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Tankyrase inhibitor XAV‑939 
enhances osteoblastogenesis 
and mineralization of human 
skeletal (mesenchymal) stem cells
Nuha Almasoud1,6, Sarah Binhamdan1,2, Ghaydaa Younis1, Hanouf Alaskar1,3, Amal Alotaibi1, 
Muthurangan Manikandan1, Musaad Alfayez1, Moustapha Kassem1,4,5 & Nihal AlMuraikhi1,6*

Tankyrase is part of poly (ADP‑ribose) polymerase superfamily required for numerous cellular and 
molecular processes. Tankyrase inhibition negatively regulates Wnt pathway. Thus, Tankyrase 
inhibitors have been extensively investigated for the treatment of clinical conditions associated 
with activated Wnt signaling such as cancer and fibrotic diseases. Moreover, Tankyrase inhibition 
has been recently reported to upregulate osteogenesis through the accumulation of SH3 domain‑
binding protein 2, an adaptor protein required for bone metabolism. In this study, we investigated 
the effect of Tankyrase inhibition in osteoblast differentiation of human skeletal (mesenchymal) 
stem cells (hMSCs). A Tankyrase inhibitor, XAV‑939, identified during a functional library screening of 
small molecules. Alkaline phosphatase activity and Alizarin red staining were employed as markers 
for osteoblastic differentiation and in vitro mineralized matrix formation, respectively. Global gene 
expression profiling was performed using the Agilent microarray platform. XAV‑939, a Tankyrase 
inhibitor, enhanced osteoblast differentiation of hBMSCs as evidenced by increased ALP activity, 
in vitro mineralized matrix formation, and upregulation of osteoblast‑related gene expression. 
Global gene expression profiling of XAV‑939‑treated cells identified 847 upregulated and 614 
downregulated mRNA transcripts, compared to vehicle‑treated control cells. It also points towards 
possible changes in multiple signaling pathways, including TGFβ, insulin signaling, focal adhesion, 
estrogen metabolism, oxidative stress, RANK‑RANKL (receptor activator of nuclear factor κB ligand) 
signaling, Vitamin D synthesis, IL6, and cytokines and inflammatory responses. Further bioinformatic 
analysis, employing Ingenuity Pathway Analysis identified significant enrichment in XAV‑939‑treated 
cells of functional categories and networks involved in TNF, NFκB, and STAT signaling. We identified 
a Tankyrase inhibitor (XAV‑939) as a powerful enhancer of osteoblastic differentiation of hBMSC that 
may be useful as a therapeutic option for treating conditions associated with low bone formation.

Abbreviations
hBMSCs  Human bone marrow skeletal (mesenchymal) stromal cell
hTERT  Human telomerase reverse transcriptase
qRT-PCR  Quantitative reverse transcriptase-polymerase chain reaction
PARP  Poly (ADP-ribose) polymerase
SH3BP2  SH3 domain-binding protein 2
DMSO  Dimethyl sulfoxide
DMEM  Dulbecco’s modified Eagle’s medium
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PBS  Phosphate-buffered saline
ALP  Alkaline phosphatase
RUNX2  Runt-related transcription factor 2
COL1A1  Collagen Type I Alpha 1
OC  Osteocalcin
ALZR  Alizarin red
RANKL  Receptor activator of nuclear factor κB ligand
RANK  Receptor activator of nuclear factor κB
OPG  Osteoprotegerin
MAPK9  Mitogen-activated protein kinase 9
SMAD4  Mothers against decapentaplegic homolog 4

Tankyrase is part of poly (ADP-ribose) polymerase (PARPs) superfamily of 17 physiological human PARPs 
required for numerous cellular and molecular  processes1–3 including glucose metabolism,  mitosis4, DNA damage 
 repair5, genome  stability6, cellular stress  signaling7, signal  transduction6, gene  transcription8, telomere main-
tenance, and Wnt  signaling3. Tankyrases are also promising drug targets that may be useful in several diseases 
affecting multiple  organs9,10. The two tankyrase proteins, Tankyrase-1 and tankyrase-2, also called PARP5a and 
PARP5b, respectively, are members of the PARP  family3,4,11. Structurally, both tankyrase proteins comprise 
ankyrin repeats, a sterile alpha module, and a carboxy-terminal PARP catalytic domain with an additional 
N-terminal HPS domain in Tankyrase-13,4,11. Tankyrase inhibition negatively regulates Wnt  pathway12,13. Thus, 
Tankyrase inhibitors have been extensively investigated for the treatment of clinical conditions associated with 
activated Wnt signaling and uncontrolled proliferation as a tumor suppression as in  cancer14 including colon 
 cancer15, lung  cancer16 and breast  cancer12, and fibrotic diseases like lung  fibrosis16–18. In addition, Tankyrase 
inhibition has been recently reported to upregulate both osteoclastogenesis and osteoblastogenesis through the 
accumulation of SH3 domain-binding protein 2 (SH3BP2), an adaptor protein required for bone  metabolism19, 
despite their Wnt Inhibitory  effect4. SH3BP2 is important for the activation of the tyrosine kinase ABL, essential 
for osteoblast differentiation together with the transcriptional coactivator  TAZ4. Tankyrase inhibitors were found 
to increase SH3BP2 and the nuclear expression of ABL, TAZ, and RUNX2 in murine primary calvaria cells, 
which consequently activated the ABL–TAZ complex, and therefore enhanced the osteoblast differentiation and 
maturation evidenced by the significant increase in the expression of osteoblast differentiation genes and mineral 
 deposition4,20–22. However, the mechanism of Tankyrase signaling in bone metabolism remains to be elucidated.

Human skeletal (mesenchymal) stem cells (hMSCs) are multipotent stem cells that have the potential to 
proliferate and differentiate into various cell types including bone-forming  osteoblasts23,24. The osteoblastic dif-
ferentiation of hMSCs involves various signaling pathways including  Tankyrase4, JAK-STAT  signaling25, Wnt/β-
catenin26, TGFβ27, Notch  signaling28, and Hedgehog signaling29. However, the relative contribution of these 
signaling pathways on osteoblastic differentiation remained to be determined.

Small molecule inhibitors are currently employed as chemical tools to dissect the molecular mechanisms 
involved in stem cell differentiation to osteoblastic cells, which may help identifying new therapeutic  targets25,30. 
We have previously reported the effects of a number of small molecules on differentiation potential of hMSCs 
into osteoblastic and adipocytic  cells31. Here, we identified a small molecule XAV-939, through small molecules 
library screen, a potent Tankyrase inhibitor, as an enhancer of osteoblastic differentiation of hMSCs.

Results
XAV‑939 enhances osteoblast differentiation of hMSCs. We have previously published the result of 
a small molecule library screen that identified several small molecule inhibitors with different effects on osteo-
blast differentiation of hMSCs using ALP activity quantification as a read-out25. Among these, XAV-939 exhib-
ited potent enhancing effects, as shown in Fig. 1. Then, we performed a dose–response proliferation curve of 
hMSCs to XAV-939 treatment as measured by cell viability. Effect of different concentration of XAV-939 (0.3, 
3, and 30 nM) on hMSCs proliferation was explored and the relative proliferation at day 1, 2, and 3 was plot-
ted (Fig. 2a). There was no significant effect of XAV-939 on proliferation at day 1, 2, and 3 at dose of 0.3 and 
3 μM. However, 30 μM XAV-939 inhibited hMSCs cell proliferation on day 3. Moreover, apoptosis assay was 
performed on day 3 after exposure of the cells to XAV-939 (3 µM), which showed a minute percentage of cell 
death (apoptosis and necrosis) in the XAV-939-treated hBMSC compared to DMSO-vehicle treated control cells 
(Fig. 2b). 

hBMSCs exposed to XAV-939 (3 µM) showed a significant increase in ALP cytochemical staining intensity 
and ALP activity measurement compared to DMSO-vehicle treated control cells (Fig. 2c,d). In addition, XAV-939 
did not exert significant effects on hBMSC viability on day 10 of osteoblastic differentiation (Fig. 2e). Further-
more, hBMSCs exposed to XAV-939 (3 µM) exhibited increased in mineralized matrix formation as evidenced 
by Alizarin red staining, compared to vehicle-treated control cells (Fig. 3a). To confirm our findings, we tested 
the effects of XAV-939 in primary normal hBMSCs. ALP cyochemical staining intensity (Fig. 2f), ALP activity 
measurement (Fig. 2g), cell viability using Alamar Blue assay (Fig. 2h), and cytochemical staining for mineralized 
matrix formation. Alizarin red (Fig. 3b) revealed enhanced osteoblast differentiation following treatment with 
XAV-939 (3 µM). Moreover, hBMSCs exposed to XAV-939 (3 µM) upregulated gene expression of osteoblast-
associated gene markers including: ALP, COL1A1, RUNX2, and OC (Fig. 3c).

XAV‑939 promoted osteoblast differentiation of hMSCs via accumulation of SH3BP2. Previ-
ous studies have reported that Tankyrase inhibition upregulate  SH3BP21,4, thus we examined gene expression 
of SH3BP2 in hBMSCs. Treatment with XAV-939 (3 µM) induced a significant upregulation in SH3BP2 gene 
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expression compared to DMSO vehicle-treated control cells as determined at day 21 of osteoblastic differentia-
tion (Fig. 4a).

XAV‑939 upregulated the expression of OPG while downregulated the expression of RANKL 
in hBMSCs during osteoblast differentiation. Osteoblasic cells mediate control of osteoclastic bone 
resorption through production of OPG and RANKL. To determine whether Tankyrase inhibition affects osteo-
blastic-osteoclastic interaction, we assessed gene expression of OPG and RANKL during osteoblast differentia-
tion of hBMSCs and following treatment with XAV-939 (3 µM). As shown in Fig. 3b,c, XAV-939 treatment led 
to significant upregulation of OPG gene expression (Fig. 4c) and down-regulation of RANKL gene expression 

Figure 1.  Functional screen of stem cell signaling small molecule library for their effects on osteoblast 
differentiation of hMSCs. hMSCs were induced into osteoblasts for 10 days in the presence of the indicated 
small molecule inhibitors (3.0 μM) or DMSO vehicle control. Data are presented as mean ALP activity ± SEM, 
n ≥ 6 from three independent experiments. Small molecules are grouped according to their targeted signaling 
pathway. ALP alkaline phosphatase, DMSO dimethyl sulfoxide. *p < 0.05; **p < 0.005; ***p < 0.0005.
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(Fig. 4b) as measured on day 10 of osteoblastic differentiation. Moreover, OPG remained significantly high later 
in the culture at day 21 (Fig. 4c).

Global gene expression could point towards multiple differentially expressed signaling path‑
ways in XAV‑939‑treated hBMSCs. To understand the molecular mechanism by which XAV-939 
enhances osteoblastic differentiation of hBMSCs, we performed global gene expression profiling followed by 
bioinformatics analysis of XAV-939-treated hBMSCs compared to vehicle-treated controls. Heat-map showed 
a large number of differentially expressed genes in XAV-939-treated compared to DMSO-treated control cells 
(Fig. 5a). We identified 847 upregulated and 614 downregulated genes (fold change ≥ 2.0; p (Corr) < 0.05) (Sup-
plementary Table 1). Pathway analysis of the up-regulated genes identified several differentially regulated sign-
aling pathways highly associated to osteoblastic differentiation including TGFβ, insulin signaling, focal adhe-
sion, estrogen metabolism, oxidative stress, osteoblast signaling, RANK-RANKL signaling, Vitamin D synthesis, 
IL6, and cytokines and inflammatory responses (Fig. 5b,d). A number of genes from the enriched pathways 
(IL6, CSF1, CYP1B1, NQO1, UGT1A6, THBS2, SOCS3, MAPK13, ACP5, CTSK, SMAD7, LIF, VDR, and 
CYP24A1) were selected for a further validation using qRT-PCR, which was concordant with the microarray 

Figure 2.  Effects of XAV-939 treatment on the osteoblast differentiation of hMSCs. (a) Dose–response 
proliferation curve of hMSCs to different doses of XAV-939 treatment, as indicated in the graph, versus DMSO-
treated control cells as measured by cell viability over 3 days. (b) Representative fluorescence images of XAV-
939-treated hBMSCs (3.0 µM) versus DMSO-treated control cells on day 3 after exposure. Photomicrographs 
magnification ×20. Cells were stained with AO/EtBr to detect apoptotic (cells with green condensed chromatin) 
and necrotic cells (red). (c) Representative alkaline phosphatase (ALP) staining of XAV-939-treated hBMSCs 
(3.0 µM) versus DMSO-treated control cells on day10 post-osteoblastic differentiation. Photomicrographs 
magnification ×10. (d) Quantification of ALP activity in XAV-939-treated hBMSCs (3.0 µM) versus DMSO-
treated control cells on day10 post-osteoblastic differentiation. Data are presented as mean percentage ALP 
activity ± SEM (n = 20). (e) Assay for cell viability using Alamar Blue assay in XAV-939-treated hBMSCs 
(3.0 µM) versus DMSO-treated control cells on day10 post-osteoblastic differentiation. Data are presented as 
mean ± SEM (n = 20). (f) Validation of ALP staining in XAV-939-treated primary hBMSCs (3.0 µM) versus 
DMSO-treated primary hBMSCs control cells on day10 post-osteoblastic differentiation. Photomicrographs 
magnification ×10. (g) Validation of quantification of ALP activity in XAV-939-treated primary hBMSCs 
(3.0 µM) versus DMSO-treated primary hBMSCs control cells on day10 post-osteoblastic differentiation. Data 
are presented as mean percentage ALP activity ± SEM (n = 10). (h) Assay for cell viability using Alamar Blue 
assay in XAV-939-treated primary hBMSCs (3.0 µM) versus DMSO-treated primary hBMSCs control cells on 
day10 post-osteoblastic differentiation. Data are presented as mean ± SEM (n = 10). ALP alkaline phosphatase, 
DMSO dimethyl sulfoxide. *p < 0.05; **p < 0.005; ***p < 0.0005.
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data (Fig. 5c,d). We subsequently determined the enriched functional categories and intracellular signaling net-
works regulated by XAV-939 during the osteogenic differentiation of hMSCs. The list of upregulated genes was 
subjected to core significance analysis using manually curated human functional category annotations and net-
work databases (Ingenuity Pathway Analysis). Disease and functional analysis revealed a significant increase in 
the gene expression in different functional categories including those involved in tissue development (Fig. 6a–c). 
Follow-up upstream regulator analysis revealed a number of activated networks including TNF, PRKCD, and 
NFκB (complex), with a subsequent activation of STAT signaling (Fig. 6d). The predicted activated networks 
were further validated for both SMAD4 and MAPK9 activation using qRT-PCR, which was concordant with the 
transcriptome analysis (Fig. 6e). Our data suggest that XAV-939 regulates a number of signaling network beyond 
Tankyrase signaling to enhance osteoblastic differentiation of hBMSCs.

Figure 3.  Effects of XAV-939 treatment on the mineralization and gene expression of hMSCs. (a) Cytochemical 
staining for mineralized matrix formation using Alizarin red stained on day 21 post-osteoblastic differentiation 
in the absence (left panel) or presence (right panel) of XAV-939 (3.0 µM). Photomicrographs magnification ×10. 
(b) Validation of Cytochemical staining for mineralized matrix formation using Alizarin red stained on day 21 
post-osteoblastic differentiation in the absence (left panel) or presence (right panel) of XAV-939 (3.0 µM) in 
primary hBMSCs. Photomicrographs magnification ×10. (c) Quantitative RT-PCR analysis for gene expression 
of ALP, COL1A1, RUNX2 and OC in hBMSCs on day 10 post osteoblasts differentiation in the absence (blue) 
or presence (red) of XAV-939 (3.0 µM). Gene expression was normalized to β-actin. Data are presented as 
mean fold change ± SEM (n = 6) from two independent experiments; *p < 0.05; ***p ≤ 0.0005. ALP alkaline 
phosphatase, COL1A1 Collagen Type I Alpha 1, RUNX2 runt-related transcription factor 2, OC Osteocalcin, 
DMSO dimethyl sulfoxide.
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Discussion
MSCs are multipotent stem cells in the bone marrow that can give rise to different mesodermal cell types 
including  osteoblasts23,24. However, the molecular processes and signaling pathways involved in osteoblastic dif-
ferentiation are being studied, in order to identify the novel molecular target for treatment of bone  diseases32,33.

Small molecule inhibitors targeting intracellular signaling pathways have been employed as chemical tools 
to determine the molecular mechanisms controlling stem cell proliferation and  differentiation25,30. Our group 
has employed this chemical biology approach to identify a number of molecular targets and pathways that are 

Figure 4.  XAV-939 promotes osteoblast differentiation of hMSCs via accumulation of SH3BP2 and regulates 
the expression of osteoclastic regulatory molecules (RANKL and OPG) in hBMSCs during osteoblast 
differentiation. (a) Quantitative RT-PCR analysis for gene expression of SH3BP2 in hBMSCs on day 21 post 
osteoblasts differentiation in the absence (blue) or presence (red) of XAV-939 (3.0 µM). Quantitative RT-PCR 
analysis for gene expression of (b) RANKL on day 10 and (c) OPG on day 10 (left) and 21 (right) in hBMSCs 
post osteoblasts differentiation in the absence (blue) or presence (red) of XAV-939 (3.0 µM). Gene expression 
was normalized to β-actin. Data are presented as mean fold change ± SEM (n = 6) from two independent 
experiments; *p < 0.05; *** p ≤ 0.0005. SH3BP2 SH3 domain-binding protein 2, DMSO dimethyl sulfoxide, 
RANKL receptor activator of nuclear factor κB ligand, OPG Osteoprotegerin, DMSO dimethyl sulfoxide.
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Figure 5.  XAV-939 enhances expression of multiple signaling pathways in hBMSCs during osteoblast 
differentiation. (a) Heat-map and unsupervised hierarchical clustering performed on differentially expressed 
genes during osteoblastic differentiation of XAV-939-treated hBMSCs versus DMSO-treated control cells. 
(b) Pie chart demonstrating the distribution of selected signaling pathways enriched in the significantly 
up-regulated genes identified in XAV-939-treated hBMSCs versus DMSO-treated control cells. (c) Validation 
of a selected panel of upregulated genes in XAV-939-treated hBMSCs versus DMSO-treated control using 
qRT-PCR. Gene expression was normalized to β-actin. Data are presented as mean fold change ± SEM (n = 6) 
from two independent experiments; ***p < 0.0001. (d) Selected matched entities associated with the validated 
signaling pathways enriched in the significantly up-regulated genes identified in XAV-939-treated hBMSCs 
versus DMSO-treated control cells. Gene expression was normalized to β-actin. Data are presented as mean fold 
change ± SEM (n = 6) from two independent experiments; *p < 0.05; ***p ≤ 0.0005. MAPK9 Mitogen-activated 
protein kinase 9, SMAD4 mothers against decapentaplegic homolog 4, DMSO dimethyl sulfoxide.
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Figure 6.  Bioinformatic analysis of signaling networks regulated in XAV-939-treated hBMSCs. (a) Disease and function 
heat map depicting activation (red) or inhibition (blue) of the indicated functional and disease categories identified in the 
downregulated transcripts in XAV-939-treated hBMSCs. (b,c) Heat map-illustrating affected tissue development functional 
category and associated functional annotations, respectively. (d) Illustration of the TNF, PRKCD, and NFκB (complex) genetic 
networks with predicted activated state based on transcriptome data with subsequent predicted effects on the STAT signaling. 
Figure legend illustrates the interaction between molecules within the network. (e) Validation of predicted activation effect 
on the downstream effector molecules SMAD4 and MAPK9 in XAV-939-treated hBMSCs versus DMSO-treated control 
using qRT-PCR on day 10 post osteoblasts differentiation in the absence (blue) or presence (red) of XAV-939 (3.0 µM). 
Gene expression was normalized to β-actin. Data are presented as mean fold change ± SEM (n = 6) from two independent 
experiments; *p < 0.05; ***p ≤ 0.0005. MAPK9 Mitogen-activated protein kinase 9, SMAD4 mothers against decapentaplegic 
homolog 4, DMSO dimethyl sulfoxide.
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important for osteoblast and adipocyte differentiation of  hMSCs25,27–29,31,34,35. In the current study, we identified 
XAV-939 small molecule inhibitor, during small molecule library functional screen, as an enhancer of osteoblast 
differentiation of  hMSCs25.

We reported that XAV-939 treatment enhanced osteoblast differentiation and mineralization in vitro. Global 
gene expression profiling of hBMSC treated with XAV-939 identified significant enrichment in several osteoblast-
associated signaling pathways including TGFβ27, insulin  signaling36, focal  adhesion37, estrogen  metabolism38, 
oxidative  stress39, RANK-RANKL  signaling40, Vitamin D  synthesis41, IL6  signaling42, and cytokines and inflam-
matory responses  signaling43, corroborating the relevance of XAV-939 in enhancing bone formation.

We observed that XAV-939-treated hBMSCs exhibited significant upregulation in number of genes essential 
during normal bone repair and recruitment of progenitor cells for bone remodeling including MAPK9, which is 
involved in osteogenesis and found to enhance mineral deposition and late stages osteoblastic  differentiation44, 
showed a significant upregulation in hBMSCs treated with XAV-939. Expression of SMAD4, which has a major 
role in regulating osteoblast viability and bone  homeostasis45, was also significantly increased in hBMSCs treated 
with XAV-939. In addition, we identified TNF, NFκB, and STAT signaling among the top activated signaling path-
ways in XAV-939-treated hBMSCs; all are known to play a role in osteoblast differentiation and bone  formation29.

PARPs, originally described as DNA repair enzymes, regulates various cellular functions including transcrip-
tion, metabolism, and  replication46,47. The effect of PARP in osteoblast differentiation is rather controversial, 
with some of the literature reporting an inhibitory effect of PARP inhibitors on osteoblasts. Kishi et al. reported 
that inhibition of PARP by the PARP inhibitor PJ34 suppresses osteogenic differentiation in mouse mesenchy-
mal stem  cells48. On the other hand, scattered studies, however, are in line with our study and describe that 
PARP inhibition may promote osteoblastic differentiation. Moreover, PARylation signaling controls osteogenic 
differentiation-associated cell death including inhibition of metabolic pathways and stimulation of cell  death47,49. 
Dying cells at the terminal stage of differentiation release PARP that incorporate into the bone matrix and help 
 calcification47. hMSCs stimulate osteoblast differentiation through activating the p38 MAPK  pathway50. PARP 
inhibition impaired the activation of the downstream mediator, p38, leading to suppression of cell death and 
osteodifferentiation, mineralization, alkaline phosphatase activity, and marker gene  expression47,51. In addition, 
PARP-1, a member of the PARP family, negatively regulates the expression of osteoclast-related upregulated genes 
in RANKL  induction52. PARPs also have metabolic regulatory roles in adipocyte differentiation and were shown 
to modulate skeletal muscle myoblast  differentiation53. PARPs are main factors in aging-related diseases such 
as neurodegenerative diseases and metabolic  diseases46. Inhibition of PARP can restore endothelial function, 
neurovascular coupling responses and cognitive function in aged mice models that resemble features of brain 
dysfunctions observed in elderly  patients54. In addition, it can inhibit neuroinflammation in animal models of 
Alzheimer’s  disease54. In specific, Tankyrases are also involved in several biological processes including the posi-
tive regulation of Wnt/β-catenin pathway. Thus, inhibition of Tankyrase may potentially treat Wnt-dependent 
 cancers55. Furthermore, Tankyrase inhibition in vitro enhance SH3BP2  expression56, which is required for normal 
bone homeostasis for both osteoblasts and osteoclasts via activation of the associated tyrosine kinases ABL in 
osteoblasts and Src in  osteoclasts57.

Recently, Fujita et al.1 have reported that other tankyrase inhibitors promoted osteoblast differentiation and 
in vitro mineralization in spite of the observed inhibitory effects on Wnt/β-catenin signaling. The authors sug-
gested that XAV-939 effects may be mediated by increased osteoblastic SH3BP2 which in turn stimulates a posi-
tive feedback loop of tyrosine kinase ABL, the transcriptional coactivator TAZ, and the RUNX2-TAZ complex 
necessary for osteoblastic cell  differentiation1,57–59. Observation in the current study corroborate these findings 
as we reported that XAV-939 increased the expression of SH3BP2 and upregulated RUNX2 expression which 
may be caused by activation of ABL-TAZ  complex20–22.

RANKL, which is expressed by osteoblast  precursor60, is crucial for osteoclast differentiation and bone resorp-
tion. RANKL binds its cognate receptor  RANK60, a cell surface receptor located on osteoclast  lineages61. On the 
other hand, OPG (osteoprotegerin), a soluble decoy receptor for  RANKL62 produced by osteoblastic  cells61, inter-
acts with RANKL, to inhibit RANKL/RANK binding, thus preventing subsequent osteoclast formation and bone 
 resorption62,63. RANKL and OPG expressed differentially during  osteoblastogenesis60,64. They both are expressed 
at the initiation of mineralization, RANKL then decreases in cells during the mineralization  phase64, while OPG 
continue to increase during matrix formation, maturation, and mineralization  phase64. In our study, we found 
a significant increase in the OPG expression along the differentiation together with a significant decrease in the 
expression of RANKL after the treatment with XAV-939. These findings suggest that XAV-939 enhanced osteo-
blast formation and maturation, and may also play a role in osteoblast-osteoclast interaction. These outcomes 
suggest that XAV-939 is an enhancer of osteoblast differentiation and inhibitor of osteoclast differentiation 
which is relevant for treating of bone diseases with impaired bone formation e.g. osteoporosis, and that is a novel 
addition to its possible use as a new therapeutic agent in clinical management of patients with breast cancer65.

Materials and methods
Cell culture. A hMSC-TERT cell line was used in all experiments of this study as a model for hBMSCs. The 
hMSC-TERT line was produced by overexpressing the human telomerase reverse transcriptase gene (hTERT). 
hMSC-TERT retains the typical features of primary hMSCs including unlimited self-renewal and multipotency, 
besides gene expression  profile66,67. Normal human primary hBMSCs were purchased from Thermo Fisher Sci-
entific Life Sciences.

The cells were maintained in Dulbecco modified eagle medium (DMEM), a basal medium supplemented 
with 4 mM l-glutamine, 4,500 mg/l d-glucose, and 110 mg/l 10% sodium pyruvate, in addition to 10% fetal 
bovine serum (FBS), 1% penicillin–streptomycin, and 1% non-essential amino acids as previously  described66. 
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All reagents were purchased from Thermo Fisher Scientific Life Sciences, Waltham, MA (https ://www.therm 
ofish er.com). Cells were incubated in 5%  CO2 incubators at 37 °C and 95% humidity.

Osteoblast differentiation. In accordance with our previously published  protocol25, the cells were cul-
tured until 80–90% confluency was reached then the medium was substituted with osteoblast induction medium 
(DMEM containing 10% FBS, 1% penicillin–streptomycin, 50 mg/ml l-ascorbic acid (Wako Chemicals GmbH, 
Neuss, Germany, https ://www.wako-chemi cals.de/), 10 mM b-glycerophosphate (Sigma-Aldrich), 10 nM calci-
triol (1a,25-dihydroxyvitamin D3; Sigma-Aldrich), and 10 nM dexamethasone (Sigma-Aldrich). The stem cell 
signaling small molecule inhibitor library including XAV-939 were purchased from Selleckchem Inc. (Hou-
ston, TX, https ://www.selle ckche m.com). Small molecule inhibitors were added at a concentration of 3 µM to 
the osteoblast induction medium and cells were continuously exposed to the inhibitor over the differentiation 
period. Control cells were cultured with osteoblast induction medium containing dimethyl sulfoxide (DMSO) 
as vehicle.

Cell viability assay. Cell viability assays was performed using alamarBlue assay, as previously  described25 
according to the manufacturer’s recommendations (Thermo Fisher Scientific). For dose–response growth curve, 
cells were cultured in 96-well plates in 300 μl of the medium in the presence of 0.3, 3, and 30 μM. XAV-939 com-
pared to DMSO vehicle-treated control cells. On day 1, 2, and 3, 30 μl/well of alamarBlue substrate was added 
(10%) and plates were incubated for 1 h in the dark at 37 °C. Readings were obtained using BioTek Synergy II 
microplate reader (BioTek Inc., Winooski, VT, USA) at fluorescent mode (Ex 530 nm/Em 590 nm). For cell via-
bility, cells were cultured in 96-well plates in 300 μl of the medium. On day10, 30 μl/well of alamarBlue substrate 
was added (10%) and plates were incubated for 1 h in the dark at 37 °C. Readings were obtained using BioTek 
Synergy II microplate reader (BioTek Inc., Winooski, VT, USA) at fluorescent mode (Ex 530 nm/Em 590 nm).

Measurement of apoptosis. A fluorescence-based apoptosis assay using the acridine orange/ethidium 
bromide (AO/EtBr) staining method was performed as previously  described68 after exposure of the cells to XAV-
939 (3 µM) compared to DMSO-vehicle treated control cells. On day 3, cells were stained with dual fluorescent 
staining solution (1.0 µl) containing 100 µg/ml AO and 100 µg/ml EtBr (AO/EB, Sigma, St. Louis, MO, USA). 
Cells were mixed with AO/EtBr (1:100) dye solution for 1 min before they were imaged under a Nikon Eclipse 
Ti fluorescence microscope (Nikon, Tokyo, Japan).

Quantification of alkaline phosphatase activity. Alkaline phosphatase (ALP) activity was quantified 
using the BioVision ALP activity colorimetric assay kit (BioVision, Inc., Milpitas, CA, https ://www.biovi sion.
com/) with some modifications as previously  described25. The cells were cultured in 96-well plates. On day 10 of 
osteoblast differentiation, the cells were rinsed once with PBS and fixed with 3.7% formaldehyde in 90% ethanol 
for 30 s at room temperature. Fixative was removed and 50 µl/well of p-nitrophenyl phosphate solution was 
added and incubated for 30–60 min. Optical densities were then measured at 405 nm using a SpectraMax/M5 
fluorescence spectrophotometer plate reader, and ALP enzymatic activity was then normalized to cell number.

Alkaline phosphatase staining. Cells were cultured in a 6-well plate in osteoblast differentiation medium. 
In accordance with our previously published  protocols25, on day 10, the cells were washed in PBS and fixed in 
10 mM acetone/citrate buffer at pH 4.2 for 5 min at room temperature. The fixative was removed and Naphthol/
Fast Red stain [0.2 mg/mL Naphthol AS-TR phosphate substrate (Sigma)] [0.417 mg/mL of Fast Red (Sigma)] 
was added for 1 h at room temperature. Then, cells were washed with water 3 times and images were taken under 
the microscope.

Alizarin Red S Staining for mineralized matrix formation. In accordance with our previously pub-
lished  protocols25, on day 21 of osteoblast differentiation, cells were washed twice with PBS and fixed with 4% 
paraformaldehyde for 10 min at room temperature. The fixative was rinsed and the cells were then washed 3 
times with distilled water and stained with the 2% Alizarin Red S Staining Kit (ScienceCell, Research Laborato-
ries, Cat. No. 0223) for 10–20 min at room temperature. Later, the cells were washed with water and images were 
taken under the microscope.

RNA extraction and cDNA synthesis. Total RNA was isolated from cell pellets on day 10 of osteoblast 
differentiation using the total RNA Purification Kit (Norgen Biotek Corp., Thorold, ON, Canada, https ://norge 
nbiot ek.com/) according to the manufacturer’s instructions as previously  described25. The concentrations of 
total RNA extracted were measured using NanoDrop 2000 (ThermoFisher Scientific Life Sciences). cDNA was 
synthesized with 500 ng of total RNA using High Capacity cDNA Transcription Kit (ThermoFisher Scientific 
Life Sciences) according to manufacturer’s instructions.

Quantitative real time‑polymerase chain reaction. Quantitative Real Time-Polymerase Chain Reac-
tion (RT-PCR) was performed using fast SYBR Green in Applied Biosystems ViiA 7 Real-Time PCR System 
(ThermoFisher Scientific Life Sciences). Primers used in this study are listed in Table 1. Relative expression was 
calculated using the 2∆CT value method, and analysis was made as previously  described69.

Gene expression profiling by microarray. One hundred fifty nanograms of total RNA from day 10 of 
osteoblast differentiation were labeled using a low input Quick Amp Labeling Kit (Agilent Technologies, Santa 

https://www.thermofisher.com
https://www.thermofisher.com
https://www.wako-chemicals.de/
https://www.selleckchem.com
https://www.biovision.com/
https://www.biovision.com/
https://norgenbiotek.com/
https://norgenbiotek.com/
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Clara, CA, https ://www.agile nt.com) and hybridized to the Agilent Human SurePrint G3 Human GE 8 × 60 k 
microarray chip. All microarray experiments were performed at the Microarray Core Facility (Stem Cell Unit, 
Department of Anatomy, King Saud University College of Medicine, Riyadh, Saudi Arabia). Data were normal-
ized and evaluated using GeneSpring 13.0 software (Agilent Technologies). Pathway analyses was concluded 
using GeneSpring 13.0 as defined  previously70. Two-fold cutoff and p(corr) < 0.05 (Benjamini–Hochberg mul-
tiple testing corrected) were used to define significantly changed transcripts. Pathway and functional anno-
tation analyses were conducted using the Ingenuity Pathway Analysis (Ingenuity Systems, https ://www.ingen 
uity.com/)29,71. upregulated genes ≤ 2 FC (fold change) and corrected p value < 0.05 were chosen for analysis. 
Enriched network categories were algorithmically generated based on their connectivity and ranked according 
to Z score.

Statistical analysis. Statistical analysis and graphing were performed using Microsoft Excel 2010 and 
GraphPad Prism 6 software (GraphPad software, San Diego, CA, USA), respectively. Results obtained were 
shown as mean ± SEM from at least two independent experiments. Unpaired, two-tailed Student t-test was used 
to determine statistical significance and p-values < 0.05 was considered statistically significant.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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