc inhibitors and novel GpcR 
agonist discovery
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Machine learning is a well‑known approach for virtual screening. Recently, deep learning, a machine 
learning algorithm in artificial neural networks, has been applied to the advancement of precision 
medicine and drug discovery. In this study, we performed comparative studies between deep neural 
networks (DNN) and other ligand‑based virtual screening (LBVS) methods to demonstrate that DNN 
and random forest (RF) were superior in hit prediction efficiency. By using DNN, several triple‑negative 
breast cancer (TNBC) inhibitors were identified as potent hits from a screening of an in‑house database 
of 165,000 compounds. In broadening the application of this method, we harnessed the predictive 
properties of trained model in the discovery of G protein‑coupled receptor (GPCR) agonist, by which 
computational structure‑based design of molecules could be greatly hindered by lack of structural 
information. Notably, a potent (~ 500 nM) mu‑opioid receptor (MOR) agonist was identified as a 
hit from a small‑size training set of 63 compounds. Our results show that DNN could be an efficient 
module in hit prediction and provide experimental evidence that machine learning could identify 
potent hits in silico from a limited training set.

Abbreviations
DNN  Deep neural networks
LBVS  Ligand-based virtual screening
RF  Random forest
TNBC  Triple-negative breast cancer
GPCR  G-protein-couple receptors
AI  Artificial intelligence
QSAR  Quantitative structure–activity relationship
SVMs  Support vector machine
ADME  Absorption, distribution, metabolism, and excretion
DT  Decision tree
K-NN  K-nearest neighbors
ANNs  Artificial neural networks
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MOR  Mu-opioid receptor
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Implementation of “big data” with deep learning has created a paradigm shift in many scientific  disciplines1–3. 
From the perspective of medicinal chemistry, predicting particular functions or properties, e.g., absorption, 
distribution, metabolism, and excretion (ADME), of a molecular entity might greatly increase the quality of 
hit compounds and quicken the drug-discovery process. The use of artificial intelligence (AI) in drug design to 
generate a prediction model, conduct virtual screening, and predict compounds’ activities has received much 
attention  recently4–7. Traditionally, quantitative structure–activity relationship (QSAR) model was utilized by 
medicinal chemists and statisticians to associate bioactivities to particular functional group manipulations. In 
particular, a linear equation was generated to correlate the features and bioactivities for each compound, while 
different descriptors were employed to calculate the physical properties to merge with the 3D-structrual informa-
tion and generate 2D or 3D-QSAR  models8–10. Nowadays the development of QSAR have apply to multi-target 
and multi-objective QSAR approaches to assist drug  design11–13. These QSAR approaches are able to integrate 
multiple diverse chemical and biological data, being therefore capable of jointly making predictions ranging from 
in vitro and in vivo activities to ADMET  properties14. Nonetheless, these QSAR models were hard to generate 
from random and diverse databases. In addition, to properly separate the training set and the test set was time 
consuming. To provide an alternative strategy, as reported by Zhavoronkov et al., they have successfully used 
the deep learning method in the designs of more potent  compounds15. The incorporation of machine learning 
method for the progressive analysis of the active compounds and concurrent generation of the prediction model 
should address such limitations.

Lavecchia et al.16 summarized applications of machine learning algorithms, such as support vector machine 
(SVM)17 for ADME evaluation and decision tree (DT) in the classification of  compounds18. Moreover, a Naïve 
Bayesian classifier is frequently used in chemoinformatics for predicting biological properties, while k-Nearest 
neighbors (K-NN) is a simple and rough method to predict and rank the  molecule19,20. Others like the artificial 
neural networks (ANNs), is the popular technique for compound classification, QSAR studies, and primary 
virtual screening (VS) of  compounds21. All these machine learning algorithms were programmed to pick out and 
reclassify important features of the molecules as instructed, the limitations of these algorithms stemmed from 
the intrinsic inability to “self-taught” and prioritize the features in relation to the activities. Improper combining 
of the compounds’ descriptors could increase the noise level in features learning that could result in swamping 
the classifier model and generate a misleading  prediction22.

Herein, we employed deep learning algorithm to analyze the compound features, generate a first-hand model 
through 613 descriptors for training, and validated its findings through experimental confirmation. In addition, 
we compared its accuracy and efficiency with three other different virtual screening methods. After in silico 
screening of our in-house database of 165,000 compounds, by which different hit compounds were identified 
 from15,23–25, 100 top-ranked newly identified TNBC inhibitors were subjected to the bioassay to cross-examine 
the model accuracy. Moreover, to extend the scope of this deep learning model in predicting meaningful hits, 
another case study for the search of novel G protein-coupled receptor (GPCR) agonist was carried out. By using 
a similar model, we only trained the model with a collection of 63 mu-opioid receptor (MOR) agonists to learn 
the importance of compound features for the given bioactivities. We then identified the nanomolar MOR agonist 
from the in-house compounds library. Our study suggested that deep learning method could generate potent hit 
compounds in different disease areas for the drug discovery process.

Results and discussion
Model generation and comparative studies in efficiency. An advancement in the virtual screen-
ing method was made to reduce the burden of the drug discovery/development processes in a cost-effective 
 manner26. The virtual screening can be devised by using either structure-based virtual screening (SBVS) like 
docking screening  methods27 or LBVS like QSAR model  screening28. To investigate the application and effi-
ciency of the DNN approach in medicinal chemistry, we compared other contemporary QSAR method, such as 
RF  approach29, with traditional QSAR methods, such as PLS and MLR. RF has been demonstrated to have high 
prediction accuracy and robustness with adjustable parameters. It has become a “gold standard” machine learn-
ing method. Meanwhile, partial least squares (PLS) and multiple linear regression (MLR) are methods used for 
large data manipulation and allow facile generation of the model unlike other 3D-QSAR methods. In the current 
study, the same data set and descriptors were systematically incorporated to generate the models.

The traditional QSAR model helps to identify the relationship between activities and the descriptors’ variables. 
In addition to the QSAR methods, RF and DNN from the machine learning approach were used to generate the 
prediction model. RF is an ensemble learning method to perform classification in a similar manner to that of 
the decision tree (DT). Yet, the major difference stems from the use of Bagging method (or Bootstrap Aggregat-
ing) to generate many individual  trees30. Each tree could self-process samples from the training set data and 
provide a fixed number of random sampling data from the training set to generate a DT for voting. The final 
model was based on the highest score from individually developed trees in the forest. On the other hand, DNN 
are mathematical methods developed to mimic the neurons (nodes) of the human brain to recognize objects and 
analyze progressively, improving the efficiency of previously reported neural network  algorithms1,31. Each neuron 
is treated as a particular feature to classify the complex factors. The system, in turn, learns from the training set 
and assigns different weights for each neuron as this model eventually facilitates a prediction following the dif-
ferent clusters. Taken together, DNN increase the hidden layer numbers by allowing each layer of the nodes to 
access different features based on the previous layer’s output. Consequently, as more executed nodes are added 
in each layer, more features are recognized, enhancing the overall decision process.

To compare the different methods of virtual screening, a database of 7130 molecules with previously reported 
MDA-MB-231 inhibitory activities were collected from the ChEMBL web service. As the model prediction 
accuracy is highly depended on the quality of the database. In this study, these compounds were then randomly 
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separated into 6069 compounds (the training set) and 1061 compounds (the test set) to evaluate which model can 
more efficiently analyze the database and generate more useful models (Fig. 1). We implemented the extended 
connectivity fingerprints (ECFPs), which are circular topological depictions of the molecules, as the major 
molecular descriptors. Specifically, ECFPs are generated in a molecule-directed manner by systematically record-
ing the neighborhood of each non-hydrogen atom into multiple circular layers up to a given diameter of that 
 molecule32. These atom-centered sub-structural features are then mapped into integer codes and the resulting 
identifiers shape the extended connectivity fingerprint. These identifiers capture the local information of the 
corresponding atom in such a way that various atom properties (e.g., atomic number, connection counts) are 
packed into a single integer value. The default identifier configuration of ECFP captures highly specific atomic 
information, enabling the representation of a large set of precisely defined structural features.

In some applications, however, different kinds of abstraction may be desirable. For example, a chlorine or 
a bromine substituent on a ring may be functionally equivalent but would be redundantly distinguished by 
ECFP. Alternatively, functional-class fingerprints (FCFPs)32 detail circular fingerprints via the pharmacophore 
identification of atoms, which reports topological pharmacophore fingerprints. To perform the classifications 
comparisons, the software devised a total of 613 descriptors from  AlogP_count33, ECFP, and FCFP to generate 
the model (Fig. 1, and supplementary data Table S1).

Three distinct different numbers of training set (6069, 3035, and 303 compounds) were used to generate the 
models and their efficiencies were evaluated by the fixed test set (1061 compounds). R-square value  (r2 value) was 
used to quantify the differential efficiencies between the training set and test set prediction in machine learning 
methods (DNN and RF) and the QSAR methods (PLS and MLR) (Fig. 1). With training set compounds fixed 
at 6069, the machine learning methods (DNN or RF) exhibited higher predicted  r2 value near 90% than the 
traditional QSAR method (PLS or MLR) at 65%. In general, a good model was considered as having larger  r2 
and  R2

pred  (r2 > 80,  R2
pred > 60 is an assessable model)34–36. With the decrease of training set numbers, the machine 

learning methods sustained the overall higher  r2 value. As the training set number decreases, the deviation only 
retained with DNN and RF at 0.84 to 0.94, while PLS and MLR dropped to 0.24 from 0.69. In particular, with 
significantly lower training set numbers, interestingly, the MLR method maintained a respectful  r2 value near 
0.93, but when running against the test set,  R2

pred R2
pred was calculated to be zero. This implies that MLR could 

be an over-fitting model with a high false-positive rate, especially when the numbers of learning compounds are 
very limited. These results showed that the PLS and MLS methods could not efficiently distinguish the descrip-
tors and were problematic in generating meaningful fitting equations. On the other hand, the DNN method 
with lower number of training sets, the data still held a higher  r2 value of 0.94 than that of 0.84 by RF method 
(Fig. 1). Although the RF method could classify the features and select intrinsic feature for the analysis, DNN 
method was better in providing insights in weighting of important features. As a result, the DNN method held 
a higher  r2 value with lower numbers of training data sets. Of the machine learning methods, the  R2

pred R2
pred 

significantly improved with the increase in training set numbers, which is vastly different than the QSAR models 

Figure 1.  Comparative studies of classification methods. Models generated through 613 descriptors were 
trained and tested using the ChEMBL dataset of 7130 compounds that exhibited MDA-MB-231  IC50 values. The 
training and test sets’ prediction efficiencies between different models, DNN, RF, PLS, and MLR were compared 
with decreasing number of training compounds.
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(Fig. 1). With routine sampling of large amount of molecular features against a target from the public domain 
might be limiting, the large spread or deviation of PLS and MLR processes could greatly hinder the potential of 
identifying potent hits. Taken together, DNN and RF exhibited better accuracy and efficiency in the prediction 
of hit compounds. As shown in Fig. 1, the  R2

pred of DNN (0.26) and RF (0.24) were much lower, which implies 
that the database quality might not be sufficient for learning. We envision that more datasets might be needed 
or the quality of the datasets in terms of structural information and their activities should be more correlated 
for better learning by the algorithm.

Seminal work by Grisoni and  coworkers37,38, have indicated the  R2
pred or  Q2 metrics (Eq. 1) should be optimize 

to Q2
F3 (Eq. 2) as it was more sensitive for comparing predicted abilities between different models with the same 

training set. The original  R2
pred metrics was shown bellow

where  yi is the experimental result for i-th compounds not existing in the training set, y ̂i is the predicted result 
of the i-th compound, y ̅TR is the average value of the training set experimental results, and  ntest is the test set 
numbers. Reported by Todeschini et al., the Q2

F3  should be calculated as

By which,  yj is the experimental result for training set , y̅TR is the average value of the training set experimental 
result, and  nTR is the training set numbers. By applying this metric to our studies, the DNN and RF exhibited 
highest Q2

F3 value of 0.679 and 0.670, respectively (Supplementary data Table S2). In addition, Consonni et al. 
showed the calculation of Root-Mean-Square Error in prediction (RMSEP) and Root-Mean-Square Error in 
calculation (RMSEC) could quantify predictive abilities of QSAR model. The higher value of RMSEP led to 
higher chances of error. Our calculation results also showed that DNN method had the lowest value for RMSEC 
and RMSEP in comparison to those of other models (Supplementary data Table S2).

To further investigate the advantageous prediction ability of machine learning methods (DNN and RF) 
over the traditional QSAR methods (PLS and MLR), we analyzed the receiver operating characteristic (ROC) 
curve with the fix training set (6069 compounds) and fix test set (1061 compounds)39,40. ROC curve evaluates 
the performance of a binary classifier system and provides means in selecting optimal models. ROC curve was 
constructed by plotting a graph of sensitivity (Se, true positive rate) vs. 1-specificity (1-Sp, false positive rate). 
The measure of Se and Sp are defined as

where TP is the number of correctly identified active ligands (true positives), TN is the number of correctly 
identified inactive ligands (true negatives), FP the number of incorrectly identified active ligands (false posi-
tives), and FN the number of incorrectly identified inactive ligands (false negatives). The area under the ROC 
curve (AUC) measures the performance of each virtual screening approaches. The ideal screening method 
results in an AUC value of 1, while a random screening method would lead to an AUC value of 0.5. As shown in 
Fig. 2A, the AUC calculated by the training set of the RF and DNN methods were 0.991 and 0.992, respectively. 
Interestingly, these values were higher than those of PLS and MLR methods with 0.907 and 0.922. To investigate 
the prediction ability of the test set, the respective AUC values of RF and DNN methods were 0.922 and 0.924. 
Also, they were expected to be superior than those of PLS and MLR methods with 0.870 and 0.865. These ROC 
curve analyses further potentiated the RF and DNN screening method might be more suitable than traditional 
QSAR methods (PLS and MLR).

Virtual screening and identification of TNBC inhibitors by DNN and RF models with experi‑
mental validation. Based on the above information, the DNN and RF models were chosen as the preferred 
means to perform virtual screening. The identified compounds were then assayed for their corresponding bioac-
tivities. Herein, we demonstrated two different cases for evaluating these models’ accuracy. First, we successfully 
identified active hits for TNBC inhibition. The DNN and RF models were used to screen the in-house database 
(165,000 compounds), and the selected hits were assayed against the anti-TNBC cellular assay (Fig. 3A). The top 
predicted 100 compounds were selected and tested at 10 μM concentration for MDA-MB-231 cell line inhibition 
(Supplementary data Table S3.1 and Table S3.2). Since the compound collection was acquired based on MDA-
MB-231 inhibitory activities, other TNBC cell lines were also assayed to obtain selective TNBC inhibitors. Out 
of the multiple hits identified through both methods, six compounds from each classification (compounds 1–12) 
were assayed and showed low cytotoxicity to MCF10A, a nonmalignant mammary epithelial cell line (Fig. 3B,C). 
We then assayed these hits against other TNBC cell lines, BT-549 and MDA-MB-453. Compounds 3, 7, 8, 10, 
which exhibited broader TNBC inhibitions, were then subjected to  IC50 determination (Supplementary data 
Figure S1). Notably, between RF and DNN, we obtained a thiazole core with selective anti-TNBC profiles over 

(1)Q2
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Figure 2.  Comparative studies of ROC calculation for DNN, RF, PLS, and MLR methods. Comparisons of 
ROC curves for (A) Using the fix number of training set (6069 compounds) to generate the model for the 
analysis of the training set itself. The AUC value of each ROC curve for PLS, MLR, RD, and DNN are 0.907, 
0.922, 0.991, 0.922, respectively. (B) Using the fix number of training set (6069 compounds) to generate model 
for analysis of the test set. The AUC value of each ROC curve for PLS, MLR, RD, and DNN are 0.924, 0.922, 
0.870, 0.865, respectively.

Figure 3.  Model generation and discovery of TNBC inhibitors from in-house library. (A) Flow scheme of 
discovery of potent TNBC inhibitors. (B) Chemical structures of in-house identified TNBC inhibitors: 6 hits 
from random forest classifications and 6 hits from deep neural network. (C) Cellular survival rate at 10 µM 
of the 12 hits against nonmalignant mammary epithelial cell line (MCF10A) and three TNBC cell lines: 
MDA-MB-231, BT-549, and MDA-MB-453. Actinomycin D, was used as control. Values are expressed as the 
mean of at least two independent determinations and are within ± 15%.
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the normal mammary cells (Fig. 3B,C). Synthesis of the thiazole-based inhibitors were carried out and several 
potent TNBC inhibitors were identified (Fig. 4). Compound 18, which showed good selectivity over nonmalig-
nant mammary epithelial cell, had an  IC50 of 0.62 µM against MDA-MB-231. Interestingly, regioisomeric con-
trols in compounds 22 and 23 were synthesized. Compound 22 did not show activities toward the TNBC and 23, 
although it possessed moderate micro molar activities and also exhibited cytotoxicity to MCF-10A. This study 
serves as a good example of hit generation from an unknown target with good cellular selectivity and functional 
manipulatable core.

Analysis between model‑identified compounds and database compounds. To address the avail-
ability of thiazole core in the original set of 7130 compounds, we devised a principle component analysis of the 
database with PIC50, AlogP, and polar surface versus total surface area (Fig. 5). These properties were chosen 
to fulfill the characteristics of a hit compound in a common drug-discovery campaign. The 7130 compounds 
were then mapped and showed that compounds consisting of the thiazole core are clustered in the quadrant with 
activities ranging from PIC50 4.8–6.5 (10 µM to 0.3 µM). Moreover, the AlogP and polar surface versus total 
surface area values were in the satisfactory range for a hit compound (Fig. 5). Gratifyingly, this finding correlates 
well to the experimental results from our SAR studies of the TNBC inhibitors (Fig. 4). Our findings suggest 
that both RF and DNN can be adapted to generate meaningful models and identify functional hits for the later 
optimization process.

Identification and experimental validation of novel GPCR agonists by the DNN and RF mod‑
els. We envision that predicting new scaffold with the experimental validation should render the greatly 

Figure 4.  Structure–activity relationship studies of thiazole-based TNBC inhibitors. (A) Synthetic routes of 
thiazole (i) and its regioisomers (ii). (B) Cellular cytotoxicity of the inhibitors against nonmalignant mammary 
epithelial cell line (MCF10A) at 10 µM and  IC50 values against three TNBC cell lines: MDA-MB-231, BT-549, 
and MDA-MB-453.
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expand the application of this deep learning approach. We then adapted this classification for GPCR agonist 
generation, where structure-based designs are limited without a known information of the core structure due to 
the membrane associated nature of many GPCRs (Fig. 6). To evaluate the scope of the model, the MOR agonist 
was also identified via virtual screening of the same in-house database with the DNN and RF models. In our 
previous studies on MOR  agonist41, we synthesized 63 compounds and tested by FLIPR calcium assay (Supple-
mentary data Table S4 and Figure S2). We used MOR as an example to demonstrate the predictive power of this 
approach. To train the learning system, we provided a small sample collection of 63  compounds41. The total 63 
compounds, divided into series A–E clusters, were used as the training set to generate the DNN and RF models 
(Fig. 6A). We envision that incorporation of molecular diversity with large spread of bioactivities in series A–E 
should minimize deviation of the  r2 with DNN and RF and improve the learning process. Model generation was 
performed with the same 613 descriptors, and then new cores in the 165,000 in-house pool were processed. The 
top 40 compounds predicted by RF and another top 40 by DNN (Supplementary data Table S5.1 and Table S5.2) 
were subjected to the FLIPR calcium assay (Fig. 6B). The CHO-K1 cell line, stably expressing MOR and Gα15 
(GenScript), was used to evaluate the selected compounds. In the FLIPR calcium assay of CHO-K1/MOR/Gα15 
cells, activation of MOR elicits an intracellular calcium release, leading to an increase in the relative fluorescence 
units (RFU). Five compounds, 24–28, were identified as potential hits by these two different screening models. 
As shown in Fig.  6B, in addition to hit 26 identified from DNN method exhibited potent agonist activities 
 (EC50 = 560 nM), these models provided great molecular diversities over the training set of compounds. To the 
best of our knowledge, this is the first example correlating prediction and validation of a GPCR agonist discovery 
where structure-based design is limited. Notably, only a small training set of 63 compounds (Supplementary 
data Table S4) was employed, and a set of five structurally distinct hits was identified. This result provided strong 
support in that DNN and RF methods could still sustained high predicted  r2 value in low numbers of training 
data set.

Figure 5.  Chemoinformatics of thiazole-based inhibitors in the ChEMBL dataset. Analysis of compound 
properties is characterized by AlogP,  PIC50, and percent polar surface area of the molecules to address solubility, 
potency, and cellular properties. The thiazole compounds were clustered in the center of the matrix.
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The Opioid receptor binding affinity assay was performed to further confirm these compounds direct bind to 
MOR. The MOR membranes was detected by measuring the competitive inhibition ratio of [3H]diprenorphine 
binding assessment. Ki = IC50/(1 + L/Kd), where L is the concentration of [3H]diprenorphine (1 nM) used, 
and the Kd value in MOR is 0.4 nM. All assays were carried out independently and at least in triplicate. The 
values indicate the mean ± SEM. MOR = mu opioid receptor; ME = [Met5]Enkephalin; N.D. = not determined; 
SEM = standard error of the mean. As shown in Fig. 6, the compounds 24–28 has no structural similarity to 
morphine or any other previously described opioid receptor agonist. In the receptor binding assay, membrane 
proteins from HEK-MOP were used for detecting the binding affinity of these compounds by comparing with 
the morphine (Table 1).

Figure 6.  Prediction and validation of novel MOR agonist from RF and DNN classifications. (A) Molecular 
descriptions of training set compounds of MOR agonist, Series A–E, and their corresponding  EC50 values. (B) 
Flow scheme of model generation and novel hits identified from RF and DNN prediction. By FLIPR calcium 
assay,  EC50 values are the means of at least three independent experiments. Reference compound was published 
by Chen et al. and assigned as compound 46 in the publication.

Table 1.  The binding affinity assay of compounds 24, 25, 26, 27, 28 and morphine on MOR. [Met5] 
Enkephalin (ME) is an opioid pentapeptide.

[3H]diprenorphine binding, Ki (nM)

Morphine 6 ± 1.0

ME 3.5 ± 0.8

24 830 ± 50.0

25 625 ± 79.0

26 535 ± 50.0

27 720 ± 95.0

28 965 ± 110.0
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conclusion
Hit identification is an important step in the early stages of drug discovery. Virtual screening is extensively used 
to identify suitable hits, and such methods to improve the hit rate are much sought after. In this study, we report 
comparative studies between traditional QSAR methods and machine learning methods applied in VS. The 
results showed that machine learning methods could achieve a higher predicted  r2 value with fewer compounds 
required in the training set. In our work, DNN and RF predicted the selective TNBC inhibitors from the our 
in-house database. In case of identifying novel MOR agonist, 5 hit compounds were readily found from only 
a 63-compound training set. The diversified chemical structures of the 5 hits identified by the DNN method 
showed good potency as a hit with an  EC50 = 560 nM. This is an interesting application of the deep learning clas-
sification as structure-based design of GPCR agonist are limited with limited information of the core structure 
due to the membrane associated nature of many GPCR. Taken together, this study demonstrated the efficiency 
of DNN and RF machine learning methods for VS and provided experimental evidences that this application 
can be adapted to identify hit compounds among different diseases.

experimental procedures
Data set collection for TNBC and MOR. For the TNBC inhibitor identification studies, 7130 com-
pounds that contain MDA-MB-231 bioassay activity data were collected from the ChEMBL database (https ://
www.ebi.ac.uk/chemb l/). The database was randomly separated into two parts. One part contained 85% of the 
compounds (6069 compounds), which were used as the training set; the other 15% of compounds (1061 com-
pounds) were used as a test set in our studies. However, for the MOR agonist discovery studies, 63 compounds 
were collected from the publication of Chen et al.41 as a training set database (Supplementary data Table S4).

Descriptors and model generation. All models were generated by BIOVIA pipeline pilot V18.1 plat-
form with R statistic software V 3.4.142,43. These models were generated by the same descriptors from the Dis-
covery Studio/Calculates ligand properties program (BIOVIA, Inc., San Diego, CA), including ALogP_count 
(101 descriptors), ECFP_4 (256 descriptors), and FCFP_4 (256 descriptors). The RF model use a recursive par-
titioning (decision tree) forest model by R package “"randomForest". The number of trees was set for 500. The 
fraction of descriptors to use for each tree in the forest was set to 0.3. A deep neural network model using R 
package “deepnet” performed the DNN model. Three hidden layers were used and each layer with 80 notes. The 
learning rate of every epoch was 0.1 with the momentum for 0.9, the maximum number of iterations for net-
work training was 5000. To prevent the model + over-fitting, the fraction of hidden layer to be dropped out for 
model training was set for 0.25. The traditional QSAR model, like multiple linear regression analysis (MLR), is 
a equation to describe the dependent variable Y with independent variables, X1, X2, …, etc. For example, Y(pre
d)i = b0 + b1 * X1 + b2 * X2 + ....+   bp*Xp, where the b1, b2,…,bn are the regression coefficients, Y(pred)i can be 
project as ith bioactivities, and X1, X2,…,Xp can apply to different  descriptors44. The PLS regression is using the 
orthogonal matrices (T) to determine the fundamental relations between dependent variable Y and independent 
variables X. For example, Y = X × W × Q + E, T = X × W, where Y is a response matrix for the dependent variables 
like bioactivities result, T is a extraction matrix for the independent variables like descriptors, Q is a matrix of 
the regression coefficients, W are the factor score matrix and the weight matrix, and E is an error term for the 
 model45,46.The PLS and MLR models were also conduct by pilot V18.1 platform with the default protocol and 
evaluate by fivefold cross-validated method.

cell viability assay for tnBc inhibitors. The cells were seeded in 384-well clear plates with a density of 
8 × 102 cells/well for MCF-10A and BT-549 cell lines, 1 × 103 cells/well for MDA-MB-453, and 2 × 103 cells/well 
for MDA-MB-231 overnight. Then cells were treated with the indicated concentrations of test compounds for 
72 h. At the end of incubation, 5 μL of PrestoBlue Cell Viability Reagent (Invitrogen, Carlsbad, CA, USA) was 
added to each well with 50 μL medium. The plates were incubated for an additional 1.5 h at 37 °C in a humidified 
5%  CO2 atmosphere; the relative fluorescence unit (RFU) in the reaction mixture will then be recorded (Ex560/
Em590) by Victor2-Vplate reader (PerkinElmer, Waltham, MA, USA). The cell lines were chosen based on the 
mutation status of PTEN and/or TP53: MCF-10A, the nonmalignant mammary epithelial cell line; BT-549 with 
mutation of PTEN and TP53; MDA-MB-453 with mutation of PTEN; MDA-MB-231 with mutation of  TP5347.

fLipR calcium assay. Black with clear flat bottom 96-well assay plates (Corning) were coated with a 
0.1 mg/mL Poly-l-Lysine solution a day prior to the assay. CHO-K1/MOR/Gα15 cells were suspended in the 
F12 medium and plated at a density of ~ 8 × 104 cells/well in 200 μL medium. Cells were incubated in a humidi-
fied atmosphere of 10%  CO2 at 37 °C overnight to reach an 80–90% confluence cell monolayer before assay. 
On the day of assay, 150  μL medium/well was removed from the plate. To each well, 50  μL FLIPR calcium 
assay reagent dissolved in 1 × assay buffer (HBSS: KCl 5 mM,  KH2PO4 0.3 mM, NaCl 138 mM,  NaHCO3 4 mM, 
 Na2HPO4 0.3  mM, d-glucose 5.6  mM, with an additional 20  mM HEPES and 13  mM  CaCl2, pH 7.4), with 
2.5 mM probenecid added; then the plate was incubated at 37 °C for 1 h. Compounds (30 μM) and other reagents 
were dissolved in the assay buffer. Using a FlexStationIII (Molecular Devices Corp.), the increase of fluorescence 
after robotic injections of compounds or other reagents were monitored every 1.52 s interval with excitation 
wavelength at 485 nm and emission wavelength at 525 nm. The  [Ca2+]i fluorescence was measured up to 90 s 
after agonist injection. The relative fluorescence intensity from 2 wells of cells were averaged and the relative 
amount of  [Ca2+]i release was determined by integrating the area under the curve (AUC) with Prism software 
(GraphPad). The AUC of each compound was then subtracted from the response in the presence of MOR ago-
nist naloxone (20 nM) to obtain the specific MOR  responses48.

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
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Radioligand binding assay. Human embryonic kidney 293 cells constitutively expressing MOR (HEK-
MOR) (Dr. Ping-Yee Law; University of Minnesota Medical School) were harvested and homogenized in 
membrane preparation buffer (50 mM Tris–HCl at pH 7.4, containing 2 mM ethylenediaminetetraacetic acid 
[EDTA]) containing a fresh protease inhibitor cocktail (Roche, Basel, Switzerland) and then centrifuged at 
30,000g for 30 min. The pellets were resuspended, aliquoted, and stored at − 80 °C. For the  [3H]diprenorphine 
saturation binding assays, membranes (containing 25 μg of protein) were incubated with different concentra-
tions (0.5–5 nM) of  [3H]diprenorphine in binding buffer (50 mM Tris–HCl at pH 7.4, containing 2 mM EDTA) 
at 25 °C for 1 h. For the competitive binding experiments,  [3H]diprenorphine (1 nM) was incubated with mem-
branes (containing 25 μg of protein) in the absence or presence of various concentrations of compounds at 25 °C 
for 1 h. The samples were then rapidly filtered onto glass-fiber filters (Millipore, Billerica, MA, USA) and washed 
three times with ice-cold phosphate-buffered saline. The radioactivity was quantified using a liquid scintillation 
 counter49.
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