
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:16580  | https://doi.org/10.1038/s41598-020-73597-w

www.nature.com/scientificreports

Pomegranate: 2D segmentation 
and 3D reconstruction for fission 
yeast and other radially symmetric 
cells
Erod Keaton Baybay*, Eric Esposito & Silke Hauf*

Three-dimensional (3D) segmentation of cells in microscopy images is crucial to accurately capture 
signals that extend across optical sections. Using brightfield images for segmentation has the 
advantage of being minimally phototoxic and leaving all other channels available for signals 
of interest. However, brightfield images only readily provide information for two-dimensional 
(2D) segmentation. In radially symmetric cells, such as fission yeast and many bacteria, this 2D 
segmentation can be computationally extruded into the third dimension. However, current methods 
typically make the simplifying assumption that cells are straight rods. Here, we report Pomegranate, 
a pipeline that performs the extrusion into 3D using spheres placed along the topological skeletons of 
the 2D-segmented regions. The diameter of these spheres adapts to the cell diameter at each position. 
Thus, Pomegranate accurately represents radially symmetric cells in 3D even if cell diameter varies 
and regardless of whether a cell is straight, bent or curved. We have tested Pomegranate on fission 
yeast and demonstrate its ability to 3D segment wild-type cells as well as classical size and shape 
mutants. The pipeline is available as a macro for the open-source image analysis software Fiji/ImageJ. 
2D segmentations created within or outside Pomegranate can serve as input, thus making this a 
valuable extension to the image analysis portfolio already available for fission yeast and other radially 
symmetric cell types.

Microscopy is a powerful technique to collect spatial and temporal information on cellular processes. However, 
collecting quantitative data from microscopy images represents a persistent bottleneck. This task is greatly aided 
by automated or semi-automated image analysis pipelines1–3. Automation minimizes subjectivity in the analysis, 
saves time, and allows for the quantification of more cells than manual analysis. This increases statistical power 
and provides fine-grained information on cell-to-cell variability.

Regions of interest (ROIs) can be delineated either in two dimensions (X/Y, 2D) or three dimensions (X/Y/Z, 
3D). Analysis in 3D becomes important when objects of interest stretch across more than one optical section. 
Different strategies have been used to construct 3D ROIs. A common approach is the use of a fluorescent marker 
to segment objects of interest (e.g. nuclei or cells). Segmentation can be achieved by traditional image process-
ing algorithms such as adaptive thresholding and binary morphometric operations, or by machine learning or 
deep learning techniques4–14. However, any strategy that uses a fluorescent marker for live-cell segmentation 
(1) increases phototoxicity, (2) limits the number of fluorescent channels available for proteins or structures of 
interest, and (3) can cause variability in segmentation when uneven illumination, or uneven staining or expres-
sion, leads to variability in fluorescence signal.

Using brightfield images to segment cells largely eliminates these problems but comes with its own set of 
challenges. While brightfield microscopy highlights the cell contour which allows for 2D segmentation, 3D 
information on cell shape is not readily available15,16. Recent efforts have begun to train neural networks to 
extract 3D information from brightfield Z-stacks by co-training with fluorescence markers17, but feasibility for 
whole-cell segmentation has not yet been demonstrated. Hence, additional methods are currently required to 
extend a 2D cell ROI obtained by brightfield imaging into 3D. When the cells being imaged are radially sym-
metric (e.g. rod-shaped), this additional information can be used to infer the cellular shape in 3D from that in 
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2D. Examples of radially symmetric cells include many types of bacteria (e.g. E. coli or B. subtilis18–20) and fungi 
(e.g. fission yeast21–24).

Fission yeast (Schizosaccharomyces pombe) is a eukaryotic model organism frequently used in single-cell imag-
ing studies to gain an understanding of the cell cycle, cell polarity, cell division, and other intracellular signaling 
events25,26. Features that contribute to fission yeast’s popularity include its well-annotated, compact genome27,28, 
excellent molecular genetics tools29, and the presence of many genes and pathways that are shared with animals 
and plants30,31. A number of segmentation pipelines based on brightfield imaging have been developed specifi-
cally for fission yeast or other radially symmetric cells but only perform 2D segmentation32–36.

Here, we present Pomegranate, a pipeline for the 3D segmentation of radially symmetric cells which combines 
2D brightfield segmentation with 3D morphological extrapolation. We validate Pomegranate using fission yeast. 
Unlike previous extrapolation approaches (e.g.37,38), Pomegranate does not assume cells to be straight, nor does 
it assume constant cell width. To create the 3D shape, Pomegranate uses spheres with centers located along the 
central axis of the cell. The diameter of each sphere is taken from the cell width at this position. Thus, Pomegran-
ate accurately projects the variable cell width of a single cell into 3D and performs equally well on bent, curved 
and straight cells. Pomegranate is expected to work on all cell types that are radially symmetric along a central 
axis that is parallel to the imaging plane and provides improved 3D segmentation for such cells. Pomegranate is 
available as a macro for the open-source image analysis software FIJI/ImageJ.

Results
3D reconstruction with Pomegranate.  We developed Pomegranate to segment fission yeast or other 
radially symmetric cells in 3D. As input, the pipeline takes a Z-stack of brightfield images for segmenting the cell 
and a Z-stack of fluorescence images for segmenting the cell nucleus and any markers of interest (Fig. 1). Before 
being added to the pipeline, the images are background subtracted, flat-field corrected and corrected for axial 
chromatic aberration as well as for distortions in axial distance (Supplementary Figs. S1, S2).

Nuclear segmentation is optional in Pomegranate, and nuclei and cells are initially treated separately and later 
combined. To define the nucleus, Pomegranate uses traditional adaptive thresholding across all optical sections 
(Fig. 1A, see “Materials and methods” for details). The ROIs from all optical sections are combined to obtain the 
3D representation of the nucleus. We used TetR-tdTomato-NLS as the fluorescent marker, which yields a bright 
signal in the nucleus and a slightly weaker signal in the nucleolus39.

For whole-cell segmentation, Pomegranate uses brightfield images to define a midplane ROI (Fig. 1B, see 
“Materials and methods” for details). To obtain the midplane ROI, the characteristic intensity pattern surround-
ing cells in the brightfield image (Supplementary Fig. S3) is used to define the edges of the cell33,35,40 (Fig. 1B, 
see “Materials and methods” for details). As an alternative to this brightfield segmentation, externally prepared 
midplane ROIs can be used. This allows users to run any pipeline of their choice for 2D cell segmentation 
(e.g.33,34,41) while still profiting from Pomegranate’s 3D reconstruction. We demonstrate this by using 2D bright-
field segmentation obtained by “YeaZ”41, a convolutional neural network (CNN) trained on yeast brightfield 
images (Supplementary Fig. S4A). YeaZ-segmented ROIs were imported into Pomegranate and successfully used 
in place of Pomegranate midplane ROIs to produce 3D representations of cells (Supplementary Fig. S4A). While 
the accuracy of 2D segmentation between Pomegranate and YeaZ was comparable (Supplementary Fig. S4B), the 
accuracy of YeaZ segmentation could potentially exceed that of Pomegranate with additional model training.

The key feature of Pomegranate is extrusion of the cellular midplane ROI into 3D (Fig. 2). Based on the 
assumption of radial symmetry, Pomegranate extrudes multiple spheres along the length of the cell, whose 
diameters correspond to the cell width at each position (Fig. 2A–D). ROIs in the optical sections away from 
the midplane are defined by this extrusion (Fig. 2B,D). The ROIs from all optical sections are then combined 
to obtain the 3D representation of the cell (Fig. 2E,F). As path for the centers of the spheres, Pomegranate uses 
the ‘topological skeleton’ (Figs. 1B, panel 5 and 7; 2C), a line equidistant to the cell boundaries. Since this line 
follows cell shape, Pomegranate processes straight, bent or curved cells equally well.

Finally, if both cell and nuclear segmentation are available, nuclei are assigned to the cells in which they are 
located. If the Z positions of the cellular and nuclear midplane differ, users have the option to re-assign cellular 
midplane ROIs to the optical section of the corresponding nuclear midplane. This may be necessary if cells are 
not all located in the exact same plane.

Overall, the core unique step of Pomegranate is the spherical extrusion to obtain the 3D representation of 
cells (Fig. 2). Beyond that, the pipeline is adaptable to the specific requirements of each individual user.

Pomegranate accurately isolates regions of interest.  To assess the ability of Pomegranate to accu-
rately segment cells, we applied the pipeline to cells expressing the nuclear fluorescent marker TetR-tdTomato-
NLS in combination with a cytoplasmic fluorescent marker: Mep33-mCherry for a weaker cytoplasmic signal or 
Mep33-tdTomato for a brighter cytoplasmic signal (Fig. 3A). We used the weaker cytoplasmic signal when test-
ing 3D nuclear segmentation and the brighter cytoplasmic signal when testing the ability of the 3D cellular seg-
mentation to capture cytoplasmic signals. After segmentation and 3D reconstruction, we analyzed the intensities 
of voxels either in the full image, or within the ROIs defining nuclei or cells. Pomegranate successfully isolated 
the higher intensity signals in nuclei or cells from the background signal (Fig. 3B), indicating that Pomegranate 
segments accurately in 3D.

A frequent workaround to proper 3D segmentation is applying the 2D midplane ROI to all optical sections, 
which is analogous to analyzing a projection of all optical sections42–44 (Supplementary Fig. S5A). This strategy 
falsely includes extracellular background. The approach can be slightly improved by only including sections above 
or below the midplane that are likely to be located within the cell45 (Supplementary Fig. S5A). Direct comparison 
of this approach to Pomegranate finds that Pomegranate identifies a narrower distribution of pixel intensities 
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Figure 1.   Pomegranate pipeline schematic. (A) Nuclear segmentation and reconstruction—(top) schematic 
of processing steps for 2D nuclear segmentation (grey) and 3D reconstruction (red). (Bottom) Sequential 
images through the segmentation and reconstruction process: (1) sample slice of an input image, showing 
nuclear marker TetR-tdTomato-NLS, (2) sample slice of a processed input image following Gaussian blur and 
unsharp mask, (3) sample slice of a binary image from adaptive thresholding, (4) smoothed ROIs derived from 
binary image, (5) cartoon of reconstruction method and representative model from 3D reconstruction as a 
result of ROI grouping. (B) Whole-cell segmentation and reconstruction—(top) schematic of processing steps 
for 2D whole-cell segmentation (grey) and 3D reconstruction (red). (Bottom) Sequential images through the 
segmentation and reconstruction process: (1) sample slice of an input brightfield image with point selection on 
nuclear centroids from (A) (for the optional Z-alignment of whole-cell reconstructions to the corresponding 
nuclei), (2) Z-projection of multiple slices processed with Gaussian blur and unsharp mask, (3) binarization 
of projection, (4) smoothed ROIs derived from binary image (yellow) overlaid on brightfield image, (5) 
topological skeleton of binary image, (6) Euclidean distance map of binary, (7) union of topological skeleton 
and Euclidean distance map, used as radius profile input for spherical extrusion when generating the whole-cell 
3D reconstruction, (8) cartoon of reconstruction method and representative model from 3D reconstruction 
as a result of spherical extrusion. For simplicity, extrusion is shown here along a straight axis, but topological 
skeletons are typically not straight (panels 5,7).
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(Supplementary Fig. S5B), likely reflecting a more accurate capture of cytoplasmic signals. We conclude that the 
brightfield-based 3D segmentation of Pomegranate is successful in capturing fluorescent cytoplasmic signals 
and does so with higher accuracy than projection-based approaches.

Pomegranate refines volume measurement in wild‑type cells.  Segmenting cells in 3D is useful to 
measure cellular signals but can also provide information on the volume and surface area of cells. Both of these 
size parameters are important in cell growth studies46,47. To estimate cell size, some prior studies have made the 
approximation that fission yeast cells are cylinders with hemispherical ends (e.g.37,38,48,49). Cell length and width 
measurements from the midplane ROI are used to calculate the volume of this idealized shape. To compare 
this method to 3D reconstruction by Pomegranate, we imaged wild-type fission yeast cells and analyzed more 
than 8000 cells with two variations of this earlier method in addition to Pomegranate. In the two variations, cell 
length and width are obtained either from the major and minor axis of an elliptical fit or from the maximum 

Figure 2.   Whole-cell reconstruction algorithm. (A) General schematic for the whole-cell 3D reconstruction 
algorithm: from a 2D binary image in the midplane of a cell, spheres are extruded along the topological 
skeleton, where the radii of these spheres is the distance to the nearest edge of the cell. Note that the topological 
skeleton is shown here as a straight line but does not have to be straight. (B) At each optical section away 
from the midplane (distance: Δz), a voxel is included in the reconstruction when the majority of its volume 
is part of the sphere profile. (Right) Black line represents the sphere profile, red line represents the voxelized 
z-section as seen in (C). (C) Coarse 2D image converted into a distance map where the values in each pixel 
represent the Euclidean distance to the periphery of the binary, with the topological skeleton annotated 
in red. Inset: example of union between topological skeleton and distance map, from Fig. 1B, panel 7. The 
greyscale of the pixels of the topological skeleton indicates distance to the periphery. (D) Sample points on 
topological skeleton at Z = 0 (left) and Z = 2 (right) with example spherical cross sections centered in XY 
along the topological skeleton. Cross section radii are determined by the equation described in (B). Radii are 
indicated in red at Z = 0 and blue at Z = 2. (E) Visualization of the coarse reconstruction in 3D, with all optical 
sections of the complete reconstruction shown. (F) Example 3D reconstruction of a wild-type cell (voxel size 
0.1071 µm × 0.1071 µm × 0.065 µm).
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and minimum Feret diameter (also called the caliper diameter) of the midplane ROI (Fig. 4A, Supplementary 
Fig. S6, see “Materials and methods” for details). We find that cellular volumes obtained by Pomegranate are 
around 20% smaller (Fig. 4B). Volumes obtained by Pomegranate are also less variable across the cell population 
(Fig. 4B). This suggests that the methods assuming a straight rod shape tend to overestimate volume and that 
the Pomegranate ROI more accurately represents cell shape. The overlay of example regions shows that the dis-
crepancies largely result from unequal width along the length of the cells (Fig. 4C). In addition, the requirement 
of the elliptical fit to maintain the area of the original ROI tends to overestimate cell length (Fig. 4C). Surface 
area was slightly larger when measured by Pomegranate when compared to the surface areas calculated from 
the idealized rod-shape (Supplementary Fig. S6B), possibly because Pomegranate better captures some of the 
irregularity in fission yeast’s whole-cell morphology. Altogether, this analysis suggests that 3D segmentation by 
Pomegranate improves volume and surface measurements compared to methods that assume a cylinder with 
hemispherical ends as cell shape.

The volume of the nucleus scales with the volume of the cell37,50 (Supplementary Fig. S7). In fission yeast, the 
ratio of nuclear to cell volume (the N/C ratio) has been reported to be 8% when using idealized geometries for 
both nucleus and cell37,49. Electron microscopy experiments measured 9.4%51 and 12%52. Similarly, we find an 
N/C ratio of 10% (SD = 2.4%) when using volumes from idealized geometries (from Feret diameters, Supple-
mentary Fig. S7B). Measured by Pomegranate 3D reconstruction, the N/C ratio is higher with a value of 12.7% 
(SD = 2.8%, Supplementary Fig. S7B), as is expected from the smaller cell volume (Fig. 4B). We also find that 
the N/C ratio is more variable in smaller compared to larger cells (Supplementary Fig. S7C). This suggests that 
cell division introduces variability, which may get corrected as cells grow49,53.

Given the difficulties in measuring volume, cell length has sometimes been used as a simple proxy for cell 
size (e.g.54,55). Correlation analysis in our large dataset (Supplementary Fig. S8) shows that cell volume indeed 
correlates well with cell length (Pomegranate cell volume and Feret length, Pearson r = 0.90, p < 0.01). However, 
cell volume also correlates to a lesser yet significant extent with cell width (Pomegranate cell volume and Feret 
width, Pearson r = 0.60, p < 0.01). The correlation between cell length and cell width is weaker (Feret length and 

Figure 3.   Signal acquisition performance. (A) Representative optical sections in XY and three sample YZ 
orthogonal views at different X positions. White vertical lines indicate sampling positions for corresponding 
YZ orthogonal views. Voxel size is 0.1071 µm × 0.1071 µm × 0.065 µm. Images are from fission yeast expressing 
TetR-tdTomato-NLS and Mep33-mCherry for nuclear analysis (top) and TetR-tdTomato-NLS and Mep33-
tdTomato for whole-cell analysis (bottom). Annotations provide minimum and maximum intensities. All 
images have been subject to gamma correction (γ = 0.50) to improve visibility of cytoplasmic signal. (B) Intensity 
histograms for all voxels in the image (full image), and for all voxels contained within the 3D ROIs. Dashed lines 
annotate maxima: background (red) and signal of interest (black).
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Feret width, Pearson r = 0.28, p < 0.01). This suggests that cell width, which is often ignored, influences cell volume 
largely independent of cell length and should be accounted for in order to approximate volume. The analysis 
above further suggests that Pomegranate’s ability to take the variation of cell width within individual cells into 
account improves cell volume estimates.

Pomegranate reconstructs cell size and shape mutants in 3D.  While wild-type fission yeast cells 
have a relatively uniform shape, mutant cells can drastically deviate from this shape56. We therefore tested 
whether Pomegranate can segment cell size and shape mutants. We used tea1∆ for curved cells, wee1-50 for 
short cells, and cdc25-22 for long cells57–59. Our whole-cell segmentation successfully captured the shape of these 
mutants (Fig. 5B). We estimated curvature by assessing solidity of the midplane ROI (Fig. 5A). Solidity is defined 
as the ROI area divided by the smallest convex area that contains the ROI (convex hull). Low solidity indicates a 
concave shape. Wild-type and tea1∆ cells exhibited mean solidities of 0.94 and 0.93, respectively. The coefficient 
of variation for tea1∆ (CV = SD/Mean = 3%) was higher than that of wild type (CV = 2%), suggesting greater vari-
ability in cell curvature57,60. The cdc25-22 cells exhibited the lowest mean solidity of 0.87. Because these cells are 
overly long, even slight curvature leads to large area differences between convex hull and ROI area. The highest 
solidity was exhibited by wee1-50 mutant cells (0.95) as their compact geometry prohibits curvature. Our results 
are highly similar to those obtained by Liu et al. in the testing their morphometry toolbox34. This validates our 
2D segmentation and demonstrates that Pomegranate successfully segments size and shape mutants.

As the curvature analysis indicates, these size and shape mutants are not well approximated by assuming cells 
to be a cylinder with hemispherical ends (Fig. 4A). Pomegranate therefore provides the necessary functionality to 
measure volume of these mutants (Fig. 5). Compared to wild-type cells with a mean volume of 91 µm3, wee1-50 
mutants, as expected, showed a smaller mean volume (50 µm3), and cdc25-22 mutants a larger one (350 µm3). 
The mean volume of tea1∆ cells (110 µm3) was slightly larger than for wild-type cells, consistent with a slightly 

Figure 4.   Comparison of methods for calculating wild-type cell volume. (A) Schematic representations of 
methods for calculating whole-cell volume. Parameters are extracted from the cell midplane ROI (left) and used 
in generating 3D volume (right). The ‘Fit ellipse’ method extracts the major and minor axes of an ellipsoidal 
fit as length and width; the ‘Feret’ method extracts the maximum and minimum Feret diameter as length and 
width. These are used as input to generate a rod-shaped cell. Pomegranate generates a non-uniform volume 
as described in Fig. 2. (B) Histograms (binwidth = 3; Freedman–Diaconis) of cell volumes from the same 
population of 8026 cells, calculated with the three approaches: Fit ellipse method (red); Feret method (yellow); 
and Pomegranate (grey). Annotations provide descriptive statistics (SD = standard deviation). (C) Midplane ROI 
(white), with overlaid cross sections of the rodshape obtained with length and width from ellipse fitting (red) or 
Feret diameters (yellow). Three representative cells are shown.
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longer length at division than wild-type cells61. When we assumed an idealized rod shape instead, the volumes 
of the size and shape mutants were up to about 75% larger than those obtained from the Pomegranate analysis 
(e.g. cdc25-22 Mean = 622 µm3, Supplementary Fig. S9). This suggests that the advantages of using Pomegranate 
for 3D segmentation and volume estimation are even greater when analyzing size and shape mutants.

In summary, we conclude that Pomegranate successfully segments wild-type fission yeast cells as well as 
size and shape mutants in three dimensions (Figs. 3, 4, 5) and allows for accurate estimates of volume (Fig. 4). 
After correcting for axial chromatic aberration, the ROIs across all optical sections can be used to quantify 
any signal of interest (Fig. 6). Pomegranate is expected to work for all radially symmetric cells that can be suf-
ficiently resolved and whose symmetry axis is parallel to the imaging plane. We show examples of bacteria in 
Supplementary Fig. S10.

Discussion
Different approaches to 2D segmentation from brightfield images.  Using brightfield images for 
segmentation is appealing because acquiring these images is minimally phototoxic and all fluorescence channels 
remain available for proteins of interest. Brightfield microscopy yields a consistent intensity pattern along the 
cell boundary across optical sections (Supplementary Fig. S3), which we and others have leveraged to obtain a 
midplane ROI. For example, PombeX35 identifies this pattern by k-means clustering. MAARs33 and the MPCS 
algorithm32 use correlation analysis. These methods have been further complemented by machine learning35,62 
or neural networks36. Other methods do not use the pattern itself, but use traditional segmentation on bright-
field images: either edge detection63 or adaptive thresholding34. Our segmentation relies on projection of the 
pattern and adaptive thresholding supplemented by watershedding and traditional morphometry tactics, which 
together have the advantage of simplicity, low computational demand, and no need for training data.

Figure 5.   Size and shape of mutant strains captured by Pomegranate 3D reconstruction. (A) Histograms 
(bins = 40) of volume (left) and midplane ROI solidity (right), representing size and curvature, respectively, for 
wild type and cell shape and cell size mutants. The x-axis of the volume histogram is on a base-10 logarithmic 
scale. Annotations provide descriptive statistics (SD = standard deviation). (B) Reconstruction models of 
representative, individual cells. Annotations provide size parameters for each cell to illustrate scale: maximum 
Feret diameter (length, L) and minimum Feret diameter (width, W).
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Optional user input to Pomegranate.  To accommodate different imaging conditions, several param-
eters in the 2D segmentation of Pomegranate (Fig. 1) can be changed by the user as specified in the usage guide 
available on GitHub. For the settings we used, up to 96% of cells were accurately detected on images with low 
cell density. This percentage tended to be lower on high cell density images (between 70 and > 90%). Adjustable 
filters exclude most false-positive ROIs (such as those capturing background or debris rather than a cell). Any 
remaining false-positive ROIs can be manually excluded prior to the 3D reconstruction step.

Sensitivity of image recognition algorithms to the imaging conditions is a general problem, and we have 
therefore constructed Pomegranate to be capable of using ROIs obtained by other segmentation methods as 
input for 3D reconstruction. These segmentations do not need to be performed on a brightfield image. Hence, 3D 
reconstructions with Pomegranate can also be performed from phase contrast imaging (Supplementary Fig. S10), 
differential interference contrast imaging, widefield fluorescence microscopy, or confocal microscopy, provided 
a 2D detection and segmentation algorithm produces an accurate 2D cell shape as input.

Advantages of 3D segmentation by Pomegranate.  Because segmentation in 3D is not trivial, worka-
rounds have often been used. Prominent workarounds are projections42–44 (Supplementary Fig. S5) or approxi-
mations of the rod shape as a cylinder with hemispherical ends37,38,48,49 (Fig. 4). Both of these approaches require 
a 2D midplane ROI. Pomegranate uses the same midplane ROI but makes optimal use of the information con-
tained in this ROI for 3D extrusion, thereby achieving a more accurate representation of the cell compared to 
these approaches.

Our analysis indicated that fission yeast cell width varies along the length of a cell (Fig. 4) and among cells 
(Supplementary Fig. S8) and should not be ignored when calculating volume or representing cells in 3D. For 
the same reason, recent extrusion approaches to measure cell volume and surface area have already started to 
use techniques that take variations of cell width along the length of the cell into account64–66. Pomegranate dif-
fers from these methods in that it uses the topological skeleton rather than a straight central axis for extrusion. 
Pomegranate therefore more accurately represents bent or curved cells in 3D, and particularly excels on shape 
mutants (Supplementary Fig. S9). Pomegranate provides 3D segmentation within the open-source image analysis 
software Fiji3 so that signals of interest in other channels can be easily quantified.

Pipeline limitations.  Pomegranate’s approach to 3D reconstruction still makes several simplifying assump-
tions. The spherical extrusion assumes that cells are indeed radially symmetric around the long axis, which may 
not always be the case. For fission yeast, the general notion is supported both by biophysical considerations21 
and by imaging cells along the long axis, where they appear round22–24. Furthermore, Pomegranate’s approach 
requires that the long axis of cells is parallel to the XY imaging plane. This will typically be the case when cells 
are imaged in microfluidics channels, but the requirement may not always be met when cells are fixed on glass 
slides without any constraint in Z.

Pomegranate uses full voxels rather than sub-voxel segmentation for ROIs (Fig. 2B). Calculation of volume 
and surface area could be refined by using the exact rather than voxelized shape, but this calculation has not been 
implemented. Furthermore, Pomegranate is currently only compatible with single timepoint images. Using the 
pipeline for time series images will require analyzing each timepoint individually and linking the resulting ROIs.

Summary.  Because Pomegranate can work with both externally and internally generated 2D segmentations, 
we see it not as an alternative but as a valuable extension to the image analysis portfolio that many groups already 

Figure 6.   Workflow schematic. General schematic of pipeline input and output. Reconstructions are not to 
scale. For detection and 2D segmentation, either Pomegranate (red lines) or an external algorithm (blue lines) 
can be used. For Pomegranate 2D segmentation, a brightfield Z-stack is required as whole-cell input image, a 
fluorescence Z-stack is required as nuclear input image. After reconstruction and 3D segmentation, any desired 
signal that was co-recorded (“Tagged protein”) can be quantified.
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use. Pomegranate’s 3D reconstruction algorithm improves volume estimates and allows for quantification of 
cellular signals in 3D (Fig. 6). Since the only assumption for the 3D extrusion is radial symmetry around a long 
axis, Pomegranate is applicable to all cell types with such shape including many rod-shaped bacteria in addition 
to fission yeast.

Materials and methods
Fission yeast strains. 

Strain name Mating type Genotype Used in

SW184 h- leu1 Z<<natR<<Padh31-tetR-tdTomato Figures 4, 5, Supplementary Figs. S2, S3, 
S4, S5, S6, S7, S8

SW169 h+ Z<<natR<<Padh31-tetR-tdTomato 
mep33+-mCherry<<hygR Figure 3, Supplementary Fig. S5

SW191 h+ Z<<natR<<Padh31-tetR-tdTomato 
mep33+-tdTomato<<kanR Figure 3, Supplementary Fig. S5

SW178 h+ mad1+-ymEGFP Z<<natR<<Padh31-
tetR-tdTomato

Figure 4, Supplementary Figs. S2, S6, 
S7, S8

SW179 h+ mad1-codonOpt-ymEGFP 
Z<<natR<<Padh31-tetR-tdTomato

Figure 4, Supplementary Figs. S3, S6, 
S7, S8

SW180 h+ mad2+-ymEGFP Z<<natR<<Padh31-
tetR-tdTomato

Figure 4, Supplementary Figs. S2, S4, 
S6, S7, S8

SW181 h+ mad2-codonOpt-ymEGFP 
Z<<natR<<Padh31-tetR-tdTomato

Figures 4, 5, Supplementary Figs. S2, S4, 
S6, S7, S8

SW182 h+ mad3+-ymEGFP Z<<natR<<Padh31-
tetR-tdTomato Figure 4, Supplementary Figs. S6, S7, S8

SW183 h+ mad3-codonOpt-ymEGFP 
Z<<natR<<Padh31-tetR-tdTomato

Figure 4, Supplementary Figs. S2, S3, 
S6, S7, S8

JX798 h- ade6-M210 ura4-D18 tea1∆::ura4+ Figure 5, Supplementary Fig. S9

JY327 h- wee1-50 Figure 5, Supplementary Fig. S9

SW323 h+ cut1+-GFP<<kanR cdc25-22 Figure 5, Supplementary Fig. S9

The tea1∆::ura4+57, wee1-5058, cdc25-2259 and tetR-tdTomato-NLS39 alleles have been described, and strains 
expressing these were obtained from Y. Watanabe. The GFP tags present in some strains are not relevant for the 
purpose of this study. Yeast monomeric enhanced GFP (ymEGFP) tagged alleles of mad1, mad2 and mad3 will 
be described elsewhere (Esposito et al., in preparation).

Microscopy.  Fission yeast cells were revived from frozen stocks on YEA plates (yeast extract with additional 
0.15 g/L adenine)67. For imaging, cells were inoculated into EMM2 (Edinburgh Minimal Medium, MP Biomedi-
cals # 4110012)67 with 0.2 g/L leucine or 0.15 g/L adenine added for auxotrophic strains. Cells were grown to a 
concentration of around 1 × 107 cells/mL. Cells were diluted to a concentration of 3 × 106 cells/mL and loaded 
into the cell input wells of a CellASIC ONIX Y04C microfluidics plate. EMM2, with leucine or adenine if needed, 
was loaded into the media input wells of the microfluidics plate.

Cells were loaded into the imaging window of the microfluidics plate by multiple 5 s pulses of 8 psi. The six 
media input wells of the microfluidics plate were run in symmetric pairs (1/6, 2/5, and 3/4) to maintain homog-
enous flow direction. Medium was run at 6 psi.

The microfluidics plate was imaged using an inverted widefield DeltaVision Microscope with pco.edge 4.2 
(sCMOS) camera, Olympus 60X/1.42 (UIS2, 1-U2B933) objective, Trulight fluorescent illumination module, 
and EMBL environmental chamber. Imaging was performed at 30˚C (34˚C for fission yeast cdc25-22 mutants).

Multi-channel Z-stack images were collected with 72 or 100 optical sections, at a section spacing of 0.1 µm. 
With these parameters, a 0.1071 µm (X axis) × 0.1071 µm (Y axis) × 0.1 µm (Z axis) voxel size is generated. Note 
that axial distances are recalibrated later (Supplementary Fig. S1, S2). Images were taken at multiple locations 
within the microfluidics chamber, sampling across a wide range of cell densities.

Image corrections and calibrations.  All raw images were deconvolved with three cycles of conserva-
tive deconvolution, without additional deconvolution corrections or normalizations, using softWoRx (Applied 
Precision). Deconvolved images were subjected to flat-field correction, axial chromatic aberration correction 
(Supplementary Fig. S1A,B), and axial distance correction (Supplementary Fig. S1C–F).

Flat-field correction was applied to correct for non-uniform illumination of the imaging field. Images for 
flat-fielding were acquired by imaging Alexa Fluor-488 and Alexa Fluor-568 labeled antibodies (Invitrogen/
Thermo Fisher) diluted 1:100 in PBS and mounted in an 8-well µ-Slide (Ibidi). Flat-field images from different 
sample positions were averaged to compensate for stochastic differences. Dark noise images were collected by 
imaging with a closed shutter. Dark noise was subtracted from all flat-field and raw images. Flat-field images 
were normalized by dividing all pixel intensities by the mean image intensity. Finally, dark noise-subtracted raw 
images were divided by dark noise-subtracted, normalized flat-field images.

In order to correct for axial chromatic aberration (i.e. light of different wavelengths getting focused onto dif-
ferent optical sections), 0.1 µm TetraSpeck Fluorescent Microspheres (Invitrogen/Thermo Fisher) were imaged 
(Supplementary Fig. S1A). The beads were viewed from the XZ orthogonal perspective, and the chromatic aber-
ration along the Z axis was quantified in Fiji by manually measuring the distance in pixels between the centers 
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of the bead image in each fluorescent channel (Supplementary Fig. S1B). Raw images were corrected by shifting 
the Z position of the optical sections for each channel relative to the other channels based on the measured axial 
chromatic aberration.

We noted that our images had an axial distortion that made round objects appear elliptic in XZ or YZ projec-
tions (Supplementary Fig. S1C,E), presumably a consequence of using a widefield system. In order to correct 
for this axial distortion, 4 µm TetraSpeck Fluorescent Microspheres were imaged in the same medium that was 
used for cells (EMM2). The beads were viewed from the XZ orthogonal perspective, and the geometric elonga-
tion was quantified manually in Fiji by measuring the width and height of the bead (Supplementary Fig. S1D). 
The ratio of these was used as the correction factor. Raw images were corrected by multiplying the Z distance 
between planes with the correction factor to undo the apparent stretching in Z. Other imaging systems may 
not require such a correction. When we used TetraSpeck Fluorescent Microspheres pre-mounted on a slide to 
measure the correction factor, the value was higher (Supplementary Fig. S1F) and insufficient to lead to a round 
appearance of nuclei in XZ or YZ. If such a correction is needed, we therefore recommend imaging beads in 
the same medium as cells, or empirically determining the factor using the assumption that nuclei have a round 
shape in orthogonal views.

Because the strategies for nuclear and whole-cell 3D segmentation are different, nuclear and whole-cell vol-
umes are differently affected by the correction factor (Supplementary Fig. S2B). The volume of nuclei measured 
in voxels stays constant but nuclear volume in µm3 changes. In contrast, because cell volume is constructed by 
extrusion, the cell volume in µm3 stays constant, regardless of the correction factor, but the number of voxels 
in the 3D ROI changes.

Pipeline development and testing.  Pomegranate was written in the macro language of the ImageJ/Fiji 
open-source imaging processing software3. Development and testing was performed on a 2017 iMac (4.2 GHz 
Intel Core i7 Processor, 16 GB 2400 MHz DDR4 RAM, Catalina Version 10.15.5) and a 2018 Mac mini (3 GHz 
Intel Core i5, 16 GB 2667 MHz DDR4 RAM, macOS Mojave Version 10.14.6).

Nuclear 2D segmentation by Pomegranate.  Nuclear segmentation was accomplished by using a fluo-
rescent marker enriched in the nucleus (TetR-tdTomato-NLS39). Images were taken at multiple optical sections 
and segmentation was performed on each section. A Gaussian blur and unsharp mask were used to enhance 
acutance and edge contrast for the nuclei (Fig. 1A, panel 2). An adaptive threshold (Otsu’s method68) was used to 
produce a binary image (Fig. 1A, panel 3). A Gaussian blur and remasking was used to smooth the binary image 
(Fig. 1A, panel 4). Fiji’s “Analyze Particles” algorithm was used to translate the binary image into nuclear ROIs.

To eliminate 2D ROIs that deviate too much from the expected idealized circular shape, we calculated cir-
cularity, C as

where A is the ROI area, and P is the ROI perimeter. ROIs below a circularity of 0.6 were excluded by Fiji’s “Ana-
lyze Particles” algorithm. ROIs with a low circularity typically occurred when the nucleolar signal was too weak 
and had not been incorporated into the segmentation, resulting in a crescent-shaped region. We further dilated 
all nuclear ROIs by 0.1 µm, which was necessary to improve acquisition of target fluorophores at the nuclear 
periphery. Dilation is optional in the pipeline and the extent of dilation can be defined by the user. Finally, an 
elliptical fit was performed on all nuclear ROIs, to alleviate the impact of irregular shapes resulting from lower 
nucleolar signals. Elliptical fits convert the ROI into an ellipse where the area, orientation and centroid of the 
original ROI are preserved.

Nuclear 3D reconstruction by Pomegranate.  For nuclear reconstruction, ROIs from the nuclear 2D 
segmentation were grouped by their centroid coordinates to form nuclei (Fig. 1A, panel 5). ROIs in adjacent 
optical sections were grouped when the XY distance between their centroids did not exceed 2.0 µm. To eliminate 
nuclei that had moved during acquisition, nuclei were excluded if the XY distance of any single centroid to the 
mean nuclear centroid exceeded 3.0 µm. These threshold values can be changed by the user. In instances where 
nuclei had intermittent optical sections without ROI, the largest subset of contiguous nuclear ROIs was isolated. 
Nuclei were removed when the total number of 2D ROIs was less than 5. For each nucleus, the ROI with the 
largest area was designated the nuclear midplane. Nuclei were excluded if this ROI was at the top or bottom of 
the ROI stack. Nuclear volumes were calculated as the sum of the volumes of nuclear ROI voxels (using the Z 
thickness obtained after correction for axial distortion).

Whole‑cell 2D segmentation by Pomegranate.  When a bright-field image is provided, Pomegranate 
uses its default 2D segmentation algorithm to produce the 2D binary required for 3D reconstruction. Initial 
whole-cell segmentation was accomplished by first reducing the brightfield image Z-stack to the optical sections 
below the most in-focus optical section, which we defined as the optical section for which the standard deviation 
of pixel intensities in the image is minimized (Supplementary Fig. S3). Since we used a microfluidics chamber in 
which cells form a flat layer, we initially assumed that the most in-focus optical section is the same for all cells in 
an image. A Gaussian blur was used on each optical section to reduce image noise. An unsharp mask was used 
to enhance the acutance of the boundary band surrounding each cell. An adaptive threshold (Otsu’s method68) 
was used to produce a binary image for each optical section. In optical sections close to the focal plane, cell 
boundaries are hard to detect as the boundary band width approaches zero (Supplementary Fig. S3A, 0 µm). The 

C = 4π
A

P2
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farther an optical section is from the focal plane, the larger the boundary band width becomes (Supplementary 
Fig. S3A, − 2.4 µm). We therefore averaged the binary images from all remaining optical sections to produce an 
image where boundary bands appear as gradients, akin to valleys in a topographic map (Fig. 1B, panel 2). We 
interpret the darker regions in this grayscale map to be high confidence areas for cell borders. An additional 
adaptive threshold was used on this projection (Otsu’s method68). Using these steps, cells were surrounded by a 
boundary band (Fig. 1B, panel 3). Fiji’s “Analyze Particle” tool was used to translate the binary image into whole-
cell ROIs, and a distance transform was used to measure the thickness of the boundary bands. All ROIs were 
then enlarged by the half-width of the boundary band (Fig. 1B, panel 4). An optional watershedding algorithm 
(Watershed Irregular Features, BioVoxxel Toolbox69) in the pipeline allows for separating unsegmented adjacent 
cells or regions.

Debris or cell features such as septa and vacuoles can introduce gaps or jagged edges in the segmented bright-
field binary. To compensate for this, a smoothing algorithm was used. The smoothing algorithm closes gaps in 
the ROI that fall beneath a size threshold defined by the user. Additionally, cells along the image periphery were 
excluded based on a user-defined margin.

Adapted from the MAARs pipeline33, an optional solidity filter was used to exclude some ROIs that do not 
represent cells. An ROI’s solidity is the ratio of its area and its convex hull area, where a value of 1 indicates a 
completely convex object. We made this step optional and adjustable, because, as also observed by Liu et al.34, 
cells with curvature may be falsely excluded while intercellular regions with high solidity may be falsely included. 
An additional manual exclusion step allows users to remove falsely included regions prior to 3D reconstruction.

Within the pipeline, whole-cell 2D ROIs are initially constructed in the optical section that is considered 
the most in-focus for the entire image. However, this does not always coincide with the optical section where 
the nucleus has its largest diameter (which we consider the midplane for the nucleus). Differences between the 
nuclear and cellular midplane position result in vertical misalignment between a nucleus and its enclosing cell. As 
an additional optional step, when nuclear data are available, the whole-cell 2D ROI for a given cell can therefore 
be re-assigned to the midplane of the corresponding nucleus, which we did when nuclear measurements were 
available (Fig. 4, but not Fig. 5).

Whole‑cell 2D segmentation by YeaZ.  To provide an alternative 2D segmentation input for Pomegran-
ate whole-cell reconstruction, the YeaZ neural-network-driven segmentation pipeline was used41. An in-focus 
slice was isolated from the brightfield Z-stack and used as input for the YeaZ pipeline. Threshold value was set 
to 0.5 and the minimum distance between seeds was set to 10. The binary image was further refined with water-
shedding using a separator size of 20 pixels (Watershed Irregular Features, BioVoxxel Toolbox69). The resulting 
2D binary image was used as input for Pomegranate whole-cell reconstruction.

Whole‑cell 3D reconstruction by Pomegranate.  We used the assumption that cells are radially sym-
metric around a central axis along the length of the cell21 to guide our whole-cell 3D reconstruction. To recon-
struct cells, we use the midplane ROI as the starting point. The reconstruction algorithm then extrudes a series 
of spheres along the topological skeleton of the cell (Fig. 2A).

The Euclidean distance map and the topological skeleton were generated from the binary midplane ROI. 
The Euclidean distance map is a greyscale image where the value of each pixel is its Euclidean distance from the 
closest edge of the ROI (Figs. 1B, panel 6; 2C). We used the Fiji implementation of an algorithm for generating a 
Euclidean distance map70. The topological skeleton is a one-pixel-wide shape that is equidistant from the bounda-
ries of the ROI (Fig. 1B, panel 5). We used the Fiji legacy implementation of a thinning algorithm71 to produce 
topological skeletons. The union of the distance map and topological skeleton yields a topological skeleton where 
each pixel along the skeleton has a value representing the distance of the topological skeleton to the ROI bound-
ary (Figs. 1B, panel 7; 2C). For 3D extrusion (Fig. 2A), we centered spheres on these pixels with the radius of the 
sphere taken from the distance value of each pixel (Fig. 2C,D). Due to a limitation in Fiji’s ROI system, ROIs are 
always two-dimensional, confined to a single optical section. In order to construct a sphere, concentric, circular, 
cross-sectional ROIs of the sphere are created whose radii are a function of the parent sphere’s radius, and the 
cross section’s axial distance from the midplane (Fig. 2B). The cross-sectional radii are given by

where r is the radius of the cross-section ROI, R is the radius of the parent sphere, and Δz is the cross-section’s 
distance from the midplane. Sub-pixel coordinates for these cross-sectional ROIs were resolved by rounding to 
their nearest pixel coordinates (Fig. 2B). The union of all coplanar circular cross sections forms the 2D ROI for a 
given optical section. All 2D ROIs for a given cell were associated across optical sections to form the whole-cell 
3D ROI (Fig. 2E). The amount of detail in the reconstruction is proportional to the resolution of the imaging 
system (Fig. 2F).

Whole‑cell and nuclear reconstruction pairing.  Whole-cell and nuclear reconstructions, if processed 
simultaneously in Pomegranate, can be paired on a cell-by-cell level. To accomplish this, Pomegranate extracts 
the centroid of each nucleus, and identifies the whole-cell ROI that contains that centroid. Only whole-cell ROIs 
paired with a single nuclear centroid are kept. Cellular ROIs with two or more nuclei (septating cells or poor 
segmentation), or cells without a nucleus (background ROI or failed nuclear segmentation), are excluded. Nuclei 
without an associated whole-cell ROI are also excluded. Optionally, we aligned nuclear and whole-cell recon-
struction by assigning the nuclear centroid Z position as midplane of the whole-cell ROI.

r =

√

R2 −�z
2
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Calculation of volumes and surface areas from Pomegranate ROIs.  For both nuclear and whole-
cell 3D analyses, volumes were calculated as the sum of the volumes of the ROIs in each optical section (area of 
the 2D ROI, multiplied by the Z thickness, using the Z thickness obtained after correction for axial distortion).

For both nuclear and whole-cell analyses, surface area S is given by

where is Pi is the perimeter of an ROI, for n ROIs in a single cell, A is the area of the midplane ROI, and Z is the 
spacing between optical sections along the Z-axis. 2A is equivalent to the area of all surfaces in the reconstruc-
tion parallel to the XY plane, whereas the sum of all PiZ is equivalent to the area of all surfaces orthogonal to 
the XY plane.

Calculation of whole‑cell volumes and surface areas from idealized rod shape.  To calculate 
shape descriptors for idealized, rod-shaped cells (Fig. 4A), we extracted cell length and width for these ideal-
ized cells from the midplane ROI using two different methods. The first method used the major and minor 
axes of an elliptical fit as cell length (L) and width (W). The second method used the maximum and minimum 
Feret diameter (also called the caliper diameter) as length and width. The Feret/caliper diameter is the distance 
between two parallel lines tangential to the ROI. Cells were assumed to be rod-shaped, described as a cylinder 
with hemispheres at either end. The volume is given by:

where h is the length of the cylindrical body and r is the radius of the cell from the central axis. Radius and length 
of the cylindrical body were calculated from cell width and length as r = W/2 and h = L − 2r.

The surface areas of whole-cell reconstructions are given as the sum of the surface areas of the lateral face of 
a cylinder and of the hemispheric ends:

where h is the length of the cylindrical body and r is the radius of the cell from the central axis. Radius and length 
of the cylindrical body were calculated from cell width and length as r = W/2 and h = L − 2r.

Calculation of nuclear volumes and surface areas from idealized elliptic shape.  For nuclei, the 
longer (L) and shorter (W) diameter were determined by elliptical fit or Feret diameters, similar to the parameter 
extraction described for whole-cell idealized volumes. Volumes were calculated under the assumption of nuclei 
being ellipsoidal. The volume is given by:

with a = L / 2 and b = W / 2.
The surface areas of the same nuclei are given by the following approximation for the surface area of an 

ellipsoid:

where a = L/2 and b = W/2, and P = 1.6075.

Calculation of nuclear and whole‑cell fluorescence intensities.  To quantify fluorescent signal 
within ROIs, the 2D cross-sectional ROIs are used to measure the integrated density of each region. The inte-
grated density across all cross-sections is summed up to produce the volumetric integrated density. To calculate 
mean intensity in each region, volumetric integrated density is divided by the volume of the 3D ROI.

Downstream processing.  Compilation, processing, and data visualization of Pomegranate outputs were 
performed in R72, using the tidyverse73, ggpubr74, ggcorrplot75, MASS76 and gridExtra77 packages.

For any Pomegranate analysis reporting whole-cell as well as nuclear data, we only included cells with both 
nuclear and cellular segmentation (Supplementary Fig. S2A). For the analysis of cells with wild-type morphol-
ogy (Fig. 4, Supplementary Figs. S6–S8), we applied an additional, optional filter that only includes cells when 
both cell and nuclear 3D ROI have an aspect ratio between 0.8 and 1.2 (Supplementary Fig. S2A). We define the 
aspect ratio as extension of the region in Z divided by the largest diameter or cell width in X/Y. Aspect ratios of 
less than 1 occur when a cell is shifted in Z and the collected optical sections do not fully cover the cell volume 
(Supplementary Fig. S2A). Imperfect nuclear acquisition can result in aspect ratios higher than 1.2 (Supplemen-
tary Fig. S2A). In these cases, the nuclear midplane is often asymmetrically located, which may misplace the 
whole-cell segmentation with respect to the nucleus. This filter was not applied to datasets where reconstructions 
were manually inspected (Fig. 3, Supplementary Fig. S5), or to datasets of cell shape and size mutants (Fig. 5, 
Supplementary Fig. S9).
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For the analysis of cells with wild-type morphology (Fig. 4, Supplementary Fig. S6–S8), we further excluded 
cells whose nuclear ROI extended beyond the boundaries of their associated whole-cell ROI. This filter could 
not be applied to the other analyses, where only whole-cell or only nuclear data were collected.

Code availability
The software, usage guide, example images, and additional tools are available at the Pomegranate GitHub reposi-
tory (https​://githu​b.com/erodb​/Pomeg​ranat​e). Installation of Pomegranate is possible through a FIJI/ImageJ 
update site (https​://sites​.image​j.net/HaufL​ab) or through direct download of the macro files from GitHub.
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